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Introduction

Courcelle has shown in [3] that many classical constructions in language
theory can be expressed in terms of a set of basic transformations of systems
of polynomial equations, which are correct in the sense that they preserve the
least solutions of the systems to which they apply. This note shows that this
is the case for the minimalization of tree-automata (reduction and determin-
ization have already been treated in [3]).

This paper assumes the knowledge of Gecseg—Steinby [4]. The necessary
definitions are recalled from [3].

1. Polynomial systems

Let F be a finite ranked alphabet with rank function ¢: F — N. Let M (F) be
the set of well-formed terms over F, let M(F, U) be the set of well-formed
terms over Fu U where U is a set of O-ary variables also called unknowns in
the sequel.

Let P = P(M(F)) be the power set of M(F). We equip P with an
algebraic structure defined as follows:

Q=0 (Q is a constant not in F),
T+, L =TuT, (+ is a binary symbol not in F),
ST T =t - )/ 0 eTh, o, €T,

where T,, T, ..., T, € M(F), feF, o(f) =k = 0. It is not difficult to verify
that P is an w-complete F,-magma with set inclusion as an ordering. By F,



198 B. COURCELLE

we mean Fu |+, Q} and F,-magma is synonymous with F, -algebra (but
we keep the terminology of [2], [3]).

Furthermore, P satisfies the following set ' of equational laws (for all
feF, with k = ¢g(f)):

L +(T;+ ) = (i + )+ T,
N+T,=T+T,
T,+Q=0+T,
L+1T, =1,
f(T,, ..., Q,...., T) =Q,
SN, .. T+ T, ., = f(T, ., AT, L T T,

where T, ..., T;, T range_over P(M(F)).

A polynomial system is a system of equations of the form § = (i,
=Py, ..., U, = p,> where U = {u,, ..., u,} is the set of unknowns of S and
each p, is a polynomial, i.e. either Q or a term in M(F,, U) of the form

(1) pi=tia Y2t ...+,

with ¢, ;e M(F, U).

Every polynomial system S has a least solution in P consisting of an n-
tuple (L,, ..., L,) of regular sets of elements of M(F) (equivalently-of trees,
see [1], [4]).

Conversely, every regular set of trees L can be defined as the first
component of the least solution of a polynomial system of the special form
S=<u=p,u =p;,....u,=p,> where p is either Q or of the form

U, tu,+ ...+

for some iy, ..., in {1, ..., n} and each p;, i=1, ..., n, is as in (1) with ¢
of the form

Sy, w)

for some feF, I =9o(f), iy, ..., he{l, ..., n}.

These polynomial systems correspond to finite-state bottom-up tree-
automata.

By a quasi-deterministic system we shall mean a system of the above
form with r; ; #t.; whenever i #i or j #j"

These systems correspond to deterministic finite-state bottom-up tree-
automata.

It is known from Brainerd [1], Gecseg-Steinby [4] that every determ-
inistic finite-state bottom-up tree-automaton can be transformed into an
equivalent one with a minimum number of states.
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We want to prove that this transformation is a special case of one of the
transformations of polynomial systems which have been defined in Courcelle
[3]. We first recall a definition from [3].

2. Redefinition of polynomial systems
Let S= U, =py,...,u,=p,y and §' = u; =pj, ..., U, = py).

We say that S redefines into §', written S redefS’, if the following
conditions hold for some kell, 2, ..., n}:

(1) pi=p; for all ielk+1, ..., n},
(2) preM(F,, {uy,...,u)) for iell,... k},
(3) pi[Q/ul,---aQ/un]gop;m[Q/“la""Q/uk]s

for some m>= 1, and this for all i=1, ..., k,

(4) pi [pl/uls S | pn/un] ‘_:_’plf[pl/ul’ ey pk/uk:|9 fOI' a" l= l’ s k

By p;[t,/u,, ..., t,/u,] we mean the result of the simultaneous substi-
tution of ¢, for wu,,...,t, for u, in p. By p"[Qu,,..., Qu,] we
mean p/[Qfu,,...,Qmu] if m=1 and p[p7 [Qu,, ..., Qulu,, ...
e [Quy, . Yw] I m=m+1, m>0. By p+*>p’ we mean that
p and p’ are interconvertible by fnitely many uses of the equational
laws of 2. By p<°p we mean that p can be transformed into p’
by <% and by replacements of € by any element of M(F,, U).

We write more generally S redef S’ if these conditions hold up to a
renaming of u,, ..., u, (the specific ordering that we have used was just a
convenient way to state conditions (1}{4)). And we shall say that this
transformation redefines U’ where U’ is {u,, ..., u,} in conditions (1}{4) or
the set of unknowns corresponding to them if a renaming is used. In [3] the
notation redef,; is used for redef.

3. Example

Let S=u=v+w, v=f(g(w))+a+b, w=f(g(v))+a)> and let §' be the
samg system except for the first equation transformed into u = f(g(u)+a
+b.

Then S redef S’ by a redefinition of u. Conditions (1) and (2) are
obvious. Condition (3) holds since '

Q+Q 20 <O

where t can be anything and in particular f (g(Q))+a+b. Condition (4) holds
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since
flgw)+a+b+f(g(v)+a<tf(glv+w)+a+h
(both sides are «%--equivalent to f(g(v))+f (g (w)}+a+b).

4. Congruences and quotient systems

Let S=<u=p,u =p,...,u, = p,» be a quasi-deterministic systtm where

P1 ——=t1,1+ +tl"’1’

Pn = I,,_1+ +t"'"".

A congruence = on S is an equivalence relation on {u,, u,. ..., 4, such that

n)
(1 i U, = U, then i’ = i; for some j/=1,... &k,
(2) if ti,j = f(uj-l, cvug ujl), f-"jl = f(ul'", ey u_ii),

ujl Eu_"'l, C

Uy = Uy then u¥; = u;.,
B) il =Sy, uy) uy Sup uy Su, L uy S,
then t; ;- = f(uj,, ..., u;) for some i’ and j.

If = is a congruence on S, a quotient system S' = §/ = can be defined as
follows. We let {v;, ..., v,,} be a new set of unknowns in bijection with U/=
(we denote by [u] the equivalence class of « in U and with a slight abuse of
notation v = [u] if v corresponds to [u]).

Then we take §'=u=p,v,=q,, ..., 0y =gn> With

pl = [“i1]+ ces +[uik]’
@ =2 [ wev, j'=1, ..., n,

where [f(u;,, ..., u;)] denotes f([u; 1, ..., [u;]).
Of course, the idempotency law for + can be used to reduce the
polynomials p’, q,, ..., gpm-

5. Example
Let S be the system
U= u; +us+u,,

uy = f(ud+g(uy, u)+9g(uy, u)+g(uy, uz)+f(13),
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u; = f(u))+g(uy, u)+a,
uy = g(uy, u)+g(u,, uz)+b.

This system is quasi-deterministic and ({u,. u,}, {u3!) is a congruence on §.
The quotient system is the following system S’ below with v, represgnting
tu,, u,} and v, representing {u;!:

Uu=1"0y+0,,
vy = f(v)+g vy, v)+f(v))+a,

v, =g{v, 0))+b. w

6. Main result

THEOREM. Let S be a quasi-deterministic system, let = be a congruence on
S, let §' =S/=. Then there exist two gquasi-deterministic systems S, and S}
such that

ScS redef §S; =5'.

Proof. Llet S={lu=p,u =p,..,u,=p,>, let S =~ai=p,
=4q,, ..., Uy = q,,> with the notation of Definition 4.
For every i=1, ..., m, let

=13, \pifuyen},
and finally
Si=u=p, vy =0, ..y Uy =Ty Uy =Pyy ecns Uy =Dp)s
S’l = <u = p"' Uy =ql-: cons Um = 4y, Uy = P> -0y Uy =pn>
We now prove that S, redef S; by a redefinition of u, vy, ..., v,.
In the following claim we denote by ) v the polynomial u; + ... +u; if
v= (U, ees Uy
CLamMm. For all i=1,...,m, q;[) v3/vq, ..., ) UpfUm] 2> r;.
Proof of the claim. From the definitions, r, =) It; ./u;ev;, j
=1, ..., n;} and f(v;,, ..., v;) is a subterm of g; if and only if there exist j, J,

J1s ...,j? such that u;ev;, jell, ..., n;} and t;; = f(u;, ..., u;) with u;ev;
foralli=1,..., 1
Hence

a[Y ooy, ... ]2, w

To establish the theorem we now verify conditions (1)H4) of Definition
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Conditions (1) and (2) are clear from the definitions.
Condition (3) holds since clearly

p[Q/u,,...,Q/u,,]*—,’_!‘,—vﬂ,
and by the claim
ri[Q/uy, ---,Q/un]"r’,L"Ii[Q/Ul, ey Qfv,].

For condition (4), we have to prove

pLpi/uy, ..., Pn/“n]“g*-,"P’[rl/Ul, vy P/ Um].

But p<*>p' [} v,/v1,..., Y vnftm] by the definition of p’. On the other
hand, r; %>} v;)[p1/ur. - .., P/u,) by the definition of r;. Hence

plpifuy, .., pfu) 2 p [Y vifoy, ] (pifuy, -]
=p'[(zvn)[m/uh e, ]
FEsp'[r/vr, ..o Fu/tn].

We must also prove that, for i=1, ..., m,

r:[pifus, ..., Paftin} ‘7*_-,—"1.‘ [ri/ve, ooy PfUm])

but this follows immediately from the claim with the help of similar
computations.

This completes the proof of the theorem. m

CoRroOLLARY 1. Let M be any F-magma. The components corresponding to
u of the least solutions of S and §' in P(M) are equal.

Proof. 1t follows, from [3], Proposition (5.12), that the least solutions
of S, and §) are the same. Since S is a subsystem of S,, its least solution is
the appropriate projection of the least solution of §; and similarly for .
It follows that the components corresponding to u of the least solutions of §
and §' are the same. =

Brainerd [1] has characterized the minimal tree-automaton defining
a given regular tree language I as some quotient of any deterministic
tree-automaton defining L. Since the polynomial system associated with
a quotient-automaton is a quotient of the quasi-deterministic system associ-
ated with the given automaton, we have

CoroLLARY 2. The minimalization of tree-automata can be expressed in
terms of inclusion and redefinition of polynomial systems.

7. Example (continuation of Example 5)

Let S” be the set of equations of § with left-hand side u,, u,, u,; we take for
S, the system §” together with the equations
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U=U;+u;+u;,
v, = flu)+f(u)+gu,, u)+gluy, u))+guz, u))+g(us, us)+1(us)+a,
vy =g (us, uy)+g(uy, uy)+b.
Note that these equations can be factorized as follows:
u=(u, +u,)+us,
vy = f(uy+ux) +g (1 +uy), (U +uy))+f (u3) +a,
vy, = ¢g(us, Uy +uy)+b.
We take for S} the system S” together with the equations
u=ru,+v,,
vy = f(e+g(vy, v)+f(v2)+a,
vy =¢g(vy, vy)+b.

To establish that S, redef S}, one must verily in particular condition (4) of
Definition 2.

Let us consider in particular the verification that

q, [ri/vy, r2/va] “5‘"’1 [pi/uy, p2/uz, pajusl

where p,, g;, r; are as in the proof of the theorem.
Our factorization of r, shows' that

qy [uy +uy/vy, usfv,] <+r

which in the proof of the theorem follows from the claim. Since the

general proof is easier to follow than the example, we do not detail the
computation. =
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