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Transition systems are a good formalism to describe concurrent processes. In
this paper we define this formalism and we present some definitions and
properties about transition systems which are relevant when they are used as
a theoretical model for studying semantics of concurrent processes.

Introduction

Transition systems play a fundamental role for describing and studying
concurrent processes. Indeed a simple, and already introduced way [7] of
formalizing the notion of process is to consider a process as a set of states
together with labelled transitions between states describing the actions the
process can perform in the different states and the results of these actions.
Moreover, it is possible to give a special meaning to some states or
transitions, for example some states can be specified as initial or terminal.

Transition systems are now frequently used to describe processes. The
language Estelle of description of protocols is based upon this notion and
CCS-like languages use it for defining their semantics [9].

Some properties of processes which are of interest when studying their
behaviours can be easily expressed in the formalism of transition systems, for
example, “fair” behaviours are just a specified subset of the set of all possible
infinite behaviours and the theory of automata recognizing infinite words [3]
allows such specifications; properties of states such as to be deadlocking
have a simple characterization in the corresponding transition system. Also
usual operations on processes have their counterpart in the formalism of
transition systems. In particular, interastions between concurrent processes
can be represented by the set of actions which can be simultaneously
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performed, and then the whole system is represented by a kind of direct
product of its components.

Properties of processes are, in most of the cases, expressed in terms of
existence, in the associated transition system, of states satisfying some given
properties. We shall show that it is very simple to express a wide family of
properties of states of a given transition system, and that it is also very
simple to “compute” the set of states of a given transition system satisfying
properties of this family.

This paper is divided in four parts. In part 1 we give the definitions of a
transition system and of its computations. In Part 2 we explain how some
properties of transition systems can be expressed by considering sets of
states. In Part 3 we define the transition system associated with a system of
interacting processes from the transition systems describing each process in
the system and from a formal definition of the interactions taking place in
the system. Part 4 is an extension of Part 2 and explains in greater details
how sets of states, and also sets of transitions, can be characterized in a
transition systems.

1. Definition of tramsition systems

1.1. Transition systems. A transition system over an alphabet A of
actions is a pair (Q, T), where Q is a set of states and T, included in Q x A
x Q, is a set of labelled transitions. The states of Q are intended to describe
the states of the process (values of local variables, program counter,...); the
set A is the set of actions the process can perform and a transition
(g, a, ¢)e T means that in state g, the process can perform the action a, and
if it does so, it goes into state ¢’. The nondeterminism of the system (T can
contain transitions (q, a, q,) and (g, a, g,) with g, # g,) amounts to saying
that the result of an action is not fully determined by the state of the process
when the action is performed and may depend on some other features not
taken into account in the model. Here are examples of transitions systems.

ExaMmpLE 1. A process with a critical section can be roughly considered
as a process with two states: critical section (CS) and noncritical section
(NCS) and four actions: the usual mutexbegin and mutexend, and actions a
and b respectively in critical and noncritical sections, described by the
foilowing ts:

mutexbegin

b NCS cs a

mutexend
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ExampLE 2. A boolean variable b is a process with two states: true and
false and four actions: b:=true, b:=false, is_b_true_?, is_b_false_?
described by the following ts:

b:=true b: = false
b: = false
L— - a—
true faise
- , b:=true
L
is_b_true? is_b_false?

1.2. Computations. A finite or infinite computation of a ts is a sequence
ty, ta, I3, ..., I,, ... of transitions, such that for every i, if t; = (q;, a, ¢;) and
tiv1=(qi+1, b, gi+1), then q; =q;+,. We denote by T* the set of finite
computations, by T the set of infinite ones and by T® their union. Indeed
we are not interested in every computation but in those starting in a
distinguished subset I of Q, the initial states and we get the set B™ of initial
finite behaviours, It is clear that B'™ is closed under left factors, ie.,

Blnil — LF (B[nit)’
where

LF (L) = {ufthere exists v such that uvelL}.

Also we can distinguish another subset F of Q and we define the subset BF"
of B™™ consisting of computations ending in a state of F, called rerminal
computations, for if the process halts in a state of F, even if it still may
perform some actions, one can consider it as normally terminated. On the
other hand, if the process is in a state where no action can be performed, and
if this state is not in F, then the process is terminated but in an abnormal
way (a deadlock for example) and the corresponding computation is in B'™,
but not in B™

Finally, we want to distinguish a subset B'™ of T which will be the set
of admissible infinite computations, for in the presence of some constraints
on infinite computations, for example fairness conditions, not any infinite
computation is admissible. We only require that LF(B™) is included in B"™,
which means that every finite prefix of an admissible infinite computation is
an initial one, and we mention that the converse is not always true: if an
infinite computation has all its prefixes in B'™, it is not necessarily an
admissible one (we shall see an example next). This subset can be
distinguished by specifying a subset R of Q@ and defining the admissible infinite
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computations as being those which goes infinitely often through a state in R,
exactly in the same way one defines infinite words recognized by Buchi
automata [3].

ExampLE 3. It is usual to assume that a process does not stay forever in
its critical section. Therefore in example 1, one can demand that admissible
infinite computations are those in which every mutexbegin is eventually
followed by a mutexend. This can be done in defining R to be the set
containing only the state NCS. »

1.3. Processes. Thus we can consider that a process can be represented
by a transition system, ie., a pair (Q, T) together with three sets of
computations: B™, B, B'" such that:

(i) B™ and Bf™ are included in T*, B'"™ in T%;

(i) B is included in B™ = LF(B"™);

(i) LF(B"™) is included in B™.

These three subsets can be specified by three subsets I, F, R of Q, as
explained above.

Condition (iii)) can be also expressed in the following way: for any L
included in T*, let us define Adh(L) to be the set {ue T*/LF (u) included in
LF(L)}. Then the fact that every left factor of an admissible infinite
computation is an initial computation is also expressed by

(iii'y B™ is included in Adh(B™).

In case we have equality between B'"™ and Adh(B™) we shall say that
B"™ is closed. This turns out to be a very interesting property which allows
reasoning by continuity, or induction, to deduce properties of admissible
infinite computations from properties of their finite prefixes. It is well known
that it is not true in general: as an example, let us consider example 3 again.

ExaMpPLE 3 (continued). For every n, the computation mutexbegin
followed by n times the action a is a prefix of an admissible infinite
computation, but mutexbegin followed by @ times a is not admissible,
therefore the set B'™ is not closed. ®»

Moreover, if B™ = BF" then it does not matter to set F equal to Q, and
if B™ = Adh(B™"), then R can be set equal to Q.

2. Properties of transition systems

In this section we assume that a transition system is a pair (Q, T) together
with three subsets, I, F, R of Q¢ which define three sets of computations as
explained above.
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2.1. State mappings. We define the following mappings from #2(Q) into
ttsell: Reach, Coreach, Live, Loop by, for P included in Q,

— geReach(P) iff there exists a path (or computation) starting in P
and ending in gq.

— gqe Coreach(P) iff there exists a path starting in ¢ and ending in P.

— qe Live(P) iff there exists an infinite path starting in ¢ and going
infinitely often through P.

— ge Loop(P) iff there exists a nonempty path starting and ending in g
and going at least once through P.

2.2. Properties of states
It is clear from these definitions that
Live(P) = Live(Live(P)) = Coreach(Live(P)),
and, if Q is finite,
Live(P) = Coreach(Loop(P)).

The fact that every initial computation can be extended into an
admissible infinite one, i, B™ = LF(B'"), is then expressed by: Q included
in Live(R). Similarly, the fact that an initial computation can be extended
into a terminal one, ie, B™ = LF(B™), is expressed by Q included in
Coreach(F). A state g is said to be safe if every imtial computation ending in
g can be extended into a terminal computation or into an admissible infinite
one. Hence the set of safe states is

Safe = Coreach(F) n Live(R).

The property of being a safe state is not exactly the same as the following
one: a state g is said to be nondeadlocking if either it is terminal or there
exists a transition (g, a, q'), where ¢’ is also a nondeadlocking state. It is not
difficult to prove that the set of nondeadlocking states is exactly

Ndl = Coreach(F) n Live(Q),

and the difference between the two notions makes no sense in case B'™ is
closed, since in this case R can be taken equal to Q.

If we consider the sub-transition system obtained by restricting it to the
subset Safe (resp. Ndl) of Q, then it is a ts whose all states are safe (resp.
nondeadlocking) and it is the greatest one having this property.

2.3. Traces. Another point of view about ts is to consider traces of
computations instead of computations themselves. The trace of a
computation is the sequence of actions appearing in this computation. More
precisely the trace of the computation ¢, ¢,, t5, ..., t,, ..., Where t; = (g;, a;,
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g), is the sequence a,, a3, a3, ..., 4,, ... ¢ A®. Thus we get three subsets '™
and [F" of 4* and ! of A“. Other properties of ts can be expressed in
terms of these trace languages as it is done in [1]. The mapping from T*
into A® which associates a trace with a computation is both length
preserving and left factor preserving, thus properties such as B'™ = LF (B
are also true for traces. But, unless this mapping is one to one, as it is the
case for deterministic ts, the converse does not hold, as shown by the
following example.
ExaMpLE 4. Let us consider the following ts:

with 1= 1), F= 2, R=3), and t,=(1,a, 1), t, = (1, b, 1), t, =(1, a, 2),
th=(1,b,3), t; =(3, b, 3).

Then BF" = 1, t,)*t,; B™ = {t,, t,)* 1, ity | and B"™ = LF(B™ v B™),
But B"' = LF(Bf") and B™ = LF(B"™). On the other hand, L™ = {a, b}*,
= {a, b}*a, L' = {a, b}*b“. Hence

(E) [t — LF(IF™ = LF([').

For this ts, the sets of traces satisfy (E) and the sets of computations do not
satisfy the similar property:

(Ef) Blnil — LF (BFin) — LF (Blnf).

Moreover, it is impossible to get a ts having the same sets of traces and such
that the sets of computations satisfy (E'). »

3. Synchronization of transition systems

A system of concurrent processes can be represented by transition systems,
and it remains to describe the interactions between the processes of the
system. There is a lot of different kinds of such interactions: common access
to shared variables, FIFO queues of messages, rendez-vous, message
exchange... and various languages for specifying and programming processes
use one or several of these different techniques. Our claim is that, at least on
the theoretical level, all of them are particular cases of one and the same
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general synchronization mechanism, provided that spme “objects” involved
in these interactions can be also described by transition systems. In Example
2 above, we have shown how a boolean variable could be described this way.

3.1. Synchronization vectors. Let us consider n transition systems ./,
= (Q;, T) over the alphabets 4;,i =1, ..., n. We assume that when they run,
it is possible to define a sequence of time intervals such that in each interval,
each process perform one and only one action. Thus it make sense to speak
about global actions performed by this systems of ts: they are constituted of
the vector of actions performed by each process in the same interval and
thus they are elements of the cartesian product A, x 4; x ... xA4,. When no
interaction exists between the processes, every global action in this cartesian
product may be performed by the whole system. When there are interactions,
some of them may be forbidden or impossible. Hence specifying the
interactions amounts to allowing only a subset of this product as global
actions. Moreover, we assume that this subset is constant when the system is
running and does not depend on the state of some processes in the system.

This is right for systems which can be called synchronous in the sense
that in any interval every process performs one action but it is also possible
to consider asynchronous systems where at some intervals some processes
may stay idle. Then, representing the null action by ¢, ie, a process
performing ¢ remains in the same state, a global action is, in this case, an
element of A x A9 x ... xA?, where A°= AU el

Thus we define a so-called synchronization condition over a system .2/,
= (Q;, T) of ts over the alphabet A; as a subset S of the cartesian product AY
x A3 x ... xA8—{<e, ¢, ...,e>). Every kind of synchronization between
processes can be expressed this way. We shall see below an example of
mutual exclusion with a boolean semaphore, where the synchronization
condition formalizes the fact that an action performed by a process which
modifies the state of the semaphore must be executed in the same time as the
semaphore modifies its own state. This kind of synchronization constraint
also applies to systems with shared variables (Example 2 above shows how a
variable can be represented by a ts): when an action of a process consists in
testing or writing a shared variable, this variable must execute the
corresponding action. When processes are communicating by bounded or
unbounded FIFO queues, then these queues are ts whose states are their
own content and actions consist in enqueuing and dequeuing values, and the
action of a process consisting in putting a value in the queue or getting a
value from the queue is simultaneous with the action of enqueuing or
dequeuing. Direct communications between processes in CSP-like languages
are described by the fact that the action, executed by a sender, of sending a
message to a receiver is simultaneous with the action, executed by the
receiver, of receiving the message from the sender. COSY-like interactions
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[8] are described by vectors in the form a =(a,, a,, ..., a,), where g, = aq, if
ac A;, a; = ¢, otherwise.

3.2. Synchronized systems. Now we can explain how such a
synchronization condition allows to express the interactions between the
component of the system by defining a transition system which represents the
synchronized system.

Let # =(o,, o,,..., &,; S) be the system of ts synchronized by the
condition S. The transition system associated with it is the ts over the
alphabet S defined in the following way:

— its set of states Q i1s O, xQ, x ... xQ,;

— its set of transitions T is defined by

((ql’ qz, .- qn)s (bl’ sz teey bn)s (q’lv q'Zs LA q:l))e T
iff
(b, b,y,...,b)eS and (q;, b,q)eT, if b #e¢,
g; =gi, otherwise.

ExampLE 5. Let us consider the following simplification of Example 1.
Here are two identical ts .oy and &/, over the alphabet {p, v}.

Here p and v play the role of mutexbegin and mutexend of Example 1,
and states ! and 2 the role of NCS and CS. Now mutual exclusion is
performed by the mean of a semaphore .o/3 over (p/, v'};

pl

green red

V’

and the synchronization constraint is given by the following set S of vectors:

(85 p) p,), (pi 8’ pl)’ (8’ v’ U’)’ (v’ 8’ v,)

which means that a process can enter its critical section by p, iff,

sirnultaneously, the semaphore goes from green to red by p', and it can leave

it by v, iff the semaphore, simultaneously, goes from red to green by v’
The ts defined by this system is:
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{1,1, green)

(p.£.p") le,p.p')

iv.e,v') (e,v,v")

|
|2,1, red) (1.2, red)

33. Synchronized computations. Let # = (#,, #,,..., #,;S) be the
transition system defined as above and let us consider the projection =; from
T into T;°, obviously extended to T* and T™. We define the three sets B™,
B and B"™ associated with # in the following way:

Blnil — {u € T‘ /Vi n,’ (u) EBl!nh} ’
BFin — :u eT* /Vl m; (u) EB:Fin} ’
B™ = lueT*/Vin;(u)eB™ U Bf'").

Notice that the image under w; of a transition of T can be an empty
transition, hence the image of an infinite path can be a finite word. Thus an
infinite path in 4 is admissible if its infinite projections are admissible and
its finite projections are terminated. In other words, in an admissible infinite
computation of the system, a component can have a finite computation only
if this computation is terminal, which implies that if a component stays
forever in the same state, this state has to be a terminal one.

With these definitions it is clear that the initial states of # are the
vectors of initial states, and the terminal states of # are the vectors of
terminal states. But in general it is not true that admissible infinite
computations can be characterized by a set R of states of #. This is possible
only if 4 is given a more intricated definition as in [1]. This suggest the need
for an alternative definitions of admissible infinite computations in between
the definition in extenso of B™, which is too much general, and the definition
by repeated states, which is too restrictive.

3.4. Synchrony and asynchrony. Synchronous systems are those in which
the vectors of the synchronisation condition do not contain the empty action
e. Thus they can be considered as special cases of asynchronous systems. On
the other hand, the ability for a process to stay in a same state can be
explicitely expressed by adding an empty transition (q, ¢, q) for every state g.
Thus asynchronous systems can be seen as special cases of synchronous
systems. Indeed, we believe that thi ond point of view is more interesting

2 — Banach Center 2|
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for two reasons: it is possible to admit empty transitions for only certain
states and then to mix synchrony and asynchrony, and it forces to explicitely
consider arbitrarily long sequences of empty transitions. which is useful when
dealing with admissible infinite computations.

‘4. Analysis of transition systems

In Part 2, we have shown that properties of states could be described by
using some functions from 2(Q) into itself. It is possible to consider other
such functions, for example functions associated with the operators of some
branching time temporal logic [4]. It was already noticed [10] that some
temporal logic operators could be defined as fixed points of equations. Also,
the operators Reach and Coreach, defined in Part 2 are solutions of fixed
point equations: for P included in Q, we have X = Coreach(P) iff X the least
fixed point of the equation

X =Py Pred(X),

where Pred(X) is the set of states g such that there exists a transition
(q, a, q') with g'e X.
Similarly Reach(P) is the least fixed point of the equation

X = Py Succ(X),

where Succ(X) i1s the set of states g' such that (q, g, q)e T and ge X.

It is also possible to characterize the logical operators introduced in [6]
as solutions of fixed point equations.

More generally, it is proposed in [5] to use, as a language for describing
sets of states, or, equivalently, properties of states, the set of terms build up
with any function which is the solution of a fixed point equation (more
precisely: the component of the solution of a system of fixed point
equations).

ExampLE 6. The set of states reachable from P by a path of any length
is Reach(P). The set of states reachable from P by a path of even length is
the first component of the least solution of the systems of equations:

Even = P Succ(0dd), (Odd = Succ(Even). =

It remains to make clear which kind of equations can be used. They are
in the form

X‘-=[]‘, i—_-l,...,k,

where ; are terms build up from variables X;, intended to represent sets of
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states, set-theoretical operations, and the two functions Succ and Pred [rom
#(Q) into itself. Because of the use of the complement, some syntactic
conditions on terms are necessary to insure monotonicity of the function
represented by a term, and 2(Q) is ordered either by inclusion or by
containment ; for each variable occurring in a system, one of these two orders
is chosen, and in some sense it allows to mix least and greatest fixed points.

ExampLe 7. In [2], two different “until” operators are defined. Both are
“least” fixed points of the equation

X = PU(P N Pred(X)).

But, for one, X ranges over #(Q) ordered by inclusion, and for the other, X
ranges over (@) ordered the other way. =

It is not difficult to consider also equation where some variables range
over sets of transitions instead of sets of states. It is even possible to consider
equations where both kinds of variables occur, provided there exist functions
from states to transitions and from transitions to states. Fortunately such
functions do exist. They are

source and target from T into Q

which associate with the transition ¢ = (g, a, ¢') the state q and the state 4.
These functions are additively extended into

Source and Target from Z(T) into 2(Q)

and their reciprocals are

Source™! and Target™' from 2(Q) into 2(T).
These functions allow to define Succ and Pred:

Succ(P) = Target(Source™'(P)),  Pred(P) = Source(Target ™' (P)).

Using these generalized systems of equations, it is possible to define a
wider family of sets of states than the one which can be defined by using
only Reach and Coreach, or by using classical temporal operators. However,
it can be proved that the function Loop cannot be characterized this way.

From an algorithmic point of view, it is possible to compute the
solutions of these equations in a time quadratic in the size of the system of
equations and quadratic in the size of the transition system. This complexity
can be improved in some cases and made linear in the size of the transition
system, as it is the case for the algorithms proposed in [4] (cf. note
below). Moreover, although it is not expressible as the solution of a system
of fixed point equations lLoop is also computable by an algorithm which is
linear in the size of the transition system [11].
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Conclusion

Transition systems are known to be an adequate formalism to describe
concurrent processes, They are also an adequate mathematical model in the
sense that problems about concurrent processes can be precisely stated in
this formalism. The theory of transition systems is not yet developped
enough to allow to solve these problems but it seems quite evident that any
progress in this direction will be of some help in the study of concurrent
processes.

Note added in proof. It has been shown in [12] that any system of equations can be solved
in time linear in the size of the transition system.
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