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1. Introduction

Computation theory knows a large variety of models of computing devices,
or formal calculi for effective computation. This divergence has not lead to a
large proliferation of computation theories due io the basic observation that
the resulting formalisms become equivalent: each computation in formalism
1 can be simulated some way or another in [ormalism 2.

Complexity theory takes a more refined look at these formalisms in as
far as that machine models become equipped with features formalizing time
and space tonsumption of such computations. As a consequence assertions
about complexity features are machine dependent by their origin. On the
other hand complexity theory deals with some fundamental concepts which
are generally believed to be machine independent. More specifically, when
dealing with concepts like Polynomial Time, or Logarithmic Space computa-
bility it is generally assumed that it is irrelevant whether our theory is based
on Turing machines or some more computer like model like the RAM.

In Complexity theory we are dealing with a number of machine models,
including the various varieties of Turing machines, the RAM and RASP
models with uniform or ldgarithmic time measures, and reference Machines,
forming together a Standard Class or First Machine Class. The relation
between two models within this standard class can be expressed by the
Invariance Thesis which we introduced in [38]:

For each machine M; of one type having running time T, and storage use
S; one can find in any other type of machinery a simulating device My; which
simulates M; with polynomially bounded overhead in time and constant factor
overhead in storage.
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The bounds on the overheads are more formally expressed by:

If T/ and S; are the running time and storage use of device Mj; in the
other formalism, then one has for some suitable chosen constants ¢ and ¢
that Ty, (n) < ¢ (T, (n)+c and Sy, (n) < ¢ S;(n)+¢ respectively. The symbol
n is used in this context to denote the length of the input of the computation.
The constants ¢ and ¢’ are independent of .

The important consequence of this fortunate state of the world is that,
although precise time and space bounds are highly dependent on the
machine model used, a number of fundamental complexity classes, which are
defined in such a way that they are closed under the overhead factors
mentioned above, are machine independent. These classes form the well-
known hierarchy:

LOGSPACE = NLOGSPACE = P = NP = PSPACE
= NPSPACE < EXPTIME,

where each inclusion hides the open problem of whether or not the inclusion
is proper. The case PSPACE = NPSPACE, as shown by Savitch’'s theorem
[28] is a remarkable exception. For further references see [13], [18], [23].
[30], [35].

Note that the Invariance Thesis implies that the above sequence is
machine independent, without the converse implication being evident. Even if
the above classes are invariant the invariance thesis may fail to be true due
to the fact that the efficient simulating devices exist but cannot be construct-
ed in an uniform way: it is also conceivable that the time efficient simula-
tions are not the same as the space efficient ones.

The family of machine models which are used in the definition of the
above classes together represent a reasonable model for the concept of
sequential computation. It was to be expected that a similar family of models
would be invented for parallel computation. As it turns out this class consists
of an even a wider variety of device types. The parallelism can be made
entirely explicit as in the SIMDAG model of Goldschlager [15]. It can also
be hidden inside a sequential model either by modifying the concept of an
accepting computation as is done in the ALTERNATION model [3], or by
enabling the model to operate on unreasonable long objects in unit time as is
done in the case of the Vector Machines [25].

Rather than by proving bounds on the relative simulation efficiencies by
which these models can simulate each other, these parallel machines are
grouped together by sharing a property which is known as the so-called
Parallel Computation Thesis. This thesis expresses that Polynomial Time on a
parallel device equals Polynomial Space in the sequential case.

One could start to look for a Hierarchy for parallel machines which one
could denote by:



SECOND MACHINE CLASS 2 237

//LOGSPACE < //NLOGSPACE < //PTIME
= //NPTIME < //PSPACE c //NPSPACE < //EXPTIME,

where the symbol // indicates parallelism, to be replaced by an indicant for a
specific machine model if needed. Existence of such a hierarchy is not trivial,
due to the fact that for a naive definition of space consumption the self
evident truth from the sequential case, that space consumption never exceeds
computation time, no longer is true. This truth holds for the case of the
Alternating machines, due to the fact that these are sequential devices with a
modified concept of acceptation. However, for alternating devices the concept
of nondeterminism no longer makes sense, so for these devices the above
hierarchy becomes incomplete. For a number of other devices the truth of
the problematic inclusion //NPTIME < //PSPACE can be established indi-
rectly by use of the parallel computation thesis.
Clearly the time hierarchy:

//PTIME < //NPTIME < //EXPTIME < //NEXPTIME

makes sense for any type ot parallel device, and one can investigate whether
the above hierarchy can be shown 1o be invariant for a wider class of
devices. It turns out that this is indeed the case. The Parallel Computation
Thesis expresses this by stating that:

J/PTIME = PSPACE, //NPTIME = NPSPACE,

and therefore, by Savitch’s theorem one has //PTIME = //NPTIME.

The above equality //NPTIME = PSPACE implies the inclusion
//NPTIME < //PSPACE, provided PSPACE < //PSPACE, a fact which in
most cases is easy to establish.

The question of whether the paralilel computation thesis is true or not as
asked for example by N. Blum in [2] only makes sense if one believes that
there exists an absolute notion of parallelism. It seems far more natural to
use the parallel computation thesis not as dogma but rather as a tool
delineating a particular, frequently observed species of parallelism. The above
equalities, il shown to be valid for two specific parallel devices, indicate that
these devices simulate each other with polynomial time overhead (provided
the running times looked at are not to small). They represent therefore a
kind of invariance similar to that expressed by the invariance thesis, and
establish the existence of a Second Machine Class of parallel devices, together
with a relation which connects this second machine class to the first machine
class of sequential devices.

In this paper we present a rather global survey on a number of parallel
device types which obey the parallel computation thesis as stated above, and
which therefore can be called true second machine class members. We also
mention some devices which are either weaker or more powerful than
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required by the parallel computation thesis; these later devices therefore are
either intermediate between the first and second machine class, or may lead
the way to a third class of even more powerful devices waiting to be
investigated.

In our survey the reasons which enable these machines to obey the
parallel computation thesis will be the central topic of discussion; details of
the models considered will be omitted. As indicated in the next section it
turns out that validity of the parallel computation thesis is closely related to
a characterization of PSPACE 1n terms of transitive closure of directed
graphs.

This paper is a companion paper to the survey presented in [39], where
new models and insights have been included, and some earlier devices have
been omitted. The topic of a more complete taxonomy of machine models
remains a future target for a truly encyclopedic endeavor.

2. PSPACE and transitive closure

PSPACE is the class of those language which can be recognized in polyno-
mial space on some sequential device, in particular on a standard single tape.
Turing machine. Now one can investigate for a given input x, a given
Turing machine M and a given spacebound S the graph G(x, M, S) of all
configurations ¢ of machine M which use space < S; an edge connects two
configurations ¢, and c,, if there is a one step transition from ¢, to ¢,. This
graph has the following properties:

1. For every input x and spacebound S there exist an unique node
corresponding to the initial configuration on input x.

2. Assuming that a suitable notion of acceptation has been chosen the
accepting configuration is unique.

3. The number of nodes in the graph G(x, M, S) is bounded by some
exponential function 25, where the constant ¢ depends on M but not on x.

4. The graph G{x, M, §) can be encoded in such a way that an S-space
bounded Turing machine on input x and a description of M can write the
encoding of G(x, M, S) on some write only output tape.

5. If M is deterministic, then every node in G(x, M, §) has outdegree
< 1:if M is nondeterministic, then the outdegree of some nodes can be > 2,
but for a suitable restriction of the Turing machine model the outdegree can
be assumed to be < 2 as well.

6. The input x is accepted in space § by M iff there exists a path from
the unique initial configuration on input x in G(x, M, §) to an (or with a
suitable restriction on the model, the unique) accepting configuration. This
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path can be assumed to be loop-free, and therefore its length can be assumed
to be <2

The above properties suggest the following Universal algorithm for
testing membership in languages in PSPACE: assume that L is recognized by
M in space n*, then in order to test whether xeL we first construct
G(x, M, |x]"), next we compute the reflexive transitive closure of this graph,
and finally investigate whether in this transitive closure there exists an edge
between the unique initial configuration on x and the unique accepting
configuration. Although it seems that this is a rather heavy method for
simulating a single computation, it is exactly this transitive closure algorithm
which underlies almost all proofs that.some particular parallel machine
obeys the parallel computation hypothesis.

Various descriptions of the transitive closure algorithm lead to various
insights. In the first place we can represent the graph G(x, M, S) by a
Boolean matrix M(x, M, S), where 1 denotes the presence of an edge and 0
denotes the absence of an edge. The row and column indices denote
configurations. Clearly these configurations can be written down in space S;
the total number (and therefore also the size N of the matrix M(x, M, 3)) is
exponential in §; N = 25 If we let M(x, M, S)[i,i] =1 for all i < N, then
the transitive closure of M can be computed by c¢- S squarings of M(x, M, §)
in the Boolean matrix multiplication. If N? processors are available each
squaring can be performed in time O(S) (needed for adding N Boolean
values), so the entire transitive closure algorithm takes time O(S?). If,
moreover, a timebound T on the computation is given this time is reduced to
O(S -log(T)), due to the fact that no paths longer than T edges have to be
investigated. Finally, if the parallel model has a concurrent write feature the
time needed for adding the N Boolean values can be reduced to O(1), and in
this case the time for the transitive closure algorithm becomes O (log(T)).
Note, however, that, in order to perform this algonthm, the matrix
M(x, M, S) must be constructed first.

We next investigate the following recursive function path (order, i, j)
which evaluates to true in case there exists a path from node i to node j of
length < 2°7%":

proc path = (int order, node i, j) bool:
if order =0 then i =/ or i succ j # there is an edge from i to j #
else
bool found : = false;
forall node n while not found do
found := found or (path(order 1, i, n) and path(order 1, n, j))
od;
found
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Existence of an accepting computation now can be evaluated by the call
found (c-S, init, final), where init and final are the unique initial and final
configurations in G(x, M, §); given a timebound T the initial parameter
order can also be chosen to be log(T). With recursion depth ¢-S and
parameter size O(S) this recursive procedure can be evaluated in space O (S?);
this is the main ingredient of the proof of Savitch’'s theorem [28] which
implies that PSPACE = NPSPACE.:

If the language L is recognized by some nondeterministic Turingmachine in
space S(n) = log(n), then it can be recognized by some deterministic Turingma-
chine in space S(n)%.

A third formulation of the transitive closure algorithm yields the

PSPACE-completeness of the problem Quantified Boolean Formulas (QBF)
[24]:

QUANTIFIED BooLEAN ForMULAS.

INsTANCE. A formula of the form Q, x,...Q,x,[P(x, ..., x,)], where
each Q; equals V or 3, and where P(x,, ..., x,) i1s a propositional formula in
the boolean variables x,, ..., x,.

QuesTtioN. Is this formula true?

t The idea is to encode nodes in G(x, M, S) by a boolean valuation to a
sequence of k:= c¢-§ boolean variables. From the proof of Cook’s theorem
which establishes the NP-completeness of SATISFIABILITY (see [5] or
[13]) one obtains the existence of a propositional formula P, in 2-k
variables: Pgy(xy, ..., X4, ¥y, ..., V), where the vanables x,, ..., x, encode
node i, the vanables y,, ..., y, encode node j and P, expresses that i =j or
there exists an edge from i to j. On now can define by induction a sequence
of Quantified propositional formulas P, such that P,(x,, ..., Xx, V1. ..-» V&)
expresses the presence of a path of length < 2¢ between node i and node j. In
a naive approach the formula P, would include only existential quantifiers,
but P, would include two copies of P,.,; by a standard trick [rom
complexity theory we reduce the number of occurrences of P,_, in P, to
one; this trick, however, introduces universal quantifiers:

Py(xyy ooy X Vis oo ) =324, ..., zk[Vul, v U, YUu,

[((uy, ..o m=x, ..., x and vy, ..., 0, =2,...,2) or
(Uys ooy =2y, ...,z and vy, ..., 0 =y, ..., y)) implies
Py (uy, ooy u, oy, . 0]
Substituting for x,, ..., x, and y,, ..., y, the codings of the initial and
final node in G(x, M, S) in P,(x,, ..., X, ¥1» ..., i) We obtain a closed

quantified boolean formula, whose truth expresses the existence of an accept-
ing computation. It is not difficult to see that P, is a formula of length O (k?)
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in O(k?) variables (counting each variable as a single symbol; clearly a
representation in a finite alphabet will introduce another factor log(k) in the
length of the formula). From this one concludes that QBF is PSPACE-
complete.

The PSPACE-completeness of QBF explains the alternating nature of a
number of known PSPACE-complete problems. SATISFIABILITY is the
prototype of a solitaire game, where the player has to look for some
configuration with a particular property or for a sequence of simple moves
leading to some particular goal state, but the alternating quantifiers turn
QBF into a two person game. Two players Elias and Alice in turn choose
the truth values to be assigned to existentially or universally quantified
variables in the order of their nesting inside the formula. Elias tries to
establish the truth of the (ormula whereas Alice tries to show that the given
formula is false. The truth of the entire formula is equivalent with the
existence of a winning strategy for Elias in this game.

Starting with this game-theoretic interpretation of QBF several authors
have investigated the endgame analysis of games inspired by real life games.
A useful intermediate game is GENERALISED GEOGRAPHY [33]; from
there one can reach HEX, CHECKERS, GO (provided one introduces a
termination rule enforcing a sufficiently fast termination of the game), and
even HEX on the traditional hexagonal board; see [7], [11], [22], [27]. For
people interested in the position of CHESS: this Royal game is not on the
list because it turns out to be even more difficult than PSPACE [12].

From the above one should not conclude that in general solitaire games
are al most NP-hard. beside the earlier PSPACE-completeness of the
BLACK PEBBLE GAME [14], one has nowadays examples of group
theoretical problems which have been shown to be PSPACE-hard [19], [20].
Together with problems which encode PSPACE-bounded computations in a
more direct way (hke Reifs GENERALISED MOVER’S PROBLEM [26])
this has lead to an interesting Zoo of PSPACE-complete problems. It should,
however, be no longer a surprise that alternation forms a [undamental
concept in one of the machine models in the second machine class.

3. A weak parallel machine

The Parallel Turing Machine (abbreviated PTM), introduced by Wiedermann
in [41] should not be confused with the devices introduces by Savitch under
the name Recursive Turing machines in [29]. In both cases one considers a
Turing machine with a nondeterministic program where a choice of possible
successor states leads to the creation of several devices, each continuing in
one of the possible configurations. But in Savitch’s model the entire configur-
ation is multiplied, whereas in Wiedermann’s model only the finite control
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and the heads are multiplied, thus leading to a proliferation of Turing
automata all processing the same collection of tapes.

Wiedermann’s device consists of a finite control with k d-dimensional
worktapes, the first of which contains the input at the start of the computa-
tion. Each control has one head on every tape. The program of the device is
a standard nondeterministic Turingprogram for a machine with k d-dimen-
sional single-head tapes: however, in stead of chosing a next state when
facing a nondeterministic move the machine creates new copies of its control
and heads, which go on computing on the same tapes. There are no read
conflicts; write conflicts are resolved by prohibiting them to occur; if two
heads try to write different symbols at the same square the computation
aborts and rejects; if two heads try to write the same symbol this symbol is
written and the heads move on.

An accepting computation is a computation where every finite control
which is created during the computation halts in an accepting state.

The crucial observation which makes this model weaker than the true
members of the second machine class which we will meet in the sequel is
related to the achievable degree of parallelism. Although the machine can
activate an exponential number of copies of itself in polynomial time, these
copies operate on the same tapes and therefore only a polynomial number of
essentially different copies will be active at any moment in time. If two finite
controls are in the same internal state and have their heads positioned on the
same tape squares, their behavior will be equal from that time onwards;
hence these two controls actually merge into a single copy. This leads to an
upper bound of ¢-S* on the number of different automata being active at the
'same time, where g denotes the number of states in the program and §
denotes the space used by the device. Since space is bounded by time this
leads to a polynomial bound on the number of different copies.

Based on this observation it becomes possible to simulate this parallel
machine by a standard deterministic Turingmachine with Polynomial time
overhead: the simulator maintains on some additional worktape a list of all
active finite controls with their head positions, and by maintaining a pair of
old and new worktapes the machine can process the updates ol each control
in sequence, taking care of the needed multiplication of controls and check-
ing for write conflicts.

It should not be inferred from this simultation that the device is a
standard first class machine, since it is not clear whether the above simula-
tion can be modified in such a way that the space overhead becomes a
constant factor. For the special case of a single tape parallel machine a
constant factor space overhead is achieved by storing with each tape cell the
set of states achieved by heads scanning this cell; this set (being a subset of
the fixed set of states of the machine) can be written down in an amount of
space which is independent of the input size. But for the case of more tapes
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it is not sufficient to mark the tape cells by the states in which they are
scanned, since one must also know which heads belong together to a single
finite control, and this requires the encoding of head positions for each
device. Therefore the naive simulation as indicated above requires space
O (S*-log(9)).

Wiedermann observes that one can recognize the language of palindro-
mes with a PTM with two one-dimensional tapes, where the first tape is a
read-only input tape, in space O(1) if the space of the input tape is not
counted. Still the heads on the read-only input tape may multiply, thus
storing information on this tape by their positions. It seems therefore
unlikely that a constant factor space overhead simultation is possible since
palindromes cannot be recognized in constant space by a standard machine.
This particular example, however, seems to depend on the particular inter-
pretation of the space on the input tape not being counted, and an example
where the input head is common for all copies of the finite control seems to
be required for a more convincing separation result. The above simulations
- show that P = PTM-PTIME and that PSPACE = PTM-PSPACE: the PTM
model therefore does not obey the parallel computation thesis, unless
P = PSPACE. :

The PTM model has the interesting property that for several practical
problems in P an impressive speed-up by pipelining can be achieved, even

though the device is not a second machine class member. For details | refer
to [41].

4. The Alternation model

The concept of Alternation [3] leads to machine models which obey the
parallel computation thesis without providing any intrinsic parallelism at all.
As a computational device an Alternating Turing machine is very similar to
a standard Nondeterministic Turing machine; only its mode of acceptations
has been modified.

Since the machine is nondeterministic the computation can be represen-
ted as a computation tree the branches of which represent all possible
computations. The leaves, i.e., the terminal configurations (where the machine
halts) are designated to accept or to reject as usual on basis of the
designation of the included state as being accepting and rejecting. For the
standard nondeterministic machine such a computation tree is considered to
represent an accepting computation as soon as a single accepting leaf can be
found. But for the alternating machine the notion of acceptation is far more
complicated.

The main idea is to equip states in the Turing machine program with
labels existential and universal. Configurations inherit the label of the state in-
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cluded in this configuration. Next one assigns a quality accept, reject or undef
to every node in the computation tree according to the following rules:

(1) The quality of an accepting (rejecting) leal equals accept (reject).

(2) The quality of an internal node representing an Existential configura-
tion is accept if one of its successor configurations has quality accept.

(3) The quality of an irternal node representing an Existential configura-
tion is reject if all of its successor configurations have quality reject.

(4) The quality of an internal node representing a Universal configura-
tion is reject if one of its successor configurations has qualily reject.

(5) The quality of an internal node representing a Universal conligura-
tion is accept if all of its successor configurations have quality accept.

(6) The quality of a node with one successor equals the quality of its
successor.

(7) The quality of any node whose quality is not determined by
application of the above rules is undef.

Clearly the quality undef arises only if the computation tree contains
infinite branches, but even nodes which have infinite offspring can obtain a
definite quality since, for example, an accepting son of an existential node
overrides the undef label of another son.

By definition an Alternating device accepts ils input in case the root
node of the computation tree, representing the initial configuration on that
input, obtains the quality accept.

The above treatment is a minor simplification of the presentation in [3]
in as far as that the feature of negating states is not discussed. It should be
clear that the notion of an alternating mode of computations makes sense for
virtually every machine model and is not restricted to Turing machines.

Time (Space) consumed by an alternaling computation is measured to
be the maximal Time (Space) consumption along any branch in the computa-
tion tree.

The alternating device, being an incarnation of a standard device in
disguise, clearly inherits the simulation results for the first machine class
devices. As a consequence there exists a device independent hierarchy [or
alternating classes:

ALOGSPACE = APTIME = APSPACE ~ AEXPTIME

which by the parallel computation thesis is connected to the standard
hierarchy:

APTIME = PSPACE
but the other classes are shifted versions in the standard hierarchy as well:

ALOGSPACE =P, APSPACE = EXPTIME,
AEXPTIME = EXPSPACE.
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Note that the alternating devices have no nondeterministic mode of compu-
tation.

In the sequel 1 will indicate the reasons for the above equalities to be
vald.

First consider the inclusion APTIME = PSPACE. It suffices to show
that the quality of the initial configuration in a polynomial time bounded
computation tree can be evaluated in polynomial space. Clearly this quality
can be evaluated by a récursive procedure which traverses the nodes of the
computation tree. This procedure has a recursion depth proportional to the
running time of the alternating device, whereas each recursive call requires
an amount of space proportional to the space consumed by the alternating
device. Hence the space needed by the deterministic simulator is proportional
to the space-time product of the alternating device, which in turn is
bounded by the square of the running time.

The reverse inclusion PSPACE = APTIME follows as soon as we show
how to recognize the PSPACE-complete problem QBF in polynomial time
on an Alternating machine. This is almost trivial: let a machine quess the
valuations for the quantified variables where the universally (existentially)
quantified variables are guessed in a universal (existential) state; these
valuations are guessed in the order of the nesting in the formula. Next the
formula is evaluated in a deterministic mode and the machine accepts
(rejects) if the result becomes true (false).

The equality AEXPTIME = EXPSPACE is obtained by a standard
padding argument from the equality shown above.

The inclusion ALOGSPACE = P is shown as follows: note that a
logspacebounded alternating device for a4 given input has only a polynomial
number of configurations. These configurations can be written on a work-
tape. The terminal configurations obtain a quality based on the included state.
Next by repeatedly scanning the list of configurations the quality ol interme-
diate configurations can be determined by application of the rules (2)}(6).
This scanning process terminates if during a scan no new quality can be
determined. Since during each sweep either at least one quality is determined
or the process terminates the time needed for this procedure is bounded by
the square of the size of the list of configurations, whence the running time
for this process is polynomial.

The reverse implication P = ALOGSPACE is shown as follows. Assume
that the language L is recognized in time T(n) by a standard single tape
Turing machine M. It suffices to show how an alternating device can recog-
nize L in space log(T (n)). Consider therefore the standard computation dia-
gram of the computation of M on input x. This diagram can be represented
in the form of a table of K by K symbols, where K = T(|x|). The top row of
this table describes the initial configuration on input x, and the bottom row
describes the hnal configuration which should be an accepting one. Each
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intermediate symbol is completely determirfed by the three symbols in the
row directly above it since the machine M is deterministic.

The alternating device now guesses the position in the bottom row of
the indicant of an accepting state, and certifies this symbol by generating in a
universal state three offspring machines which guess in an existential state
the symbols in the three squares above it. These guesses are certified in the
same way, all the way up to the top row, where guesses are certified by
comparison with the input x. The amount of space required by this proce-
dure is proportional to the space required for writing down the position of the
square considered in the diagram, which is O (log(T(|x))). Since the machine
M is deterministic, only those guesses which are correct can be certified (to
be shown by induction on the row number) and therefore the guesses are
globally consistent. Again by a simple padding argument the equality
APSPACE = EXPTIME, is an easy consequence of the equality
ALOGSPACE =P.

5. Machines operating on huge objects

One of the first machine models for which the validity of what later was to
become known as the Parallel Computation Thesis, has been established is
the Vector Machine model of Pratt and Stockmeyer [25], shortly later
succeeded by the MRAM of Hartmanis and Simon [16], [17]. These models
have in common that their power originates from the possibility to operate
on objects of exponential size in unit time.

‘All these models are derived from the RAM model with uniform time
measure by extending the arithmetic with new powerful instructions. In the
Vector Machine this extension consists of the introduction of a new type of
registers, called vectors, which can be shifted by amounts stored in the
arithmetical registers of the RAM. The contents of the vector registers can
also be subjected to parallel bitwise Boolean operations like and, or, or xor.
This makes it possible to program the concatenation of the contents of two
vectors and to perform various masking operations. The MRAM model was
obtained by realizing that shifting a vector amounts to multiplication or
division by a suitable power ot two. Hence the separation between vectors
and arithmetic registers is an inessential feature in the model; the same
power can be achieved by introducing multiplication and division in unit
time, preserving the bitwise Boolean operations.

Restrictions of the model have been investigated. For example one can
forsake one of the two shift directions (right shift of one register is simulated
by left shifting all the others); as a consequence one can drop the division
instruction, which yields the MRAM model as proposed in [16]. More
recently it has been established that the combination of multiplication and
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division, in absence of the bitwise Boolean instructions suffices as well; see
[17, [34]. This result shows the power of a purely arithmetical model.

In this survey I mention a model which has been obtained by moving in
the other direction, by stressing the pure symbol manipulation instructions
and dropping the powerful arithmetic. This is the EDITRAM model pro-
posed in [37] as a model of the text editor you may have in mind while
editing texts behind your terminal.

In the EDITRAM we extend the standard RAM with a fixed finite set
of textfiles. Standard arithmetic registers can be used as cursors in a textfile,
Beside the standard instructions on the arithmetic registers the EDITRAM
has instructions for: (1) reading a symbol from a file via a cursor, (2) writing
a symbol into a file via a cursor, (3) positioning a cursor at the end of a file
(thus computing its length), (4) positioning a cursor into a file by loading an
arithmetic value into the cursor, (5) systematic replacement of string 1 by
string 2 in a textfile, (6) concatenation of textfiles, (7) copying of segments of
textfiles as indicated by cursor positions, and (8) deletion of segments of
textfiles as indicated by cursor positions.

In the systematic string replacement instruction (5) the arguments string
1 and string 2 are to be presented by literals in the program; substitution of
the contents of an entire textfile for a single character- would allow a doubly
exponential growth of the size of textfiles, which is more than we are aiming
for. '

The time complexity of the model is defined by using the logarithmic
time measure for the arithmetic registers. So an edit instruction is charged
according to the logarithm of the values of the involved cursors, and its cost
therefore is proportional to the logarithm of the length of the (affected
portion of) the textfile.

In order to verily that the EDITRAM obeys the parallel computation
thesis we must prove the two inclusions EDITRAM —NPTIME < PSPACE
and PSPACE = EDITRAM - PTIME.

The proof of the first inclusion is typical for the proof of this inclusion
for similar models. Given an input we must test in Polynomial space whether
the a given EDITRAM machine will accept this input or not. But by Savitch’s
theorem our simulation may be nondeterministic. Therefore we first guess the
trace of some accepting computation and write it down on some tape. The
accepting computation being polynomially time bounded we can write down
the sequence of instructions in the program of the EDITRAM which are
executed. Moreover, since we use logarithmic time measure on the arithmetic
registers we can also maintain a log on the register values in polynomial
space. We cannot maintain a log on the contents of the textfiles, since their
length may grow exponentially. Instead we introduce a recursive procedure
char (time, position, textfile) which evaluates to the character located at the
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given position in the given textfile after performing the instruction at the
given time. The arguments of this procedure can be written down in
polynomial space, due to the fact that the growth of the length of a textfile is
bounded by a simple exponential function in the time (both systematic string
replacement and concatenation will at most multiply the length of a textfile
by a constant). Given this procedure it is possible to certify that the trace
written on the tape indeed represents an accepting computation.

From the meaning of the individual instructions one can write down
lines of code which express the value of char (time, position, textfile) in terms
of similar values after the previous instruction time-1. In the case where the
present instruction 1s a systematic string replacement we face the problem to
figure out where the character at the given position was located before the
replacement, since this requires information on the number of occurrences of
the replaced pattern preceding this position in the given textfile; therefore the
entire textfile, up to the given position must be recomputed by recursive
calls, but this is by far the most complicated case. For details I refer to [37].

The total space required by the evaluation of this procedure is bounded
by the product of the size of an individual call (which we indicated to be
polynomial) and the recursion depth (which is bounded by the running time
of the EDITRAM computation being simulated, which was also assumed to
be polynomial). This completes the proof of the first inclusion.

For the case of the Vector machine and the MRAM a similar recursive
procedure can be defined which evaluates the contents of a given bit of a
given vector or a given bit of an given arithmetic register at some given time.
In the Vectormachine the size of a vector grows exponentially but not worse,
whereas for the MRAM all arithmetic registers may grow exponentially in
length. Due to the presence of carries the simulation of a multiplication
becomes as complicated as the case of a string replacement in the
EDITRAM. Divisions have been reduced to multiplications inside the
MRAM model itself at an earlier stage of the proof. Also the length of
register addresses remain bounded by the standard trick enabling the machine
to use consecutive registers in its memory.

In general these simulations achieve the required spacebound at the
price of a huge consumption of time; the same values are computed over and
over again by the recursion.

Next we consider the inclusion PSPACE < EDITRAM-PTIME. It
suffices to show how to solve the PSPACE-complete problem QBF in
polynomial time on a deterministic EDITRAM. Consider a given instance
Q1 xy...0,x,[P(xy, ..., x,)] of QBF. Our algorithm is performed in three
stages:

1. Remove the quantifiers in the order of their nesting from inside to
outside by programming the transformations:
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Vx[F(...x,.)]=(F(...0,..) AF(..,1,..)),
A [F(o X, ) ]=(F(..,0, ) v F(.., L, ...

Clearly each transformation preserves the truth of the involved formula; the
involved formula F is a quantifier free formula, due to the order of the
quantifier eliminations. After elimination of all quantifiers a formula of
exponential size is obtained which still is equivalent to the given instance of
QBF.

2. Evaluate the resulting formula by systematic string replacements of
the type:

Ov0=0  OvH=1, ((IvO=1, @AvI)=1,
O0AQ=0, (0A1)=0, (1 A0=0 dAD=>1,
("0 =1, (71)=0, (0)=0, (H=1

these transformations can be produced by local systematic string replace-
ments.

3. Check whether the resulting literal equals 0 or 1.

Note that after a single cycle through the replacements in 2 the depth of
the involved propositional expression has been decreased by at least I; If the
depth of the propositional kernel of the given instance was k, then after the
transformations of stage 1. the depth of the intermediate formula is k4+n (n
being the number of quantifiers eliminated). Therefore the number of itera-
tions in stage 2 is polynomial.

It remains to show how to perform the transformations in stage 1.
Clearly it suffices to locate and read the innermost quantifier and to form the
conjunction or disjunction of two copies of the propositional kernel provided
the quantified variable has been replaced by O and 1 respectively in these
copies. But since our EDITRAM program allows only literal strings as
arguments in systematic replacement instructions we must program the later
substitutions. We design therefore a subroutine which copies the string of
characters representing variable x; into a special purpose textfile (which
encoding will include some binary representation of its index i), and next
subjects all occurrences of variables in the propositional kernel F to a
treatment of systematic replacements which will turn all occurrences of x;
into a special pattern, and which will leave all other variables undisturbed.
Then by substituting 0 or 1 for the special pattern, the required substitutions
are obtained. For details of this subroutine see [37]). This- completes the
proof of the second inclusion.

The proof of the corresponding inclusions in the original papers on
vector machines and MRAMSs involved a direct simulation of the transitive
closure algorithm by subroutines which build the matrix M(x, M, §) into a
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register and which compute its transitive closure by iterated squarings. A
main ingredient is the programming of a routine which builds a bitstring
consisting of the 2* bitstrings representing the first 2* integers, separated by
markers, and of bitstrings to be used as masks for extracting a given
bitposition from these integers in parallel in a single instruction. The idea to
simplify these proofs by the use of QBF as a PSPACE-complete problem
was also used in [1].

6. Machines with true parallelism

In this section we pay attention to the models which provide visible
parallelism by having multiple processors operate on shared data and/or
shared channels.

There are several methods of controlling the creation of parallel proces-
sors. Some models have an infinite collection of identical processors which
operate synchronously in parallel. In other models processors by their own
action can create a finite number of new processors running in parallel, and
in this way an arbitrary large tree of active processors can be activated as
time proceeds. In this section I will concentrate on the first type of models;
the other type has been discussed in some detail in [39].

In the SIMDAG model [15] there exists a single global processor which
can broadcast instructions to a potentially infinite sequence of local proces-
sors, in such a way that only a finite number of them are activated. The
mechanism to keep the number of processors activated in a single step finite
uses the signature of the local processors. Each local processor contains a
read only register, called signature, containing a number which uniquely
identifies this local processor. The Global processor, in broadcasting an
instruction includes a threshold value, and all local processors whose
signature 1s less than the threshold value transmitted perform the instruction,
while the others remain inactive. Since the Global processor can at most
double the value of its threshold during a single step it follows that the
number of subprocessors activated is bounded by an exponential of the
running time of the SIMGAG computation.

The local processors operate both on local memory and on the shared
memory of the global processor, where write conflicts are resolved by
priority; the local processor with the lower index wins in case of a write:
conflict.

As such the priority solution is one out of a number of possible
strategies for resolving write conflicts. Other strategies which have been
investigated are Exclusive Write (no two processors can write in the same
global register at all), Common Write (if two processors try to write different
values at the same time in the same register then the computation jams but
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writing the same value is permitted), and Arbitrary Write {one of the writers
wins but it is nondeterministically determined which one). The computational
power of the parallel RAM models based on these resolution strategies has
been compared in [8], [9] under the assumption that the individual proces-
sors have arbitrary computing power. In these investigations the priority
model has established itself as the most powerful one.

As an example of a machine of the other type I mention the Recursive
Turing machine [29]. In this model every copy of the device can spawn off
new copies which start computing in their own environment of worktapes,
and which communicate with their originator by means of channels shared
by two copies of the machine. Clearly models based on such local communic-
ation channels are much slower in broadcasting information to a collection
of subprocessors and in gathering the answers. The validity of the parallel
computation thesis is not disturbed by this delay due to the fact that the
slowdown is at worst polynomial: in order to activate an exponential
number of processors by spawning off subprocessors polynomial time suffices
in case a complete binary tree is formed, and the time consumed for
activating this tree usually is polynomial in terms of the time consumed by
writing down the data to be processed by the subprocessors.

A crucial difference between the SIMDAG model and the Recursive
Turing machine model is that in the SIMDAG model the local processors, if
they are active at all at some time, all execute the same instruction on data
which may be different. As a consequence it is possible to write down the
trace ol executed instructions of a SIMDAG computation in polynomial
space. In the Recursive Turing machine each processor, once being activated,
performs its own program except for the impact of communication with its
originator or its offspring. It becomes therefore impossible to write down the
complete computation trace in polynomial space if an exponential number of
processors is activated.

For the above types of device it becomes relevant to restrict the power
of the arithmetic instructions involved. Otherwise, as we will see in the
sequel, the machine may become to powerful.

In the SIMDAG model the instruction repertoire for local and global
processors involves additive arithmetic and parallel Boolean operations,
combined with moderate shifting (division by 2). The wrting of data in
global storage by local processors is made conditional by stipulating that
writing the value O is suppressed. In this way the or of a list of Boolean
values computed by the local processors can be computed is a single write
instruction by letting each local processor write a 1 in a fixed register in
global memory if his bit equals 1 whereas the value 0 is not transmitted to
the global memory.

Based on the above incomplete description one can indicate why -the
parallel computation thesis is true for the SIMDAG model. The inclusion
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SIMDAG — NPTIME = PSPACE is shown by an argument similar to that
used for the corresponding inclusion in case of the EDITRAM.

The trace of a nondeterministic SIMDAG computation can be guessed and
be written down on a worktape in polynomial space. Next one defines a pair
of recursive procedures global(time, register) and local (time, register, signature)
which evaluate to the value stored at the given time in the given register of
the global and given local processor respectively. The arguments of these
recursive procedures can be written down in polynomial space (due to the
restrictions on the arithmetics of the SIMDAG) and the recursion depth is
bounded by the running time of the SIMDAG computation. Using these
recursive procedures the guessed trace of the SIMDAG computation can be
certified to be a correct accepting computation. As before the time needed for
the simulation is very large due to the recomputation of intermediate results.

The converse inclusion PSPACE = SIMDAG — PTIME is shown by
presenting an implementation of the transitive closure algorithm which run
in polynomial time.

This algorithm first loads the K by K matrix M(x, M, §) in global
memory. For convenience assume that K is a power of 2. The matrix is
constructed by letting processor i+ K -j evaluate the entry M(x, M, §)[i, ).
By inspecting its signature the processor, (using the Boolean operations and
the division by 2) can determine first the values of i and j and next unravel
these values as bitpatterns in order to see whether the two encoded Turing-
machine configurations are equal or are connected by a single step. By a
global write the matrix is loaded into global memory.

After formation of the matrix the transitive closure is computed by
iterated squaring. Each squaring is computed by letting local processor i
+ K j+ K- K-k read the values of M(x, M, S)[i, k] and M(x, M, S)[k, j],
form the and of these two values and write the result (conditionally) in
M(x, M, S)[i, j]. This requires therefore a constant number of steps.

After thtse squarings the existence of arf accepting computation is
determined by the global processor by inspecting the proper matrix entry.

A more refined analysis of the running time shows that the total running
time consists of three contributions:

(1) O(log(K)) = O(S) for evaluation of the matrix size K,
(2) O(S) for unraveling the configurations and computing M(x, M, §),
(3) O(log(T)) = O(S) for computing the transitive closure of M(x, M, S).

This more refined analysis shows why the power of the arithmetics in
the model is a crucial factor in establishing whether the model obeys the
parallel computation thesis or not. Assume that we can use multiplication in
unit time the first contribution is reduced to O(log log(K)) = O(log(S)): given
parallel Boolean instructions the unraveling can be distribution over O(S)
processors and therefore contribution (2) becomes O (log(S)} as well. As a
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consequence for the resulting PSIMDAG (for Powerful SIMDAG) model
one obtains NEXPTIME = PSIMDAG — PTIME. Hence it is unlikely that
such a model obeys the parallel computation thesis, unless PSPACE
= NEXPTIME. The above idea underlies the objection against the parallel
compulation thesis as put forward by N. Blum [2].

There exist in the literature several other models which seem to be more
powerful than a second class machine. Fortune and Wyllie [10] have
described a hybrid of the SIMDAG with a parallel machine based on
branching, called P-RAM in [10] and called MIMD-RAM in my earlier
survey [39] for which it is already established that P-RAM—PTIME
= PSPACE but P-RAM — NPTIME = NEXPTIME. Savitch [31] has defin-
ed a model based on an MRAM which creates parallel copies by branching,
called the LPRAM, and proves that LPRAM—PTIME = PSPACE and
LPRAM — NLOGTIME = NP. These devices indicate that there may exist a
third machine class, but a more precise characterization of such a class in
terms of invariance properties remains open.

To conclude this section I like to mention one more model. which is
inspired by the current vectorized supercomputers:; the Array Processing
Machine (APM) proposed by van Leeuwen and Wiedermann [40]. This
machine has the storage structure of an ordinary RAM but contains besides
the traditional accumulator also a vector accumulator which consists of a
potentially unbounded linear array of standard accumulators.

The array processing machine combines the instruction set of a standard
RAM with a new repertoire of vector instructions which operate on the
vector accumulator. These instructions allow for reading, writing, transfer of
data and arithmetic on vectors ol matching size which consist of consecutive
locations in storage and/or an initial segment of the vector accumulator.

Each operation on the vector accumulator destroys its previous content.
Conditional control on a vector operation is possible by the use of a mask
which consists of an array of Boolean values (0 or 1) of the same size as the
vector operands; the vector instruction now is performed only at those
locations corresponding to occurrences of 1 in the mask. A complete address
for a vector operation therefore may consist of four integers: lower and
upperbound of the vector argument and the mask respectively.

The power of parallelism is provided to the model by the time measure
used: uniform time or logarithmic time, where every vector instruction is
charged as much as its most expensive scalar component. So in a veclor
LOAD the logarithmic time complexity is proportional to the logarithm of
the upperbound of the operand and/or mask plus the logarithm of the
largest value loaded into the vector accumulator.

In their paper [40] the authors prove that the above array processor is
a member of the second machine class by providing mutual simulations with
respect to the SIMDAG, where it turns out that the simulations require
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polynomial (more specifically n*) overhead. In both directions the simulations
require nontrivial programming techniques, and an O(log?(n)) implementa-
tion of Batcher’s sort is an essential element of the simulation.

Inspection of the model shows that a proof that the APM obeys the
parallel computation thesis is easily obtained by the techniques used for
other devices. To prove PSPACE = APM — PTIME one can show that QBF
can be solved in polynomial time on an APM; here the main ingredient is
the construction of n vectors in storage of length 2", where vector j contains
the value of bit j in the binary representation of the numbers 0...2"—1;
Using those vectors one can evaluate a given propositional kernel in linear
time using the vector instructions, and the resulting vector can be folded
together according to the quantifiers in order to provide the final result. For
the converse inclusion: APM —NPTIME = PSPACE the usual technique of
writing down a computation trace and certifying it by means of a recursive
procedure should work. The detour via PSPACE implies the existence of
mutual polynomial time overhead simulations of SIMDAG and APM but it
does not provide explicit simulation overheads as indicated above.

7. Conclusion

During the two years passed since I wrote my earlier survey [39], the
situation concerning the status of the parallel computation thesis has been
clarified. A number of new second machine class members have been
proposed, whose main characteristic is that they are closer to the conceptual
models programmers have in mind while thinking about the machines they
are using. Both the EDITRAM and the APM are derived from real life
devices (Text editors and vectorprocessors).

At the same time the awareness has grown that the physical limits of
parallelism turn the parallel computation thesis into an unrealistic dream; see
for example (4], [36]. The subject of the power of parallelism with polyno-
mial bounds on the number of processors has become a research topic in
itself, and the classes SC and NC which are subclasses of P have become
widespread in algorithm design [6].

I have abstained from discussing these realistic down-scaled version ol
parallelism in the present survey. Also untreated is the relation between
parallel machine models and complexity in terms of circuits etc. Clearly a
truly complete taxonomy of machine models should include such models as
well.
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