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In this paper I wish to report on some results which, though by no means
recent, have never previously been published in a generally available form,
and may therefore still be of some interest despite their age.

In many applications of singularity theory, there is an underlying
symmetry which results either from experimental constraints or from laws of
nature, and symmetry has a significant effect on the mathematical descrip-
tion, in particular because phenomena which are ordinarily not stable or
generic may become stable and generic, and thus amenable to treatment by
singularity theory, when their symmetry is taken into account. For this
reason it becomes interesting to classify singularities in the presence of
symmetry.

Fortunately, although the details of what is stable or generic change
when symmetry is present, the general framework of the “classical” Thom-
Mather singularity theory remains valid (so long as the symmetry group is
compact). In [6], V. Poénaru proved a “G-invariant” version of the Malgrange
preparation theorem, and using this it is fairly easy to generalize most of
the Thom—Mather theory to the symmetric case, as was done for the theory
of unfoldings and of stable mappings by Poénaru in the same book. In his
Diplomarbeit [4], M. Beer developed a symmetric version of the theory of
finite determinacy; to a large extent, the results and their proofs directly
mirror the non-symmetric case. Beer also gives a classification of singularities
for the case of Z,-symmetry. This was the starting point for the present
work.

Abelian compact Lie groups have particularly simple irreducible repre-
sentations. Using this fact it is possible to obtain a general description for
abelian symmetry which enables one to treat all abelian Lie groups simulta-
neously when classifying symmetric singularities. In the present paper, we
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present a classification of symmetric germs, up to symmetric codimension 4,
for an arbitrary abelian compact symmetry group. (As a prerequisite to this
classification we present a G-invariant splitting lemma, which is vald also in
the nonabelian case). In addition, we extend Arnold’s notion of simple germs
to the symmetric case and classify the simple germs with compact abelian
symmetry.

Because of space restrictions we shall omit all computations and proofs.
These may be found in full detail in [12].

We should impress upon the reader that we restrict to the abelian case
only for the actual classification; the underlying symmetric singularity theory,
including the parts we develop in this paper, is valid for symmetry by
arbitrary compact Lie groups.

This paper relies heavily on the work of Poénaru [6] and Beer [4];
most of the basic results of symmetric singularity theory are due to them.

1. Preliminaries

DerintTioN 1.1, Let G be a compact Lie group acting linearly on the
Euclidean spaces R” and R?. We shall denote by &¢(n, p) the set of germs, at
Oe R", of smooth G-equivariant mappings R" — RP (f is G-equivariant if { (gx)
=gf(x) for all geG, x near 0 in R", and we set mg(n, p)
=I{feds(n,p)| f(0O)=0}. If p=1 and G acts trivially on R? =R (ie. gx
= x for all ge G, xe R), then we shall write simply &;(n) for é¢(n, 1) and
mg(n) instead of mg(n, 1); the elements of &;(n) are called G-invariant
smooth function germs at O R". With the usual multiplication of real-valued
function germs, &;(n) becomes a local ring, mg(n) is its unique maximal
ideal, and &g (n, p) and mg(n, p) are modules over £4(n) in the obvious way.

If G acts trivially on both R" and R? (or if we choose to forget for a
moment the action of G), then we shall omit the subscript G in this notation
and we obtain the ring &(n), the ideal m(n), and the modules &(n, p),
m (n, p) of classical singularity theory without symmetry.

The sets nf(n) = m(n)* n&g(n) are ideals of &;(n). These and the
powers of g (n) will be needed below.

To apply the usual algebraic methods of singularity theory it is import-
ant that the ideals and modules defined above be finitely generated over
é;(n). This is a consequence of

Tueorem 1.2 (Hilbert’s finitude theorem). Let G be a compact Lie
group acting linearly on R", and denote by Rg[X,, ..., X,] the ring of G-
invariant real polynomials on R". Then there exist finitely many homogeneous
G-invariant polynomials ¢,, ..., ¢, which generate R;[X,, ..., X,] as an R-
algebra.
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THeorEM 1.3 (Schwarz’s finitude theorem ([8])). Let G and g, ..., o4
be as in Theorem 12, and let p: R" >R be the map (x,,...,x,)
H(Ql (xli ERE ) X,,), RN Qk(xl’ reey X,,)). De.ﬁne Q*: /”(k) —'(t"(;(n) by Q*(f) =
foo. Then o* is surjective.

Proofs of these two theorems and of the fact that &g;(n, p) and mg(n, p)
are finitely generated over &;(n) can be found in [6].

A further consequence is the easy but important

LemMA 14, For every integer k = 0 there is an integer r > 0 such that
g (n) < nyg (n).

We are interested in classifying symmetric germs up to the following
equivalence:

DeriniTioN 1.5. Let G be a compact Lie group acting linearly on R".
Set L;(n) = {¢pe&s(n, n)| ¢ is non-singular at 0}; this is a group with
composition of map-germs as the group operation.

Let f and h be germs in g (n). We say f is G-right equivalent to
h(f ~gh) if there is a ¢ €L;(n) such that f = hod.

In many cases it is possible, up to equivalence, to replace a germ by
a finite portion of its Taylor series (i.e, a finite jet), which provides an
important simplification:

DerINITION 1.6, Let G be a compact Lie group acting linearly on R"
and let fe m;(n). We say that [ is strongly k-determined if for any he n;(n)
such that f—her” ! (n) we have f ~; h. We say that f is G-k-determined if for
any he mg(n) such that f—he mg(m**! we have f ~;h.

We say that f is G-finitely determined if for some k f is strongly k-
determined (by virtue of Lemma 1.4, this is equivalent to requiring that f be
G-k-determined for some k).

) For f e mg (n), the strong k-determinacy (resp. G-k-determinacy) of f is the
smallest k for which f is strongly k-determined (resp. G-k-determined), or oo if
/ is not G-finitely determined. The determinacies are invariants of G-right
equivalence.

An important technique of singularity theory is to study singular germs
by studying the “tangent spaces™ of their right-equivalence classes. What
more or less plays the role of the tangent space is a certain ideal which can
be associated to a germ, its Jacobian ideal:

DerFiNITION 1.7. Let the Lie group G operate linearly on R". Then the
differential of the action of the elements of G defines an action of G on the
tangent bundle TR", such that the projection TR" — R" is equivariant. A
vector field germ X on R" will be said to be G-equivariant if it is equivariant
as a map-germ R" — TR", with respect to the above actions of G.
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Since TR" = R" xR" is trivial, by projecting into the fibr¢ R" we may
identify any vector ficld germ X on R” with a map-germ R"— R", and X is
G-equivariant if and only if this map-germ is G-equivariant. Thus the set of
G-equivariant vector field germs on R" may be identified with &¢(n, n).

If X is a vector field germ on R" and fe & (n), then X (f) will denote
the directional derivative of f in the direction of X.

DerFmNniTioN 1.8, Let the Lie group G operate linearly on R". If f € £; (n),
we set

Jo(f) =1X(f)| X is a G-equivariant vector field germ on R"}.

It is easy to see that this is an ideal of &;(n); it is called the G-Jacobian
ideal of f.

If G is compact, then Jg(f) is finitely generated over &g (n) (essentially
because &;(n, n) is a finitely-generated module).

Since there are obviously infinitely many equivalence classes of singular
germs, it will not be possible to classify them all, and so it makes sense to
begin with the “most generic” and “least complicated” ones. To do this one
needs a way of measuring genericity. Although there are several such
measures, the most useful and in a sense most natural one is the codimension:

DerFmniTioN 1.9. Let the Lie group G act linearly on R, and let
femg(n). We define the G-codimension of f to be

codg (f) = dimgmg (n)/(J (f) N mg (n).

Since Jg(f) is more or less the tangent space of the G-right equivalence
class of f, one may interpret cod;(f) as the codimension of the G-right
equivalence class (in a suitable space). In particular, the lower the G-
codimension, the larger the G-right equivalence class, and so the more
generic the germ.

We shall attempt to classify germs of low codimension, and it is a
fortunate fact that this means that we may always assume we are dealing
with polynomials:

THeoreM 1.9 (Beer [4]). Let G be a compact Lie group acting linearly
on R", and let f € mg(n). Then f is G-finitely determined if and only if codg(f)
is finite.

If € m(n), we recall from the standard Thom-Mather theory that an r-
dimensional unfolding of f is a smooth germ F defined on R* x R = R"*" near
0, i.e. a germ Fe &(n+r), such that for xe R" we have F(x, 0) = f(x), where
0 denotes the origin of R’. In other words, F is the germ of an r-parameter
family of functions which contains the germ f.

If the Lie group G acts linearly on R", then we may extend the action of
G to R"x R', for any r > 0, by letting G act trivially on the second factor KR,
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e, for xeR", uekR, and ge G, we set g(x, u) =(gx, u). An r-dimensional
unfolding F of a germ fe m(n) will be said to be a G-unfolding if F is G-
imnvariant, i.e. Fe &g(n+r), with respect to the above action (f is then
necessarily also G-invariant, i.e. in ni (n)).

Now it is very easy to carry the standard Mather theory of unfoldings
(as presented for example in [5] or [11]) over to the G-symmetric case and
develop an analogous theory of G-unfoldings, simply by everywhere adding
the requirement that all function germs be G-invariant and all mapping
germs be G-equivariant with respect to the action of G defined above (which
acts trivially on the unfolding parameters). In particular one can define, in an
entirely analogous way to the standard case, G-morphisms and G-isomor-
phisms between G-unfoldings, and the concept of G-universal unfoldings of G-
invariant germs, and one can prove results analogous to most of the
standard ones by exactly the same methods. We shall not elaborate, except
to mention the {ollowing main theorem, proved by Beer [4] and in a slightly
different and slightly weaker form by Poénaru [6]:

THEOREM 1.10. Let G be a compact Lie group acting linearly on R", and
let femg(n).

(1) f has G-universal unfoldings if and only if { is G-finitely determined.

(1)) Any two G-universal unfoldings of f of the same unfolding dimension
are G-isomorphic.

(i) If f is G-finitely determined, then the minimal unfolding dimension of
a G-universal unfolding of f is codg(f). Moreover, if b,, ..., b,c mg(n) are
representatives of a basis of mg(n)/(Jg(f) N mg(n)), then the r-dimensional G-
unfolding

Fix,wy=f(xX)+u by (x)+ ... +u,b,(x) (xeR",u=(uy,...,u)ekR)
is G-universal.

We see here that the codimension also tells us the minimal unfolding
dimension of a universal unfolding.

Remark. It is an important restriction that above we have required all
of the germs in the family of germs represented by an unfolding to have the
same G-symmetry, and have required G to act trivially on the unfolding
space. If instead one allows arbitrary actions of G on R" xR" extending a
given action on R" x {0} = R", then one obtains entirely different universal
unfoldings, namely, the minimal universal unfolding is the same as one has
without symmetry, but it is in fact G-invariant with respect to a suitable
natural G-action on the unfolding space; for details, see [9]. Essentially what
happens here is that in the unfolding the symmetry of the unfolded germ is
broken by partially transferring it to the unfolding space.

Unfoldings are important because they describe what happens when a
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singular germ is perturbed. This suggests another way of measuring the
complexity of a germ — some germs, although quit€ non-generic (i.e. of high
codimension), may still show very uncomplicated behaviour upon perturba-
tion. Essentially one may use the dimension of the set of equivalence classes
one encounters upon perturbation of a germ as a measure of complexity —
this “dimension” is called the modality of the germ. We shall give precise
definitions only for the case where the modality is 0 — germs of modality 0
are appropriately called simple. This concept was introduced, for the nonsym-
metric case, by V. 1. Arnold [2]. Our definition for the case of symmetry
differs slightly from Arnold’s but 1s equivalent to the analogue of his
definition if the symmetry group is compact:

DeriniTION 1.11.  Let G be a compact Lie group acting linearly on R".
Let f e (n) and let F € mg(n+r) be a G-unfolding of f. We shall say F meets
only finitely many G-right equivalence classes if there is a G-invariant neigh-
bourhood U of 0e R"*" and a G-invariant function F': U — R, whose germ
at 0 is F, such that for ue R" such that (0, u)e U, the germs F_ e mg;(n),
defined by F,(x) = F'(x, u)—F’(0, u) (xe R"), belong to only finitely many
different G-right equivalence classes.

A germ f e mg(n) is called G-simple if every G-unfolding of / meets only
finitely many G-right equivalence classes.

Remark. The property of being G-simple is obviously invariant under
G-right equivalence.

Lemma 112 ([12, Lemma 1.35]). Ler G be a compact Lie group acting
linearly on R", and let f € mg(n). If [ is G-simple, then f is G-finitely determined.

2. The splitting lemma

Let G be a compact Lie group acting linearly on an n-dimenstonal real
vector space V. Then V = R", and we may even choose suitable real coordi-
nates (x;,..., x,) on V with respect to which G acts orthogonally. In
particular, the quadratic form x%+ ... + x}? is then G-invariant. A G-invariant
quadratic form g on V will be called standard if in some system of real Linear
coordinates on V with respect to which G acts orthogonally g takes on the
above form.

In the following, we shall always assume that G is a compact Lie group
acting linearly on R". Then R” decomposes as a direct sum of irreducible G-
spaces; we choose such a decomposition R" =V, @ ... ®},.

As in the nonsymmetric case, an important first step in the problem of
classifying singularities is the following splitting lemma:

Lemma 2.1 (splitting lemma ([12])). Let G and the V, be as above, and
let femg(n) be singular at O (i.e. feni(n). Then there is a subset A of
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{1, 2, ..., k}, there is a smooth G-invariant real function germ n defined on W
= Ei—) V,, and in n} there, and for each j¢ A there is a standard quadratic form
q; loe;: V, and a number &; = +1, such that
() f“'G'H‘ZEj‘b-

A

Moreover, the G-representation type of the G-space W, the G-right equivalence
class of n, and the numbers and G-representation types of the V;, j¢ A for which
e;=+1 and for which ¢;= —1 are uniquely determined by the G-right
equivalence class of f; they also do not depend on the choice of the decomposi-
tion R"=V,® ... ®V,.

A proof of this lemma can be found in {12, § 2], but for the existence
part a more elegant proof is given in [9, Satz 4.2]. This lemma generalizes
the G-equivariant Morse lemma proved in [3].

The important point is that the so-called remainder germ n above
inherits many of the properties of f:

LemMma 22, Let G, f, n, W and the V, be as in Lemma 2.1. Then

(@) codg(f) = codg(n).

(b) If f has a degenerate singularity at O, then f and n have the same
strong determinacy, and they have the same G-determinacy except in the one
very special case that n is G-1-determined and G acts trivially on some V,, i¢ A
(then f is G-2-determined).

(c) Let p=dimgW, and let by, ..., b, emg(p). Let = be the projection
R —>W. Then b,, ..., b, represent a basis of wg(p)/(J(n) N (p) if and only if
byom, ..., b,on represent a basis of mg(M/(Jg(f) N mg(n). (By virtue of
Theorem 1.10 (iii), this gives a correspondence between the minimal universal
unfoldings of f and of n).

(d) [ is G-simple if and only if n is G-simple.

Remark on part (b) above: if f has a non-degenerate singularity at 0,
then W = (0}, n =0, and n is trivially O-determined in both senses, which f
will not be unless n = 0.

By virtue of Lemmas 2.1 and 2.2, it is only necessary to classify germs
belonging to nd {(and any singular germ may be reduced to this case by
splitting off a non-degenerate quadratic form). One reason this is important
is that for germs in ng the minimal codimension of the germs grows strictly
with the number of variables (ie, if one places a bound on the G-
codimension, then the dimension of the G-spaces to be considered is also
bounded):

LeMMA 23. Let G be a compact Lie group acting linearly on R", and let
R"=V,® ... ®W be a decomposition of R" into irreducible G-subspaces. For

31 - Bunach Center t. 20
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each G-representation type ¢ let r, be the number of V, of type ¢. Then for any
feng(n),

ro+1
codG(f)BZ( ) )
e
In applications, the splitting lemma often permits a significant reduction
. in the number of variables which need to be considered in the mathematical
model under study.

3. The abelian case

If G is a compact abelian Lie group, and if V is an irreducible real G-space,
then as is well known, V is either of dimension one or two over R. Moreover,
in the one-dimensional case each element of G acts on V either as the
identity or as negation v+— —uv, i€, the action of G factors through the
standard action of Z, on V via a homomorphism 2: G =+ Z,. In the 2-
dimensional case, there is a real isomorphism of V to C with respect to
which the action of G on V factors through the standard action of the circle
group S! on C (complex multiplication) via a homomorphism 4: G — S'. We
shall explain how this greatly simplifies the task of classifying G-invariant
singularities when G is abelian.

Suppose we have an arbitrary linear action of a compact abelian Lie
group G on R" Then we may decompose R" into irreducible G-subspaces
and we may factor the action of G on each of these through a homomor-
phism of G into Z, or §' as above. Let us write down such a decomposition
in a systematic way, whereby we shall gather together irreducible summands
of the same representation type into the so-called primary components of the
representation, and we shall write down first the primary component on
which G acts trivially, then the primary components of the different one-
dimensional representation types, and last the primary components of the
different two-dimensional representation types. Then up to a real isomor-
phism we may write

R=R xR"x...xR*xC" x ... xC",

where G acts trivially on R, each R" is primary of one-dimensional
representation type and G acts on it via a homomorphism 4;: G — Z, (i.e,

g €G acts by multiplication with 4;(g) = + 1), and each C" is primary of two-
dimensional representation type and G acts on it via a homomorphism p;:

G —S! (i.e, g €G acts on C" by coordinatewise complex multiplication with
#j(g))-

If we order the primary components above so that s, <...<s, and
t €...<t; then the symbol (r|sy, ..., s,|¢;, ..., t;) is uniquely determined
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by the G-isomorphism type of the original action of G on R”; we shall call
this symbol the rank of the G-action.

We may combine the homomorphisms 4; and u; above into one
homomorphism 4: G — (Z,)* x(S'), 4(g) = (A, (9), .-, A4 (g), 11 (9), ... mi(@));
we shall say G acts via 4.

Although these remarks are quite trivial, they have a very important
consequence: obviously, the ring &;(n) and its structure, and the G-equiv-
ariant map-germs from R” to any other G-space, do not depend directly on G
and its action; they depend only on the image of 1 in (Z,)* x(S')' (which we
shall call the effective group of the G-action). In other words, for the
classification of germs with compact abelian symmetry, it is enough to
consider only closed subgroups H of the groups (Z,)* x(S')" acting in the
standard way described on the spaces R* xR x ... x R* xC"' x ... xC" It is
merely necessary to impose a few ‘“non-degeneracy” conditions on H, so
obvious that we need not specify them here, to insure that the factors R’ are
really of different and non-trivial representation types, and that the factors
C' are of different and of essentially two-dimensional representation types.
Moreover, although neither the homomorphism A above nor its image H
= A(G) in (Z,)* x(S') are uniquely determined by the original action of G on
R", there are equally simple and obvious criteria to determine when the
actions of two different subgroups H and H' of (Z,)* x(S')' acting in the
standard way are isomorphic, i.e, can be associated to the same original
action of G on R"

Not only have we greatly reduced the list of groups which we must
consider, it turns out that it is very easy to enumerate the relevant subgroups
H of (Z,)* x(S") by virtue of the Pontryagin Duality Theorem {7, Theorem
40], which gives a correspondence between the closed subgroups H of
(Z,)* x(S')" and the subgroup of characters of (Z,)* x(S!) (or of (S)**! 2
(Z,)* x(S"')") which vanish on H. It seems slightly more convenient to work in
the character group of (S§))**!, which is Z**'. Subgroups R of Z**' are easily
classified by classifying their bases; moreover the condition that H is in fact
contained in (Z,)* x(S!'), and the non-degeneracy conditions on H mentioned
in the previous paragraph, translate immediately to obvious conditions on
the corresponding group of characters R < Z*/,

There is a further very important benefit from the description of abelian
symmetry given above, which greatly simplifies calculations in the abelian
case: namely, the structure of &;(n) (and also of &¢(n, n), and hence
indirectly of the G-Jacobian ideals of germs) can immediately be determined
by inspection. Let us elaborate briefly:

We shall take coordinates on R* = R* xR x ... xR* xC"' x ... xC" as
follows: on the factors R* and R we shall take the standard real coordinates,
but on the factors C7 we shall take the standard complex coordinates z;

FAS)

and we shall write real polynomials on R" as real-valued polynomials in the
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real coordinates of R* and the R* and in the complex coordinates z; . and
their conjugates 7, .. Then because the subgroups H of (Z,)* x(S')' which we
must consider act essentially by complex multiplication, a polynomial in the
above mixed coordinates is H-invariant if and only if each of its monomials
is invariant. Moreover, to determine if a monomial is invariant, we need
merely add up, for each of the spaces R or CY, the exponents in the
monomial of the coordinates belonging to this space (counting the exponents
of the complex conjugate coordinates as negative). The monomial is H-
invariant exactly when the resulting k+ /-tuple of integers belongs to the
group R = Z**! of characters of (S!)**! vanishing on H.

Note that this criterium works even if we allow negative exponents. This
allows us to derive immediately a corresponding criterium for H-equivariant
mappings: a monomial mapping f into one of the factors R or C of the
above decomposition of R" is clearly equivariant if and only if the monomial
obtained by dividing f by the coordinate corresponding to the target factor is
invariant. Again, a polynomial mapping is equivariant if and only il each of
its monomials is.

To summarize: to handle all abelian symmetries it is sufficient to
consider the very comfortable situation of closed subgroups of torus groups
acting on R" essentially by complex multiplication. Such groups are easily
classified by the free abelian groups of characters vanishing on them, which
also immediately describe the invariant and equivariant polynomials. This so
much simplifies the task of computation that it is possible to obtain the
general classification, for all abelian symmetries, of germs of low G-codimen-
sion and G-simple germs given in the next section.

4. The classification

In this section we shall give a complete classification, for all compact abelian
Lie groups G, of the germs in mg(n) of G-codimension < 4 and of the G-
simple germs. In presenting the classification lists we shall of course apply
the simplifications and notations introduced in Section 3; in particular, the
lists mention only the effective groups H of the actions, which are closed
subgroups of (Z,)* x(S')', and it is to be understood that each class of
symmetric germs mentioned in the list can also arise for any Lie group G
which admits the given group H as a quotient.

The lists include the following information: (1) a running number to
identify the class; (2) the rank of the group action (as defined in Section 3),
and, below the dimensions of the primary invariant subspaces in the rank
symbol, the names of the variables which will be used to denote the real or
complex coordinates on this subspace; (3) the effective group H < (Z,)* x(§")
(in defining H, we shall often write “Z,” to denote the cyclic subgroup of S*
consisting of the p-th roots of unity); (4) a polynomial normal form f for the
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class of germs; (5) the G-codimension of f; (6) representatives of an R-basis of
mg; (n)/J ¢ (f) (as explained in Section 1, this gives the G-universal unfolding
of f); and finally (7), (8) the strong and G-determinacies of f.

The polynomial normal forms listed usually contain variable exponents,
sometimes also variable coefficients, and describe an entire family of classes,
whose codimensions depend on the variable exponents so that the lists
include many germs of codimension > 4; the method of computation by
which the normal forms are derived automatically yields normal forms of
this generality at no extra cost. However, the list i1s complete only for G-
codimension < 4. The variable coefficients, if present, may either simply
represent a variable sign +1, in which case they are usually denoted by
Greek letters ¢, 0, or they may vary continuously on some open subset of R,
in which case they are denoted by lowercase Roman letters a, b, ¢ from the
beginning of the alphabet. In the lists, the permissible range of values for the
variable exponents and coefficients is given with the normal forms, and is
chosen so that different permissible values of the variable exponents and
coefficients define different G-right equivalence classes. (In particular, the
variable coefficients with a continuous range are so-called moduli of the
normal forms.) Nor do the different normal forms listed “overlap” — all of
the germs listed are inequivalent to each other.

Some of the conditions given in the lists for the permissible range of
variable coefficients, in particular, the conditions stating that the coefficient
of a monomial is +1 or real > 0, are conditions which may be assumed
to hold up to G-right equivalence; choosing non-zero values violating
these conditions merely violates uniqueness, and yields germs belonging
to the same class as some germ in the permussible range. However, all
conditions on the variable exponents, and all other conditions on the variable
coefficients, in particular those involving the # relation, must hold, else the
data on codimension, determinacy etc. will be incorrect and the germ will
"belong to a different entry in the list (or will not belong to the list at all).
(The one exception to these remarks, in the separate Z,-classification list
below, is clearly marked.)

Note finally that since the complex polynomial normal forms given
represent real germs and hence are real-valued, any variable coefficient of a
self-conjugate monomial (such as z*z*) must automatically be real; this
condition is therefore not stated explicitly in the lists.

Obviously in this short space we cannot go into any details about the
proof of a classification of this magnitude. However, we shall give a few brief
comments on the method of proof in the following section.

In the lists below, we may of course assume that the effective group acts
non-trivially on R”, since the classification for the non-symmetric case is well
known (Thom’s list of the seven elementary catastrophes, Arnold’s 1972
classification of simple germs [2]).
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The previously mentioned Diplomarbeit [4] of M. Beer contains a
classification of the germs of codimension < 4 for the simplest case of
symmetry, the case G = Z,. As this thesis was never published, we include
Beer’s results here in a separate hst, (and therefore exclude the case G = Z,
in the main hst):

Turorem 4.1 (Beer [4, Satz 5.6]). Let the group Z, act on R" in the
standard way, namely, so that the non-zero element of Z, negates the last s
coordinates for some s < n, and suppose the action is non-trivial (i.e. s > 0).
The rank of this action is (n—s|s|0).

Suppose f€ n‘}z(n) and codz,(f) < 4. Then [ is Z,-right equivalent to a
unique germ in the following list:

. determinacy
Number| rank germ Z,<cod R-basis for

Mz, () 2, (/) strong z,

(ip {O110) +x, k—1 | xX¥(1<j<sk=1) | 2 k
x k=2

Giy, |(1[1]0) xp? + xk, k=1 | x(t<jgk-1) k k
x y k=3

(1ii)y 4y, 2—1 |y <ig<k-1), | 2k | max(k,3)
k=2 xyH0<jgk-1)
(ivi |(0]210) (x*—y?) (x? —ay?), 4 X2, yh xy, x2yr | 4 2

X,y |a must be >0, # 1, but up
1o right-equivalence may be
assumed to be > 1

(V) (7"2“"}’2)()‘2-‘4’)’2), 4 x25 yza Xy, x2y2 4 2
a must be >0

(vi) £(x*+ y)(x2+ ay?), 4 x2, ¥, xy, x2y? 4 2
£e=+41,agmust he >0, #1,
but up to right-equivalence
may be assumed o be > |

Our main result is:

THEOREM 4.2. Let G be a compact abelian Lie group acting linearly and
non-trivially on R". Suppose the effective group of the G-action (us defined in
Section 3) is not Z, (the Z, case is covered by Theorem 4.1). Let f € ng(n) and
suppose codg(f) <4. Then f is G-right equivalent to a unique germ in the
following table:
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O<r<k-1)

running rank effective erm - -codim R-basis for | determinacies
number group g mg (N)/Je(f) | (s[trong], G)
b | QIO | Z,, m=25 | x2*F*+az™+az™ | 2k-2 2z s: m+2k—4,
z k-2
+ Y Y+ 7, (1<j<2%k=-2)|G: 2k—2
j=1 '
2<k <mf2,
a, b; real, a >0
2m Z,m=13] +:272¢az'"™ 4 a7, 2! 2%, z/m 4 zim s: im,
22 areal >0 (1<j<g), G: |
izMm—jzrm
<rgi-1
3, Z,, modd, |z"+7" m—2 iz $: max
m-2 1€j€<m=2 2m—4, m),
mz=3 + Y 47 (I<ism=2 | ( )
j=tm+1)2 G: m=2
4, Z,, My M azk T+ m=2 zizi s: 2m—4,
k-2
m even, + Y bzt 1<jsm=2| G: m=-2
=t
m=2k k=2 a# +2
Sim I 22 I+k=2 2 s: 2l+m—4,
I+k-2
+ Y b7, (1 <j<i+k=2|G: [+k=2
=t
I>k b #0
6, s +z4 7 k=2 k—1 27 s: 2k,
1<j<k-1{ Gk
7 (11011 Z, 23+ +axzz 4+ x3, 3 x, 2Z, X2z s: 3,
X z a# -3 G:3
8, 22483 -3Ixzi+ 3+ k (1 gjgk) s: k,
+axt, k24, a+0 G: k
9% b Z,m23 | xzZ+2"m+ P pax!, [2k+12| X (L €<, |s: max(l, km),
kmz3, 123 10f M G: max(l, k)
km =13 then | > 3; (I<r<k-1,
a#0 iz"m—jm
I<s<k=1)
10, S! xzZ+x5 k23 k—1 |xX1<j<k-1 s: k,
G: k
11, i k22 2k—1 27 s: 2k,
(l<j<k—-1), | G: max(k, 3)
x2'z
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running rank effective germ G codim R-basis for | determinacies
number group ng (/Je(f) | (s[trongl, G)
12 0iL, 1|10 Z,xZ, ex® +ax? y? + 8y*, 3 x?, y2, x?y? s: 4,
Xy e=+1, 6= 41, G: 2
a® # 45¢
13, e(x*+26x2y*+y*) | k+1 x2, y¥ s: 2k,
+ay?, (1<j<k G: k
e==1,6=+1,
k=23 a0
14, ex*+8x2 yi+ay?, k+i—1 x2 s: max(2k, 20,
c=4+1,0=+1,a#0; N<j<k-1),
k22 122 k+1>4 yWr(<r<h G: max(k, )
15., [ ©O]111 o, ) x22+xz¥42¢2¢ Jk+1-1 2z s: max (2, 2f),
xz | €eZ,xS": +ax¥ (1<jgk-1,
g =1, k22122 a#0 x* (1<r<i) [G: max(k, ))
a = f%
(=2,
16, Z,xZ, 224 pexzz min x¥zz s: min
. -1, O<j<k=-1, | @di-2%k=-2
+§"‘i" ’ k+i-D xT(1<r<p | 21+4k-2)
’ = p+k) (=2p)
e=+1, k=21, 1>k, G: min
p=min(2l-k—1, 2l—k—-1,
I+2k—1); a; # 0, I+2k-1)
and if ! = 3k then (=»
a; # —¢&/27
17, 22+ 4 x -1 x¥zz s: 2k,
k=2 O<j<k-1, G: k
er
(I1<r<k-1)
18 Z, x§! ex* +ax?zz+ 622 2, 3 x?, 27, x*zz s: 4,
=+1,0=+1, G: 2
a? £ 40
19, e(x*+20x2zz k+1 x?, 217 s: 2k,
+ 22 2% + az* {(1<j<k) G: k
e=+1, 6= =1,
k=23 a#0
20, , ex*¥48x?zz+az'?, [k+1-1 x¥ s: max (2k, 21
e=+1,8=1=1, I<j<k-1,
a#0k=22 122 727 (1l <r <€) G maxtk, )
k+!>4
21 (0101 ZyxZ, 2+ 4w+ w? 3 27, WW, ZZww s: 4
ow + azzww G: 2
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k=2

running rank elfective erm G-codim R-basis for | determinacies
number group B wg (n)/Jg (f) | (s[trong], G)
22, . 10101, 1) Y(a, B) zwl4 rwd a2 2k wir, zf Z* s m+2k-—2,
zw| eS' xS +z" 4+ (1<jig<2k=1 | G: 2%k—1
ﬁZm :l k-1
¥ = IHZ}, + Y b+ T,
Ji=1
(= Z,,) 2<k<mf, a#0,
mz5 b; real
23, o, B) W Iwd 2 m ww, 245 s 2m—2,
eS' xS§" m! . ,
B = o + Y a# 1<jgm=-1| G: m—1
.21 i=m+1y2
= fi*]
(E Zlm)ﬂ
modd, m =3
24, Hoo, B, wriwl4zm4 m ww, 23 s 2m—2,
eS! xSt +aztz* A<j<sm-1n| G m—1
ﬂ2m=] k-1 . ]
x :ﬁ,z} + Z bj:k+1?+J,
i=1
(;Zlm)' a# iz
m even,
m=2k, k=2
25, m a, B) w4+ awi4 b wiR e 2 ww, 2/ 37 s: m+21—4,
eS!' xS -
g — + Y a;77, (1<j<2-1) |G: 21-1
’ j=(
x =% 2<i<k a#0
(=Z,),
m odd,
m=2k+1,
k=213
26,, o, B) Wi iwi+ w2 2k—1 ww, 2/ 7 s: 4k—4
ESI )(SIZ 2k-2
B =1 + ¥ 427 [(=m-2| (1 €j € 2%k-2) (= 2m—6),
. =
a = f2) G: 2k-2
(EZM), (=m_3)
m odd,
m=2k+1,
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running| effective : R-basis for | determinacies
number rank group germ -codim we(n)/Js(f) |(s[trong], G)
27, NOjO|1, )] Z,xS!' 2+ rezzw*w | min zzwd wl $: min
P
zw +Y gwiit, | @=1, ] (0<sj<k-1, | H-%-2
i=t 21+4k-2)
e==FL k=21, I>k[Bk+i-1) wrw' (= 2p),
p=min(2i—k—1, [=p+k} (I<r<p G: min
[+2k—1): a, # 0, Q2l—k-1,
and if [ = 3k then [+2k—1)
a; # —¢f21 (=p)
28, B+ P 4+ wka 2k—1 zzwd w s: 2k,
k=2 O<jgk-1), G: k
w W'
(1<r<k-1)
29,, {{a, B) W+ w taztz? 4 ZZ, WW, ZZww, s: k+r,
eSt xS': + bzzww + cw? w?, wiw? G: 2
ot =g} a=+1,¢c#0,
1<k<r, b? # 4ac
k+r=5
30 {(a, B) 22wt wliiazis? 4 ZZ, WW, ZIWW, s: 4,
eS! xS +bzzww + cw? w2, w2 w? G: 2
a?=pY a=+1,c#0,
(=Z,x8" (b+2)? # 4ac,
(b—2) # 4ac
31 {(a. B) 2w +Iwd 4 qz2 72 4 27, WW, ZZww, s: 4,
eS! xS +bzzww + cw? w2, w?w? G: 2
a=p3 a=+1, —8ab*¢?
(=8Y +36abc—27a+b*¢
~b*+16¢* #0
32, {l, B Wi w4 247 k ww, 247/ s: 2k,
eS! xS k=22 (1<j<k-1) G: k
a=p3
(=5Y
33 §' xS! ez2 72 + azzww 3 2Z, WW, ZZWW s: 4,
+ow wi, G: 2
e=+11,86=+1,
a’ # 46
34, e(z27Y + 26z7ww k+1 zz, ww s: 2k,
+w? w?) + aw* Wk, (1<j<k G: k
e=+1, 6= <1,
k>3, a+#0
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running rank effective germ codim R-basis for | determinacies
number group F wg (n)/Jg(f) | (s[trong], G)
35, {0]O|L, )| S xS! ez** + Szzww k+1-1 27 s: max (2k, 21),
zZ W +aw'w', (1<j<k-1),
e=+1,8=+1, waw (1 <r<l)| G: max(k, )
a#0; k=22 122,
k+1>4
36, ), 10| Z,xZ, x3 +exy? +6xe? k42 x, 12, y¥ s: 2k,
xyt +ay* (1<j<gk G: max(k, 3)
e=+1, 8= +1,
k=22 a#0
37, (111 Z, xS? x*+exy?+xzz k+2 x, zz, y¥ st 2k,
xXyz +ay®, (1<j<gk) G: max(k, 3)
e=+1,6=+1,
k=22 a#0
38, (110(1,1)] S'xS* X3 +exzz + Sxwiw k+2 x, ww, 2220 | st 2k,
X zw +az* 2, (1<j<k | G: maxtk, 3)
e=+1,6=+1,
k22 a#0
39 W, B x> +ExzZ + axww 4 x, X%, ww, xww|s: 3,
es! x§': + 2w 4 Zw?, G:3
a = p2 e=+1, a*# —4¢
(=8"
40,,m [O[1, 1,110 i(a, B, Y) € xyt + ex* + oy k+1 x $: max
xyt {Z,xZ,xZ,: +ar™, +m=-2| (1 <j<k-1), 2k, 21, 2m),
afy=1' k=2, 122, m>2; 3 G: max(k, l,m)
(2Z,xZ) | e=+1, 6= +1, (A<r<i—1),
a#0 1 t*(1€s<m
4L, (010111, 1) Y, B, 7) zwo+Iwb+ez 2+ | k+1 247 §: max
zwoleS! xS xSY  +owW W +armt™, (+m=-2| (1 <j<k-1), | (2, 21, 2m),
afiy=1)| k22,122, m=2; g G: max(k, |, m)
(=S'"xSY | e=+1, 6= %1, aA<<ri=-,
a#0 U (Il <sg€sm

The methods which are needed to obtain the above classification can
also be applied, with a few fairly obvious additional ideas, to obtain the
(considerably shorter) classification of the G-simple germs with abelian

symmetry:

THEOREM

4.3.

Let G be a compact abelian Lie group acting linearly

and non-trivially on R". Let f e n}(n) be G-simple. Then f is G-right equivalent
to a unique germ in the following table:
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number rank eflective germ Gcod R-basis for determinacies

group g ()/J 6 (f) strong | G

(1), 01110 Z, +x2*, k-1 x2 2k k
x k2 (1<j<k=1)

(2), (0101 1) St +z* 2, k-1 2z 2k k
z k>2 (1<j<k=1)

(3) Z, 247 1 2z 3 t

(4), (L1110 Z, xyi4xt, k—1 X k k
Xy k>3 (1<j<k=1)

(5) x3+y* 3 x, ¥, xy? 4 3

(6), (1101 1) s XzE+ x*, k—1 N k k
x oz k>3 I<j<k—1)

(V)] x3+-232 3 X, zZ, xzZ 4 3
(8), ©or, N | Y. B P L o N wiw, 245 2k k
Zw eS! xS k=22 (1<€j<k=-1)
a=p%

(=S")

5. Some remarks on the proof of the classification theorems

Clearly, it is not possible to give even a very rough sketch of the proof of the
classification theorems in the space available here. However, 1 would like to
give the reader a brief general description of the method of proof, since
similar procedures will find application in any problem of classifying germs
of smooth functions. I should also like to present a very useful and flexible
technical lemma which greatly eases the work of finding normal forms for
germs.

Carrying out a classification of singularities is an interplay of two
processes: (1) determining how degenerate the germ under consideration is
(in most cases this means: estimating the codimension from below), in order
to reject as quickly as possible the cases which exceed the degree of
degeneracy to be covered by the classification; and (2) finding allowed
equivalences which simplify as far as possible the form of the germ under
consideration, both in order to make subsequent computations (for example,
of codimension) easier, and to arrive at unique normal forms for the
equivalence classes to be covered by the classification.

In our case, as was said above, the first process involves estimating the
codimension of a singuiar germ f as simply and as well as possible, even if
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one has only incomplete knowledge of f. In general, one does this by
computing the dimension not of mg;(n)/Jgs(f) (which will usually not be
possible if f is not known exactly) but instead of mg (n)/(J¢(f)+ A), where A
is some linear subspace of mg(n) chosen so as to contain the possible
contribution to J; (f) of those parts of the Taylor series of f which are not
known exactly, while containing as few other elements of mg;(n) as a clever
choice of 4 can achieve. In this way general estimates of the codimension of
large classes of germs can be obtained using only very little information
about the germs (in fact, the less information one needs to put in about the
germs, the more generally applicable (albeit the less accurate) the estimate of
codimension will be), so that hopefully a large number of cases not to be
covered by the classification can be rejected at an early stage and with
minimal effort.

For example, if one chooses A to be n¢(n), then without any special
information at all about the germ feng(n) or about the group G, one
obtains the general estimate of codimension given by Lemma 23. If G is
known to be abelian, then this cstimate can be improved slightly: for each

. ; . - re+ 1Y .
two-dimensional representation type ¢ present, the contribution ( 5 in the

estimate of Lemma 2.3 can be increased to rj; for this, no specific knowledge
of G or of fend(n) is required. With only slight additional knowledge about
G, namely, knowledge of the numbers of G-invariant cubic and quartic
monomials of different forms, a set of much better general estimates of
codimension can be obtained, using A = n¢(n) or nZ(n); still, no particular
knowledge of f is required (or in some cases, very very little: in one case, for
example, that the cubic terms in f have real coefficients). Of course, when one
knows G exactly, and has some information about the Taylor series of f, then
by a choice of A suited to the individual situation one can estimate the
codimension very accurately, but the estimate applies only to that one case.

The second process mentioned above involves simplifying the form of
the Taylor series of a germ by applying a suitable equivalence. As a
somewhat naive first step, one may try applying a G-equivariant linear
change of coordinates; at least it is easy to compute how the Taylor series
will be transformed in this case, and such a linear coordinate change will
generally be enough to remove some terms from the lowest-order homo-
geneous part of the Taylor series or to transform a coefficient known to be
non-zero into +1. However, non-linear coordinate changes will be needed to
simplify the higher-order part of the Taylor series, and then it becomes very
unpleasant to compute how the Taylor series will be changed, especially for
the higher-order terms which are usually not known exactly before the
coordinate change i1s applied, and which will be affected in general by the
entire lower-order part of the Taylor series in a complicated way.
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Fortunately, there is a remedy for this situation. Part of it allows one to
linearize the situation, essentially replacing the difficult computation of a
composition of two Taylor series by the much easier computation of a G-
Jacobian ideal. But what is more, just as the trick in estimating codimensions
1s to work modulo some suitably chosen linear subspace of mg;(n), it is also
possible to carry out this computation of the Jacobian ideal, and hence the
construction of equivalences, modulo some linear subspace A of vk (n), which
again may be suitably chosen to contain the effect of those parts of the
Taylor series being simplified about which one lacks information, or which
affect the transformed Taylor series in a complicated way. This is the essence
of the following very useful technical lemma, which can be applied very
flexibly and greatly simplifies the computation of normal forms:

TECHNICAL LEMMA 5.1. Let G be a Lie group acting linearly on R". Let A
be a real vector subspace of &¢(n).

Let 2 R"x[0, 17— R be a smooth function such that for every te[0, 1],
the germ at 0eR" of x+— f(x, t) (we shall denote this germ by f) belongs to

d
&g (n). We shall denote the germ at Oc R" of xr——»Eft-(x, t) by df,/ct.

Suppose there exists a smooth mapping X: R" x[0, 17— TR" such that
for every te[0, 1] the germ X, at 0cR" of x—X(x, 1) is a G-equivariant
vector field germ such that of,/0t — X,(f;)e A+n§(n) and X,(A) = A+ (n) for
every non-negative integer k.

Then for every non-negative integer k there exists a germ ¢ €L (n) such
that food—fieA+n§(n) and such that hopeAd+nk(n) for every he
A+ (n).

(Stated informally, the conclusion says that “f, is G-right equivalent to f|
modulo A plus terms of arbitrarily high order”.)

The technical lemma is most often applied in the form of the following
corollary, which, though it is a very simple application which does not use
the full power of the lemma, will serve very well as an illustration of its use:

CoroLLARY 5.2. Let the Lie group G act linearly on R" and let pe mg(n)
be a non-vanishing G-invariant homogeneous polynomial of degree k. Let f be a
germ in W (n) whose Taylor series begins with p (ie. f~pent*!(n)). Let h be
a homogeneous polynomial of degree | > k and suppose he J;(p). Then we may
find an hyeng ' (n) such that f ~; f+h+h,.

This is an application of Lemma 5.1 with A = ng !'(n) and f, = f+1th.
The technical lemma requires only a very easy computation to check its
conditions (in fact, one can choose A so as to make this computation easy),
and it enables one to kill or modify certain terms in the Taylor series of the
germ under consideration. The price one pays for the ease with which the
lemma can be applied is the introduction of new unwanted “error” terms (e.g.
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h, in Corollary 5.2); however, these will generally be of higher degree (or of
higher weighted degree with a suitable weighting) than the terms one has
removed, so there is a real gain. Moreover, usually the technical lemma can
be applied again to remove these new unwanted terms and replace them by
an error of still higher degree; by repeated application of the technical lemma
an entire class of terms can be killed in the Taylor series and replaced by
terms of a known restricted type and an error of arbitrarily high degree.
Finally, this residual error of arbitrarily high degree can safely be ignored,
because the germs we wish to classify are always finitely determined, so that
once the error is of sufficently high degree, it can be removed entirely.

As an illustration, suppose for simplicity that G acts trivially and that
the Taylor series of fe m(2) has the form x?y+terms of degree > 4. The
Jacobian ideal of x? y is generated by xy and x? and contains all monomials
of degree > 4 divisible by x. One may conclude immediately by repeated
application of Corollary 5.2 that if f is finitely determined, it is right-
equivalent to a germ of the form x?y+ h(y), where h depends only on the
one variable y and is in m(2)*. (Further simplification will then quickly yield
a normal form belonging to the series D,: x?y+y*!)

With these tools available (the codimension estimates and the technical
lemma) it is now easy to describe the procedure for proving the theorems of
Section 4. First, for Theorem 4.2:

1) The estimate of codimension given by Lemma 2.3 (or the improved
version one has in the abelian case) shows that there are only a finite number
of ranks for which germs of G-codimension < 4 can occur. Consider each of
these in turn.

2) For each rank (r|sy, ..., slty, ..., t;) to be considered, classify all
possible effective groups for this rank, using the Pontryagin duality theorem
as described in Section 3. If the total rank r+s,+ ... +s,+t;+ ... +¢ is
small, then germs of G-codimension < 4 will actually occur for most of these
groups, and one continues with step 3) for each class of effective group.
However, if the total rank is large (3 or 4) then there will usually be no
germs of G-codimension < 4, as a glance at the classification list shows, and
in fact, in spite of the very large number of ranks and groups which are
possible when the total rank i1s 3 or 4, the refined estimates of codimension
which take the structure of G and cubic and quartic terms into account can
be applied to reject in one fell swoop almost all of these ranks and groups
from consideration immediately, without needing to enumerate the groups or
even the ranks individually. For the only 6 effective groups of total rank > 3
which survive, continue with step 3).

3) Write down the Taylor series of a germ in n2(n) in general form,
with undetermined coefficients.

4) Divide the class being considered into several cases by making some
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assumption about one of the lowest-order undetermined coefficients in the
Taylor series (for example, by assuming that it 1s non-zero, or alternately,
that 1t is zero).

5) On the basis of the assumption made in step 4, simplify the Taylor
series up to right equivalence as much as possible, for example by applying a
suitable linear change of coordinates to change a non-zero coefficient to
some specific value, or by applying the technical lemma to kill some of the
terms in the Taylor series.

6) On the basis of the form now achieved for the Taylor series,
estimate the codimension of the germ as accurately as possible. If the
estimate shows that the codimension is always > 4, then this case may now
be concluded, and it will not appear in the classification list.

7) If the Taylor series still contains undetermined coefficients of arb-
itrarily high order, or undetermined coefficients which for certain values
would permit a further simplification, then repeat from step 4). If the Taylor
series has been simplified to polynomial form and no further simplification is
possible, and if the codimension of the germs of this form is at least
sometimes < 4, then a normal form for inclusion in the classification list has
been found. The most difficult task remaining is to prove that this normal
form specifies each class it covers uniquely, i.c., that different values of the
undetermined coefficients and exponents remaining in the Taylor series yield

inequivalent germs. The other information given in the classification table is
usually quite easy to obtain.

8) After completing one case, go back to consider the other cases
remaining by virtue of the choices made at step 4.

Remark: Steps 5 and 6 may sometimes be interchanged. If it is thought
that the assumption made in step 4 will actually lead to germs of codimen-
sion < 4, it is better to carry out step 5 (simplification) first, but if it is
suspected that the assumption taken in step 4 will make the codimension
large (for example, assuming that a coefficient is 0 or some other “degener-
ate” value), then of course it is more efficient to perform step 6 first.

Only a few additional ideas are needed for the proof of Theorem 4.3. The
main one is that if fend(n) is G-simple, then since slight perturbations of f
yteld only finitely many different G-right equivalence classes, one of these
must be “open” in ng(n), i.e., there must be germs in ng(n) which are right-
equivalent to any sufficiently slight perturbation of themselves in nZ (n). The
G-codimension of such a germ will be < dimgmg (n)/nd(n), so in particular
there must exist germs h in nl(n) of at most this codimension. Thus the
estimates of codimension used in proving Theorem 4.2 can also be applied in
determining which ranks and effective groups might possibly admit G-simple
germs. However it is also necessary to consider the “openness™ condition
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mentioned above directly (actually, in the form of an equivalent condition on
a variant of the G-Jacobian ideal, which you will recall ts a sort of tangent
space to the G-right equivalence class) — this can be done by means of
counts of G-invariant monomials in a fashion similar to the derivation of the
more refined of the codimension estimates mentioned previously. By carrying
out these counts carefully, one can show first that the codimension
dimg mg (n)/n¢ (n) mentioned above must in any event be < 4, so the germs h
mentioned above (but not necessarily the original G-simple germ f) must
appear in the classification lists of Theorems 4.1 and 4.2; inspection of these
lists for germs satisfying the codimension condition mentioned then reveals a
very small number of ranks and effective groups for which G-simple germs
can exist.

For each of these ranks and groups in turn, one now can determine the
G-simple germs by applying to an initially unspecified germ f the procedure
of steps 3)-8) above, whereby step 6) (estimate codimension) is tc be
replaced by

6") count the G-right equivalence classes of slight perturbations of f, or
check whether a perturbation of f can satisfy the openness and codimension
conditions mentioned above, or whether there is an arbitrarily slight perturba-
tion of f known to be non-simple (if f is G-simple, then all slight perturba-
tions must be so as well).

Usually, counting the G-right equivalence classes near f can be done
simply by inspection of the classification lists of Theorems 4.1 and 4.2, and of
course, if the count can be carried out with the information currently
available on f it determines whether or not f is G-simple.
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