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In this note we discuss characterizations of Triebel-Lizorkin spaces FI* and
relate them to spaces of DeVore and Sharpley [3] and Christ [1] defined by
means of maximal functions. These characterizations allow to generalize
known extension theorems in the framework of F??-spaces. We simultaneous-
ly consider isotropic and anisotropic spaces. Let us first fix some notations
and definitions. Let (A4,) = (¢t") be a one-parameter group of dilations in R",
trace (P) = v, the real parts of the eigenvalues of P being larger than a, > 0.
Let further o* e C*(R3) be an A¥-homogeneous distance function in R" (for a
discussion of these notions we refer to the survey [2] of Dappa and Trebels,

this volume). Let ¢ €eCF(R.), suppo =(3.2), Y ¢(2*s)=1, if s >0, and
keZ
*

M = y‘*[goo%]; set Y, =n, for k=1, and yo=1- ) n,.

k21
DerINITION. Let 0 <p<oo, 0<g< o, —o <a<oo. We define
FP(P, R" as the subspace of tempered distributions f for which

”f”f‘g" = ”(k§0|2ka Yy *flq)l/q”p

is finite. Similarly FP(P, R is the subspace of tempered distributions
modulo polynomials, which consists of those f for which

flles = X 12n, = £19",

k= -
is finite.
In this paper we assume throughout x > 0; then

1A Nlepa = NS 1o+ LA e

The connection with the notation in [2] is that for ¢ =2 we have by
Littlewood-Paley theory F??(P) = ¥2 ..

[391]
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A main tool in proving characterizations for F?? are maximal functions.
Let o be an A,-homogeneous distance function and

Mf(x)=sup | |f(x—y)dy,
t>0 o(y) <t

the associated anisotropic Hardy-Littlewood maximal function. (I S denotes
S

the mean value |S|™! [f) Further let
S

e » f (x—2)|
opnf(x) =sup—F——x
on S ( ze.f,’l [1+20)]"
be an anisotropic version of Peetre’s maximal function. The basic vector
valued inequalities for .# are due to Fefferman and Stein [6], for oy due to
Peetre [10]: For 1 < p, g < oo there holds

(1) II{Itﬁm}”Lpuq)g C"{fk}”’_p“q)
and for 0 <p <o, 0 <g< o, N> v/min(p, q)
) 112* 020 S Mg, < CHE2% M S ey

The easiest way to prove (1) is by interpreting the vector valued maximal
operator as a singular integral operator (see [12]). Our anisotropic analogue
follows using an anisotropic variant of singular integral theory as one can
find eg. in Riviére [11]. We also use continuous versions of (1) which are
proved in the same way (or which can be deduced from (1) by limiting
arguments). (2) is proved by straightforward modifications of the isotropic
case considered in [10] and [16, Ch. 1].

To give our characterizations define 4, f(x) = f(x+h)—f(x) and the
higher differences 4} f by iteration. Further let

® or d 1/q
3) S:.,,..f(x)=(5 [ ¥ 147/ (0 dh ’,lf,.,> :

0 eh)<t

For a fixed p-ball Q = Q.(t) = {y, e(y—x) <t} we define the oscillation

oscP(f, Q) = osc™(f, x, ) = inf (YIS () — PO dy)"”
PeP™ Q

where the infimum is taken over all polynomials of degree < m. Further we
set ‘

® d 1/q
@ Vormf (X) = ( f [oser™" (f, x. t)]",Tt,.,) :

For ¢ = o0 or r = o0 we have the usual modifications and replace integra-
tions by sup-norms.
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In (3), (4) we assume m > a/a, and usually omit the subscript m. The
following theorem generalizes and improves results from [13], [14], [15], (8],

[16], [4], [2].

THEOREM 1. Suppose that 0 <p <0, 0 <g< o0, m>afay, r=21. If

1 1 1 1
a>0p,,, =max{0,v ;—; , Vv E—; ,

then ||fllgps = |ISGr,m fllp = 11Dgrmflp-

Proof. The proof is carried out for the cases g, r # oo, the remaining
cases are similar. The first step is to prove the pointwise inequality

&) Ser S (X) S 7, f ().

Now we choose best approximants P, fin fin L'(Q,(t)). Since 47 P =0 for
all polynomials P of degree less than m, we may split

(=" 47 £ () = f (- Pf(x)+Z( (7 )7 G40 Pof (x-+h)

=:Io(x, t)+ Z I_,-(x, t, h).

j=1

Clearly, if j > 1,

1/
(;[ { CI;(x, h, ) dn]" l‘iq) qsc.@:_,(f)

0 Qo
(here Qo(2) = {y, e(y) < t}).
Since lim P,_, f(x) = f(x) ae, [P, fI< Y |f] (see [3]),

1-w Q)
If(x)—P, f(x)| < ,ZOIPT""f(x)_PZ""f(x)I
Sc) § IfO=P,-, fdy.
=0 Qx(z_l')

Hence, if ¢ < 1,

1/q
(I[ ‘ [Io(x, t)l’dh]ﬂ' 1+¢¢)

0 Qo

1/q
(z [[ § 1F0)=P,- ,,f(y)ldy]“t,+,.)

1 0 g2 h
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If g > 1, we apply Minkowski’s inequality to get the same result. The main
step of the proof is to prove the inequality

(6) Dar fllp < cllf llppa.

We use a pointwise Sobolev inequality due to DeVore and Sharpley to
reduce matters to the case r < p, q; then we can apply maximal inequalities.
Choose B and ¢ < p, q such that a > B =v(1/6—1/r), then

(M inf ([ If=Prdy)" <c( [ [sup{IRI"" oscr™'(f, R)}1dy)"”,
PePm— 1 Q.0 Qx(0)

where t > 0 (we assume t < min(1, ¢)), and the supremum is taken over all

g-balls R with yeR = Q, (1), see [3, p. 23]. If y€eR, let R* be a g-ball with

center y containing R, with rad R* < 2brad R (b being the constant in the

triangle inequality g(x+y) < b[e(x)+¢(y)]), then

osc™ 1 (f, R) < cosc™ 1 (f, R¥).
Using (7) we obtain

® 1/q
Dar S (%) < c(j' [ee=>"( { [sup s~Posci ' (f, y, )]’ dy)”"]" 1+aq)
0 Q.1 sS2bt t
) 1/q
gc(f[ f (X 2%oscri(f, 271, y)) dy]™ Haq)
0 Qx® 130 t)

which is majorized in the case ¢ <1 by

d a/q\1/o
(Zzwa (j‘[ I OSC"' l(f 2- 't y)) d)’]qlotlfaq) q)

0 Qx®

<c<22‘(ﬂ—¢)a (I[ { (osc™=1(f,t, Y d ]q,,tl+aq>a/q)l/a

0 Q0

1/q9
(j[J{ ([ose™~ (£, t, *)1°) mtlﬂ‘,)

If ¢ > 1, we use instead Minkowski’s inequality to obtain the same result.
Since 6 < p, q we may apply the Fefferman—Stein inequality (1) to obtain

N 7ar Sllp < cllZas Sl

Now we decompose

f=f0,t+f1,n fo.r= Z 'h*f-

2k

Then
Voo S (x) <T(x)+11(x)
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with
® dt \'4
I(x) = (j [osc ™! (fous t, x)]“m)
0

and II(x) analogously defined.
Since osc ' (fo.r t, ¥) S [ #(f§)]"" and t <q we may apply once
more the Fefferman—Stein inequality to get

Uz mer)

2kez

i, <

< c||(Z 24 me = £19)1),.-
k

For the latter inequality we use Hdlder’s inequality (if ¢ > 1):
[ mesl'se & @0%nssl, 0<e<a,
2k > 2ki2 1
and interchange summation and integration. The case g < 1 is simpler. In

order to estimate II, let 7, = 2*"#j (A A -) be similarly defined as n,, but with
() =1, if & esuppn,. hence n, *7j, = n,. Then we have the inequality

Osc::n_l(fl.n y’ t)
m-1 1 . T 1/t
) [m*f(Z)— 'Zoj—!((z—y)-V)’m*f(y)J dZ)

< ( {
Qy(1) I 2k <

(ST [[e=y) VI fensf(y+oE-y)dof dz)

Q)0 2ky<y O
Since n is a Schwartz function, it holds for zeQ,(t)
ILz—=y) VI i () = (A (=) V)" T1(A )l
Sen()™0(1+2%() "

which implies
osc™ W froy)<e( [ | T 0™ atns @ d2)".
2, 2k <y

We integrate and obtain by the Fefferman-Stein inequality

(Il Z (2"0"‘"0 % oka * flth>l,q

2k <

<cE 2 Lot f19"),
k

Iil, <

4

since & < ma,. Now we choose N > v/min(p, q) gnd by Peetre’s maximal
inequality (2) the right side is majorized by the F?-norm of f, hence

25 llp < cllfllppg-
a
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It remains to show the inequality
@) IS llepa < clISG, fll,-

This follows by an approximation procedure with functions of exponential
type. We define the operator T, f by convolution with the kernel

- — +1 (MY:mm v -‘_’

I e (D) wo(A,,,j),
then

f—T.f=]'t’"&//o(Amh)A'f,.fdh-

Using this representation, the proof of (8) follows the lines of Triebel [16, pp.
82, 103], so we omit the details. =

Triebel-Lizorkin spaces on domains

DEeFINITION. Let Q be a subdomain of R". The space F?(R2, P) is defined
as the ‘space of restrictions of FP*(R", P) to 2, normed by

"f”Fg"(n.P) = inf{”g”r‘fq(m.m, glo=fin Q}.

In order to give inner descriptions of those spaces it is necessary to derive
extension theorems. Kalyabin [9] proved that for Lipschitz domains the
Stein extension operator is a universal extension operator for the isotropic
FP-spaces (1 <p, g < o0, a > 0).

Let C?4(R2, P) be the space of L% (£)-functions, for which

3(x) d 1/q
( [ Loser™ (£, r)J",lfq)

1S llcze =

’
p

1
here d(x) = %inf{g(x—y); y €00} =:Eg(x, 09).

DeVore and Sharpley [3] and Christ [1] prove extension theorems for
isotropic Cf’-spaces; in [1] this is done for the largest known class of
extension domains, the (¢, §)-domains, introduced by Jones [7].

DEerINITION. Let ¢ be an A,-homogeneous distance function and let 0
<g<l1l, 0<d<ow. A domain Q = R" is called an (g, d, g)-domain, if for
given x, y €Q with o(x—y) < 6 there is an arc I’ =  joining x to y such that
the following conditions are satisfied:

@ sup ¢(z—2) < e(x—y)/s,

z,2'el

(ii) 0(z, 0Q2) > emin {p(x—2), ¢(y—2)!, zerl.
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A similar definition was given by Fajn [5]. The appropriate extension
operator for (¢, 0, g)-domains is of Whitney type; we have to use the
Whitney decomposition theorem [14] in the following form:

PrOPOSITION. Let Q be an open set in R" with nonvoid complement Q..
Let ¢ be an A,-homogeneous distance function, and let d = 4b. Then there is a
covering % () =(Q;) of o-balls with dyadic radii, which has the following
properties

@ If Q;={x,e(x—x0) <2}, QF = {x, 0(x—x0) < 2**'} then we have
Jor xeQf

—;—brade < o(x, 0Q) < 4bdrad Q;

(i) There is a constant N such that each x €Q lies in at most N of the
Qr.

As usual we may associate to ¥'(2) a partition of unity (¢§ J.);
-1

where 9g(x) = x(A;x(x—)) if @=0,(), and yeCFRY; x(© =1 if
e(§) <1 and suppy < j¢ < 2}.

The key property mf (g, 6, g)-domains is (see [7], [1]): There are
constants bg, b,, b,, n, such that for every % (R"\Q) with rad (Q) < b, there
is a ‘reflected” ball § € # () such that

byo(Q, 0)<radQ, radQ<b,0(Q,0);

here o(Q, §) denotes the g-distance between Q and §; the number of
reflected balls of a fixed Q does not exceed n,.

Now we fix for every Q;e# (R"\Q) with rad Q < by a reflected ball
Q'je#/ (). Let ¥ = min(1, p, q) and let ng; S be a best L'(Q;)-approximant of
f. Then a Whitney type extension operator is defined by

S (x), x €0,
EX) =Y (ng, /)08, xeR\Q.

THEOREM 2. Let Q be a (g, 8, g)-domain, and 0 <p < o0, 0 <gq, r < o0,
o >0p,,, Then
||Ef||c§_“,(m.r) < C||f||c{,"‘1,m.n-

We do not give a detailed proof here. If r=1,1 <p< o0, 1 <g < o0, it
is a straightforward but tedious modification of Christ’s proof. The maximal
inequalities in [1] must be replaced by vector valued versions, if ¢ < co. For
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the modifications needed in the case p <1 or g < 1 see DeVore and Sharpley
[3, ch. 12]. If r > ¥ = min(1, p, q) we use, as in the proof of Theorem 1, the
pointwise Sobolev inequality (7). =

CoRrOLLARY 1. Let feFMN(Q2,P), a >0 r=z1, m>afay. Then

Pq,r?
5) ) dt \1a
( g [osc~ ' (f, -, t)]"m)

This follows immediately by a combination of Theorems 1 and 2.
If p, g > 1 there is a simpler version of Theorem 1 valid for arbitrary
domains Q. We define

B, = !{x;0(sx) <1 for se[—m, m]}.

I Nepscar = 11 1l,+

p

THEOREM 3. Let 1 <p< oo, 1 <g< 0, a >0, meN fixed and

! » 1l
-

min(p, q) v

Then for f €Ll _(Q) the following seminorms are equivalent:

— . . t 1/q
(g [osc!~*(f, -, 1)] t”"‘)

3() s als 1/q
(g arsranr 55)

, —
s

) WAy, =

’
14

(1) IS llz.s =

p

Sketch of the proof. We will use an approximation of the identity
introducted by Kalyabin [9]. Let ¢ €Cg(R"), [¢ =1, suppp < 4,3, B, »,
and define the kernels K, =t K(4,,y) by

Koy < I)T'Hi $o I)Mkm( )( )( i)" (‘_y)

j=1 k=1
Then
9) f)—K,»f(x) = [t K(A4,h) 47 f (x)dh,
(10) - P"K s f(x) = [t [(Ayy- V)" K1 (A h) A7 £ (%) dh

where K, K, €C&(R") are supported in A4,,,, B, b being the constant in the
triangle inequality for g.

The inequalities || f]l,.; < ¢||fll.., < c||f]l;,, follows as in the first step of
the proof of Theorem 1. To prove ||fll;., <cllfll,1, we start with the
Sobolev inequality (7) and choose there =1, 1<o6<p,q a>p

1 1
>v(———). Now let
c r
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1(y, o, x) = sup {oscT~1(f, R); yeR < Q, (1), w/4 < rad R < w}
and
Q) = \x, 6(x) <t}.
Then by (7)
3(x) dt \1/a
ay (7 tosert x5

0

3(x) . o dt 1/q .
<e(TL1 Ep2210. 270 07 a1 22
0 Qi 120 rr

1/q
<c) 2"”'“’([[ { U, ¢, x)) dy]qlcxr)(z ’t)( )t1+aq) :
=0 0 Q.

If R<Q,(t) is a g-ball with center xz and t/4 <radR <t < &(x) then we
have

igf {If@—P@)dz < cIf (@) —K,* f(2)dz+ ;IK, *f(2)—1,,,(2)ldz
R R

where I1, . is the Taylor polynomial of K, * f of degree m—1 around xz. We
observe for zeR

o(x) ¢ t

4(2) ZT—% Z 5

hence
Xac-1y (¥) < Xaizm(2), 120.
Using (9), (10) we majorize (11) by
@ 1/q
c(j[ ‘ ( sup an(n/Zb)(z) I |A"'f(z)|dhdz) d ]q/a 1+,q)

0 Qx(l) yeR<Q\() R At/ZBB
radR €t

1/q
(I [#0H o T 140f1dR}] ] ,) .

An application of the Fefferman-Stein inequality (1) concludes the proof. m

CoRrOLLARY 2. Let Q be an (¢, 6, ¢)-domain and « > o
21, 1<p<ow, 1<qg< . Then

(Mj)[ { |47 (I dn]™ lw)l/«

AB,,

pars M>a/ag, 1

”f”ngm.P) ~|fl,+

p

Remark. For the homogeneous spaces Fr, analogues of Corollaries 1
and 2 are valid in (¢, o0, g)-domains.
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