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A clone 1s a set of functions which is closed under composition, permutations
of variables and identifying variables. E. Post used this concept to analyse
the clones of functions on the set {0, 1} which consists of the 2-valued logic
functions. The lattice of these clones is described in detail in the monograph
of Jablonski, Gawrilow and Kudrjawzew [6]. The next important step was
the analysis of all maximal clones for the set {0, 1, 2} in Jablonski [5] by
which a completeness criterion was given for the 3-valued logic functions.
This result could be extended further to the general case of the general case
of the k-valued logic functions by I. G. Rosenberg [12].

A. I. Mal'cev [8] gave the definition of a clone as an abstract algebra
and also studied their congruence relations. We are following these ideas and
are considering varieties of clones. The main result states the relation
between a variety of algebras and the variety generated by the clones of term
functions of these algebras. For these varieties of clones a new kind of
equations arises which are studied under the [orm ol hyperidentities. We
illustrate this. abstract approach by the varieties of clones connected to
varieties of lattices and varieties of abelian groups.

Then we show that the congruence relations of clones are related to the
fully invariant congruence relations of free algebras. Denecke and Lau [3]
have shown that one can use this method to prove a theorem of Oates-
Williams on the subvarieties of the non-finitely based variety of Murskii’s
groupoid [11].

Finally we study clone isomorphisms which give rise to consideration on
canonical simplifyers for terms. The computation of terms can sometimes be
transformed by clone isomorphisms to other varieties where the reductions
are well known.

Our approach is related in some aspects also to Lawvere’s concept of
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algebraic theories [9]. But here we use methods of universal algebra to
derive hyperidentities, to study congruences and to consider reductions of
terms.

1. Definitions and basic facts

For the convenience of the reader we define most of the concepts which are
used in this paper. We rely on the definition of a clone as a universal
algebra. This approach was already developed by A. I. Mal'cev [8].

DeriniTioN 1.1. Let H be a set of functions on 4. The clone H
=(H:*,¢, 1,4, ¢ is an algebra of type (2, 1, 1, 1, 0) where the operations
are defined in the following way:

(l) (f*g) (xls ey xrrn xm+1’ ceey xm+n—l) = f(g(xla vy xm), xm+1’ sy xm+n—l)
for an n-ary function f and an m-ary function g;

(2) (&f) (x4, ..., x) = f(x5, ..., x,, x;) for an n-ary function f, n> 1, (&f)
(x;) = f(x;) for any l-ary function f;

(3) (f) {xy, ..., x) = f(x3, X;, X3, ..., X,) for an n-ary function f, n > 1, (1)
(x1) = f(xy);
4 (Af) (xq, ..oy Xpo ) = f(x;, X44 X2, ..., X,_;) for an n-ary function

Sin> 1, (4f) (xy) = f(x,);
(5) elxy, x3) = x;.

We like to remark that in H every projection e, €/(x,, ..., X,) = X;, i
=1, ..., nis generated. Throughout the paper the arity of functions will play
an essential role. Hence we will use the following extended version of
Definition 1.1.

DerFiNniTioN 1.2, Let H be a set of functions on A. The algebra
H=(H;* ¢ t,4,e, [0, (neN)) type (2,1,1,1,0,1,...) is called a clone
with arity, where the operations x, &, 1, 4, e are defined as in 1.1 and the
operations [,(ne N) are defined by

6) (O, ) (x1, ..., x) = f(xy, ..., x;) if fis a k-ary function with k < n and
(O ) (X9, .00y X)) = S(%Xg, .00s Xy, X2, ..., X} If fis a k-ary function with
k > n.

Definition 1.2 is equivalent to Definition 1.1 in the sense that every
function ([, f) can be generated by x, &, 7, 4, e. If fis a k-ary function with
k < n we consider e f which gives

(eT*f)(xl’ ey xm-k+l) = e'ln(f(xl’ LA ] xk)’ Xt 120 xm-—k+l)'

For m=n+k—1 we have [0, f =(eT* ). If fis a k-ary function with k > n
we apply 4(k—mtimes and we get [, f = (4 " /).
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Furthermore the composition o defined by (fog)ix,,...,Xx,)
=f(g(xgs ...\ Xp) X2, .., X,) (f n-ary and g m-ary) offers a lot of advantages
compared to * whenever one is considering varieties of clones. This composi-
tion o can be generated by x, {, 1, 4, e and vice versa o, {, 7, 4, e generate
the clone operation x. We write

fk(xl» tes xn) =f(fk—l(xh ey X,,,), X2, s x,,).

To avoid lengthy notations clones with arity are called clones. This may
be justified be the fact that most of the results hold for both kinds of clones.
The advantages of Definition 1.2 is that hyperidentities can be linked to
clone equations in a simple way. As a clone is defined like a universal
algebra it is natural to construct varieties of clones by the operators H
(homomorphic images), S (subalgebras) and P (direct products).

Remark 1.3. Every subclone D of a clone C of functions on a set is again
a clone of functions.

Remark 14. A countable power of a clone C of finitary functions gives
rise to a clone which contains infinitary functions. For this consider

=11, 203, fi€C,i=1,2,3,...}.

The sequence (e!, e?, e7,..) with €\ (x;,..., x)=x,, i=1,2,3 can be
considered as a function but of infinite arity,

Remark 1.5. Not every homomorphic image of a clone of functions is
again isomorphic to a clone of functions. If one defines a clone
(lal;*,{,1,4,e, O,(neN)) by axa={a=1a=A4da=,a=a, then this
clone is a homomorphic image of every clone of functions.

These remarks show that the above definition of a clone has to be
extended. Henceforth we will understand by a clone an algebra which i1s a
member of the variety generated by all clone of functions. In [15] we have
looked for a definition by equations for this variety.

2, Varieties of algebras and equations of clones

The concept of a clone of functions can be used to define term functions and
polynomial functions of an algebra. We denote by F({A4) the clone of all
functions of a set A.

DerFiNiTION 2.1. Let 4 = (A, Q) be an algebra. The clone T(4) of the
term functions of 4 is the subclone of F(A) which is generated (by the
projections and) by the operations of 4.

The clone P( 1) of the polynomial functions of 4 is the subclone of F(A)
which 1s generated (by the projections and) by the operations of 4 and the
constant functions ¢}, ci(x,,..., x,) =a, ae A, neN.
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We denote terms by t(x,, ..., x,) and the corresponding term functions
by t: A"+ A defined by (a,,...,a)—t(a,,...,a,). For a lattice &
=(L; A, v) we have for instance a term ¢(x,, X,, X3) = X; A (X, v X3) and
the corresponding term function t: I>->L with (a, a,, a3)
—(ay A (a; v aj))

Nortations 2.2. T A — C denotes the mapping from a class of algebras
to the class of clones of term functions. T maps every algebra A to its clone
T(A) of term functions.

The following result (Schweigert [13]) shows that the mapping T can be
extended to a mapping (also denoted by T) T: V — C* from the class V of all
varieties to the class C* of all varieties of clones.

THEOREM 2.3. Let V be a variety generated by the family {A| iel} of
algebras. Let T(V) be the variety of clones which is generated by the family
{T(A)| iel} of clones. If A is an algebra of V, then T(A) is a clone of T(V).

Equations which hold in varieties of clones are called clone equations.
We denote the variables in these equations by X, Y, Z, X,, X,, X,,... We
are considering the following example 4 ([0, X) = de. Obviously this clone
equation holds for every term function of a lattice.

Following W. Taylor [17] we define a hyperidentity to be formally the
same as an identity. Consider for example F(x, x) = x. A variety V is said to
satisfy a hyperidentity ¢ il whenever the operation symbols of & are replaced
by any choice of terms of V of the same arity as the corresponding operation
symbols of g then the resulting identity holds in V in the usual sense. For
example the variety of lattices satisfies the above hyperidentity.

As hyperidentities are much easier to read we usually translate clone
equations into hyperidentities or sets ot hyperidentities. On the other hand
these hyperidentities can also be translated back into clone equations. (Such
a translation 1s not unique.)

To illustrate Theorem 2.3 we give examples from lattice theory and the
theory of abelian groups.

THEOREM 24.1. If V is a variety of lattices, then the following hyperiden-
ties holds:

(1) F(x, x) = x,
Q) F(x, F(y, 2)) = F(F(x, y), z).
24.2. A (non-trivial) variety of lattices is the variety of distributive lattice
if and only if (one of) the following hyperidentities hold:
(3) Fz(xl, veey x,‘) = F(xl, cany xk), k ; 4, ke N,
(4) F(x, G(y, 2)}= G(F(x, y), F(x, 2)),
(5) F(G(x, y), 2)) = G(F(x, 2), F(y, 2)).
Tueorem 25 If V is the variety o) all groups of exponent 2, then the
following hyperidentities -hold:
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(1) F(x, F(y, 2)) = F(F(x, y), 2),
(2) F(F(x, x), x) = Xx,
F(F(x » X)) = F(x, x),
(4) F(G (X, x), G(J, y) =G(F(x, y), F(x, y)).
Remark. By (1) and (3) of Theorem 2.5 it follows that
(5) F*(x, y) = F(x, y) holds.
The proofs of the hyperidentities can partly be found in Schweigert [13],
[14], [15] or derived by the methods developed in these papers.

THEOREM 2.6. If V is the variety of Boolean algebras, then the following
hyperidentities hold:
(1) F2(x(, ..., x) = F(xy, ..., x), keN,
(2) F(F(x, x), F(y, y)) = F(F(x, y), F(x, y)).

3. Congruence relations of clones

An important congruence relation on every clone of functions is the relation
» which is defined by (f, g)ex if and only if the arity of the function f is
equal of the arity of the function g (A. 1. Mal'cev [8]). We call a congruence
relation 8 of a clone of functions an arity-congruence if 6 < x.

Let 0 be the congruence relation of the free algebra F(X) of a variety

HSP(A4) such that 6y is generated by a pair of terms (t(xy,..., x,),
s(xy, ..., Xn)). Now we can define term functions ', s’ by
U(Xy, oy X)) =t(xy, ..., %) and  s'(xy, ..., %) =s(xq, ..., Xn),

k = max {n, m}

such that ¢/, s’ are given by these terms and their arities are equal. (t', s")
generate a congruence relation on the clone T(A4) of term functions of A.

THEOREM 3.1. Let A= (A, Q) be an algebra, HSP(A) be the variety
generated by A and let F(X) be the free algebra of HSP(A). Every arity-
congruence relation of T(A) corresponds to a fully invariant congruence
relation of the free algebra F (X). Furthermore the lattice of arity congruences
is antiisomorphic to the lattice of subvarieties of HSP(A).

Remark 3.2. For every subvariety U of a variety V there is an hyperiden-
tity which holds for U but not in V. An example of this fact is Theorem 2.4.2
(see also [13], [14])).

Remark 3.3. In paper [3] (Denecke, Lau) the congruence relations of
clones are discussed in great detail and the above theorem is used to derive
Oates-Williams’ result that Murskii’s algebra does not satisfy Min. [11] (i.e,
that the variety generated by Murskii’s algebra contains an infinite chain of
“subvarieties).
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4. Clone isomorphisms

DeriniTioN 4.1. Two algebras 4 = (4, 2,), B = (B, £2;) not necessarily of
the same type aré clone-isomorphic to each other if the clones of term
functions T(4) und T(B) are isomorphic.

NortaTions 4.2, Let h: T(4) — T(B) a clone isomorphism and let w be an
n-ary fundamental operation of B. Then h™!(w) is a term function of T( 1)
and may be presented by a term ¥ (x,, ..., x,) of the free algebra of HSP( 1).
Now h(y) is a term function of B and may be presented by a term
@(xy, ..., x,) of the free algebra of HSP(B). Obviously the equation
@(xy, ..., x,) = w(x,y, ..., x,) holds for B. We denote this equation by =,
and con51der the set |n, weR,! of equations. Furthermore for a set X of
equations (s, 1) we denote by h(Z):= {{h(s),h(1)| (s, Ne Z).

ExampLe. Let 4= {i0,1}; A, v, 0, 1} be the Boolean algebra on
the set {0, 1}. Let B= {0, 1}; +,0,, 1} be the commutative ring on the
set 10, 1}, where addition is modulo 2. Then 4 and B are clone-isomorphic.
We have

e (x+ 1) y)+(x-+D)+((x+ 1) y)-(x-+ D)) = x+y,
M X'y=x'y

(which need not to be considered because of triviality) for % with x
+ye X' Ay vIiX Ay, x-yerx Ay

The following is an extension of the result in [16].

THEOREM 4.3. Let X, be an equational basis for the equational theory of
the algebra 4 = (A, Q,). If B = (B, ,) (not necessarily of the same type) is
clone isomorphic to A, then X3 = h(X,) U 11| weQ,) is an equational basis
Jor the equational theory of the algebra B.

Remark 44. Let 4 =(A, Q) and B = (B, £2,) be of finite type and clone
isomorphic to each other. The equational theory of B is finitely based if and
only if the equational theory of 4 is finitely based.

With the clone isomorphism h: T(4) — T(B) a proof in the equational
theory of 4 can be transformed in a proofl in the equational theory of B [16].

Notations 4.5. ([2], p. 11.) Let 4 be an algebra and F(X) the free
algebra for X = {x,, x,, ...} in the variety HSP(4). Let S be an effective
procedure, S: F(X)— F(X), with the following properties:

(45.1) S(t) =t for term functions S(t),t on A induced by the terms
St (xy, ...h X, t(xyg, ..., x,) of F(X).

(4.5.2) If t = s for the term functions ¢, s on A induced by terms t(x,, ..., x,),
s(xy, ..., x,) of F(x), then S(t) = S(s) for the term functions S(),
S(s) on A.
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Then S is called a canonical simplifyer and S(t) (xq, -.., x,) is called a
canonical form for the term t(x,, ..., x,).

Remark 4.6. If the algebra ' has a canonical simplifyer § and 1 is clone
isomorphic to the algebra B (not necessarily of the same type), then B has
also a canonical symplifyer.

ExampLE 4.7. We consider some reductions of A = [10,1}; A, v,", 0, 1]
and their transformation to B=({0,1!; +,0,-, 1)

xvixnra)—=x, x+(xp)+x-(xy)—x,
xnl —x, x-1 - X,
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