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In recent times, much attention has been paid to the study of (bounded
linear) operators in Hilbert spaces and Banach spaces by means of geometric
quantities, such as entropy numbers, approximation numbers, n-widths etc.
The almost classical theory in Hilbert spaces may be found in the book by I.
C. Gochberg and M. G. Krein [G-K] while a comprehensive description in
the Banach space setting is given in the monographs by A. Pietsch [P], A.
Pinkus [Pi], and H. K&nig [K&]. In the eighties research activity in this area
grew considerably. A great deal of classical problems were solved, interesting
new developments started, and deep connections between Banach space
geometry and other areas of mathematics were discovered. The purpose of
this article is to present a survey of main results and current research
directions in entropy and s-numbers of operators in Banach spaces. With the
help of recent progress irff Banach space geometry various examples of special
operators are studied.

Throughout the paper E and F always denote Banach spaces. The dual
Banach space and the closed unit ball of E are denoted by E’ and %,
respectively. For the class of all (bounded linear) operators from E into F we
shall write Q(E, F), and for Q(E, E) simply L(E). Let us start by defining the
entropy and s-numbers we are going to use. Given an operator T € ¥(E, F),
the n-th entropy number is defined by

eo(T):=1inf le >0:3 vy, ..., y,€F such that T(#) = 'vi+e#:},
|

the n-th dvadic entropy number by

e, (T):=¢em-1(T),

[55]
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the n-th entropy modulus by
ga(T):= inf k'"g(T)

k=1,2,...

provided that the underlying Banach spaces are real ones, and
gn(T):= inf k'™ (T)

k=1,2,...
provided that the underlying Banach spaces are complex ones.
The n-th approximation number is defined by
a,(T):=inf{||T—L||: rank(L) <n},

the n-th Gelfand number by
co(T):=infl {|TIll: M <E, codimM <n},
where J% is the natural embedding from M into E, and the n-th Kolmogorov

number by
d,(T):=inf{||Qk Tll: N =F,dimN <n},

where QF is the quotient map from F onto F/N. Furthermore, we use the
notation s := (s,) for an s-number function. Given two sequences of positive
real numbers («,) and (B,) we shall write a, X 8, if a, < cf, and B, < da, for
some positive constants ¢ and d and all n=1, 2, ...

I. Inequalities between entropy and s-numbers

This section is devoted to basic inequalities between (dyadic) entropy num-
bers and s-numbers for operators. They may be interpreted as counterparts
to the classical Bernstein—Jackson inequalities for real functions in approxi-
mation theory. At first glance we observe that certain analogies exist between

entropy numbers of operators and the modulus of continuity of functions,

and between

approximation numbers of operators and the so-called Bernstein numbers
of functions.

Inequalities in which the entropy numbers are estimated by approximation
numbers are called inequalities of Bernstein type, while reverse estimates are
called inequalities of Jackson type. The first inequality of Bernstein type may
be found in [C1].

THeorem 1. Let sela,c,d}, 0 <p < oo, and TeQ(E, F). Then
sup k'?e,(T) < C(p) sup k'/?s,(T)

1€ks€n 1€k&n

for n=1,2,..., where C(p) is a constant only depending on p.
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Very recently A. Pajor and N. Tomczak-Jaegermann [P-T2] proved the
following reverse inequality of Jackson type.

THEOREM 2. Let 0 <p <2 and TeQ(E, H), H being a Hilbert space.
Then
sup k'?¢,(T) < C(p) sup k'?e,(T),

1€k<w 1Sk<awm
where C(p) is a constant only depending on p.

For operators T € (H, K) between (real) Hilbert spaces H and K one
may derive from a result of Y. Gordon, H. K8nig and C. Schiitt [G-K-S]
that

k k
sup 27" ([Ja(T)"* < e(T) < 14 sup 27"*([Ta(T)'™.
1€k<m 1 1€k<a 1

In the case of complex Hilbert spaces one has to replace 2™"* by 27",

From this inequality one immediately gets for Te@(H, K), 0 < p < o0,
sup k'/Pe(T) X sup k'Pay(T).

1sk<n 1<k<n

This equivalence is still valid for operators T € Q(E, F) acting between two
Banach spaces E and F with the property that E and F’ are of (Rademacher)
type 2 (cf. [C2] and [G-K-S]). We say a Banach space E is of (Rademacher)
type p, 1 < p < 2, if there is a constant C > 0 such that for all finite families
Xy, ..., X, €E the inequality

(E”mi1 & xl.”2)1v/2 < C('_; ”x._”p)l/p

holds, where (¢;) is a sequence of independent random variables, each taking
the values +1 and —1 with probability 4. The type p constant of E is
defined by 1,(E):=infC. As an example let us mention that the function
spaces L, (over an arbitrary o-finite measure space) are of type min(p, 2) if
1<p<o. For the Rademacher type min(p,2) constant one has

tmin(p.2) (Lp) < \/’_,

I1. Inequalities between entropy moduli and s-numbers

Entropy moduli are very convenient quantities to investigate compactness
properties as well as eigenvalue distribution of operators. First we formulate
some results given in [C-S2].
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THEOREM 3. Let se{c,d} and TeQ(E, F). Then

n~ (T se(T)" < go(T) < 48n(T] se(T)"
k=1

k=1
for n=1,2,...
Furthermore, if Te 2(H, K) acts between Hilbert spaces one may prove

the following inequalities:

(ﬁ ak(T))l/" <g.(7) < 12(” ak(T))”"
k=1 R

for n=1, 2, ... Related inequalities in the context of type and cotype of
Banach spaces may also be found in [C2] and [G-K-S].

Now we turn to some interesting formulas between entropy moduli and
approximation numbers. For this purpose we mention the following multipli-
cative property of the entrqpy moduli:

gn(ST) < g,(8) g.(T).

This implies by a little algebraic calculation that for T ef(E) the limit

lim g,/*(T%)

k—wo®

exists for each n, n=1, 2, ...
Owing to the estimate

d,(T) < a,(T) < (2n)"*d,(T)
we conclude from Theorem 3 the following formulas.

THEOREM 4. Let TeQ(E). Then

lim g2*(T% = ([ lima™* (TY)'™, for n=1,2, ...
i=1

k— o

In the next section we shall give a meaning to the previous limit
formulas in connection with eigenvalues.

Finally, in contrast to the previous formulas we check from the obvious
estimates

TN = g:(T) < ne,(T) < n||TYl,
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n=1,2,..., that for the single entropy numbers we always have
lim &}*(T*) = lim || T*||"/*

k = k—o®
for each n =1, 2, ... Thus the notion of entropy moduli was motivated also
from this point of view.

II1. Spectral properties and eigenvalues

We describe the spectral properties and eigenvalue behaviour of operators in
L(E), E being a complex Banach space in this section, in terms of entropy
moduli. At the very beginning let us briefly explain the notations we are
going to use. Given an operator T € £(E) consider the coset T+ X '(E) as an
element of the Calkin algebra {(E)/ (E), where ) denotes the two-sided
ideal of compact operators in £. The spectral radius of this element is called
the essential spectral radius of T, r(T). Let o(T) denote the usual spectrum
of T: then for every r >r. (T) the set

€88

\LeC: Aea(T), |A| =1}

consists of only a finite number of points, each being an eigenvalue of T of a
finite algebraic multiplicity. Thus we can order all eigenvalues 4 of T with
|A| > r.(T) in such a way that

M’l (T)l ? M'Z(’T)I 2 2 rcss(T),

where each eigenvalue is counted according to its algebraic multiplicity. If
there are only n (n =0, 1, 2, ...) eigenvalues with |A| > r. (T), then we put
fwe t ATV =4y (T =...=r. (T). So we have assigned to every Te¥(E)
the sequence (4,(T)).

In this way, as a consequence of H. Kdonig's (cf. [K&], [Z]) spectral
radius formula '

lim a,*(T*) = |4,(T)],
k -+ o0

we immediately get from Theorem 4 the result of E. Makai and J. Zemanek
[M-Z]:

lim g2 (T = ([TI (D)™
k—a 1

Both formulas are generalizations of the Beurling-Gelfand spectral radius
formula. Furthermore, from g,(T*) < g*(T) we get the inequality [C-T]

(l—] lll(T)l)”n < gn(T)
i=1
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which was the starting point for investigating the eigenvalue distributions of
various operators with the use of entropy quantities (cf. e.g. [C-K]).

IV. Inequalities between Gelfand numbers and ideal norms

For an operator T e ¥(/3, E), we deline
HT) = (| ITxI? dya(x))"/2,
R"
where 7, denotes the canonical (normalized) Gaussian measure on the

Euclidean space R" (cf. eg. [F-L-M]). For any operator T e ¥(l,, E) we
define the l-norm of T by

I(T):=sup I(TX): | X: 5 -L)i<1,n=1,2,...0.
The following striking result has been proved by A. Pajor and N.
Tomczak-Jaegermann [P-T].

THEOREM 5. Let E be a Banach space and let T € ¥(E, |,) with I(T’) < co.
Then

sup k'2¢,(T) < C-I(T),

1€k<w

where C is a universal constant.
Owing to the inequality in Theorem 1:
sup k'2e(T)< C sup k'Z¢(T),

1€k<aw 1€k<w
Theorem 5 is an improved operator version of Sudakov's minorization
theorem for Gaussian processes:
sup k'2e(T)< C-I(T),
1<k<mo
where C is a universal constant.
A converse inequality (called Dudley’s majorization theorem [D]) is

(T)< CY k™2 (T),
1

where C is a universal constant.

The result of A. Pajor and N. Tomczak-Jaegermann is closely related
with the following problem: given an n-dimensional Banach space E, a
Euclidean norm |||, on E and 0 <4 <1, find a subspace M of E with
dim M 2> 4n such that

lixll, < M, f(1=2)|Ix]] for xeM.
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Here M, denotes the Lévy mean of the dual norm of E:

M, = (flIxlI3 dp ()",
S

where p is the normalized rotation invariant measure on S:= {x€R"™
Il = 1}. This problem was considered by V. Milman, who proved in
[M] that f(1—-A) < C/(1—-4), where C is a universal constant. The estimate
was improved by A. Pajor and N. Tomczak-Jaegerman [P-T]: f(1-4)

<C/J1-A

In connection with Banach spaces of weak cotype 2 we should also refer
to the following result of V. Milman and G. Pisier [M-P]:

CoroLLARY. Let E be a Banach space of weak cotype 2 and T e ¥(l,, E).
Then

sup k'2q,(T) < C-I(T),

1sk<o
where C is a constant only depending on E.

Now we use a modified notion of /-norm by using, instead of Gaussian
variables, the Rademacher sequence (¢;). For Te¥(l5, E) we define

r(T):=inf(E|| Y. & T(e)||?)",
i=1
where the infimum is taken over all orthonormal bases (¢) of /3. The

following very recent result can be found in [C-P]:

THEOREM 6. Let Te¥(E, 1) (n=1,2,..). Then
k2 ¢ (T) < C-r(T)log"?(n/k+1)

Jor k=1,2,...,n Here C is a universal constant.

This inequality may be interpreted as a minorization theorem for the
Rademacher sequence (g;).

Next we give inequalities between Gelfand numbers and absolutely 2-
summing norms, ©,. Let Te¥(E, F), 0 <p <oo. We will say that T is
absolutely p-summing if there is a constant C such that for all finite families
Xy, ..., X,€E we have

(3 IT5IP)"” < Csup { S 1<% ) flall < 1},
i= i=1

We will denote by =n,(T) the smallest C satisfying this inequality. In [C-P]
one may find the following striking results.
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THEOREM 7. (i) Let E be a Banach space such that the dual E' is of
(Rademacher) type 2 and T eQ(E, F) with n,(T) < co. Then
sup k'2¢,(T) < Cry(E)my(T),

1<k<w

where C is a universal constant.
(i1) Let n=1,2,..., and TeQ(l}, F). Then

k2 ¢, (T) < Cm,(T)log"/? (n/k+1)
for k=1,2,...,n

As an immediate corollary of Theorem 7 (ii), we obtain for T e 2(I], H),
H being a Hilbert space, by using the “little” Grothendieck theorem:

n,(T) < C||T|| (where C < ./n/2 for real spaces and C < 2/\/1‘_t for complex
spaces), the following striking result [C-P]:

THEOREM 8. Let n=1,2,... and TeQ(l], H), H being a Hilbert space.
Then

k'?¢,(T) < C|| Tl log"/* (n/k +1)

for k=1,2,...,n where C is a universal constant.

In particular, for the identity operators I,: I{ =13 we obtain the
asymptotically optimal estimate of A.-Yu. Garnaev and E. D. Gluskin
[G-G] (cf. also B. S. Kashin [K]):

k'2¢,(1,) < Clog!?(n/k +1).

In this direction we also have to refer to estimates of Gelfand numbers for
identity operators between symmetric spaces obtained by Y. Gordon, H.
K&nig and C. Schiitt [G-K-S] via probabilistic arguments.

V. Integral operators

Since 1959 theorems about the entropy of embedding maps between function
spaces over compact metric spaces have been obtained. We mention the
work of A. N. Kolmogorov and V. M. Tikhomirov [K-T], G. G. Lorentz
[L], A. F. Timan [T], and S. Heinrich and T. Kilhn [H-K]. The main
purpose of this section is to.give some new results in this direction by using
the results of the previous sections. We determine the asymptotic behaviour
of entropy, Kolmogorov and Gelfand numbers of integral operators gener-
ated by Holder continuous kernels on metric compacta. The results will show
the interaction between functional-analytic quantities and the metric topolo-
gy of the underlying compact metric space. Following [H-K] we denote by
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(X, d) a compact metric space and by
£,(X):=1nf (¢ > 0: X has an ¢-net of cardinality < n}

the nth entropy number of X with respect to the metric d. As usual, C(X)
stands for the space of continuous functions on X equipped with the
supremum norm while C*(X) is the space of continuous functions f on X
satisfying a Holder condition

If (1) —f(x)l S M-d(xy, x2)*  with-0<a<1.
C*(X) is a Banach space with respect to the norm .

B |f (1) = f (x|
Il flle : = max {le:,‘? |/ ()l xlﬁfﬂx d(xy, x)* } '
x) #x2

The embedding map I,: C*(X) = C(X) of C*(X) into C(X) turns out to
be compact. The asymptotic behaviour of the approximation numbers,
Kolmogorov numbers and Gelfand numbers can be described by ([H-K]):

an (1) R, (1) R (L) K en(X).

S. Heinrich and T. Kithn [H-K] also gave a precise characterization for the
asymptotic behaviour of the entropy numbers. However, their result is rather
involved in the general case. Owing to the estimate e, (I,) > 1¢2(X) and a,(1,)
K er(X) we may easily check- by Theorem 1 the following characterization
([C-81)):
Let 0 <p <o0. Then
sup k'Pe (I)X sup k'Pei(X).

1<k<n 1<k<n
If one has the additional condition
& (X)<o(nk)°e,(X) for 1<k<n n=1,2,...,

with appropriate constants ¢ > 1 and ¢ > 0, then one may derive from the
previous formula that

el Ken(X).

In the case of a connected compact metric space (X, d) the previous
additional assumption is fulfilled with ¢ = 16 and ¢ =1 (cf. [H-K]). In this
way the original result of Timan [T] is recovered. But also the case of a
compact metric space (X, d) with ¢,(X)Xn~?, 0 <y < o0, is comprehended
by this condition, since then ¢, (X) < o(n/k)”¢,(X). This condition does not
say anything about the connectedness of metric compacta. We refer to the
cube X = [0, 1]V of the N-dimensional Euclidean space whose entropy
numbers satisfy ¢,(X) X n~? with y = 1/N on the one hand, and to Cantor’s
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disconnected ternary set X < [0, 1] on the other hand, whose degree of
compactness can be described by ¢,(X)Xn~? with y = log 3/log 2.

Now we turn to entropy, Kolmogorov and Gelfand numbers of integral
operators acting between L, spaces which can be factored through the
embedding map I,: C*(X) = C(X). The result is much stronger than one
would expect. Indeed, the entropy and s-number behaviour of the integral
operator is influenced not only by the entropy and s-number behaviour of 1,.
Let u be a positive Radon measure on X with u(X)<1 and K(x, y) a
continuous kernel on X x X which belongs to C*(X), for all yeX and fulfils
the condition

sup|IK (-, Ylla = IK|lg, 0 < 0.

Then the integral operator
(T ) () 1= [K(x, y)dp(y)
X

generated by K(x, y) can be regarded as an operator
Y Li(X, @) = C*(X)

from L, (X, y) into C*(X) with a norm estimate

TR < 1K, -

Unfortunately, we are not able to determine the degree of compactness of the
operator T{: L,(x, y) = C*(X). But the situation changes if Ty, is
considered as an operator from L, (X, p) in L(X, y). We start with the
following statement.

THEOREM 9. Let (X, d) be a compact metric space, u a positive Radon
measure on X with u(X) < 1, and K (x, y) a continuous kernel on X x X such
that K(-, y)eC*(X) for all yeX and ||K]||,,» < 00.

Then the Kolmogorov numbers of Ty ,€¥(Ly(X, ), Ly(X, w), 2<s
< o0, satisfy the inequality

d2n— 1 (7;(.‘4) < C .81/2 ”K”a,w n- 112 8:(X)’
and the Gelfand numbers of Ty, € (L, (X, p), L,(X, p), 1 <r <2, satisfy the
inequality

C2n-1(Ti) < C-r'12|K|lg, 0 n™ 2 3(X),

n=1,2,..., where C is a universal constant and v’ is defined by 1/r'+1/r = 1.

We briefly sketch the proof. The key to the first estimate is the
composition diagram
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Te.ee
Lix,e) = Le(X,p)
IZ.'I l I Im.s
Lyl Xx,p) cix).
Tow I,
ce(x)

where I, denotes the embedding map of L,(X, u) into L, (X, u) and I,
the embedding map of C(X) into L,(X, 4. The dual of I, is absolutely 2-
summing with n3"/(I, ,):= n,(I%,) < 1. Accordingly, the dual of the oper-
ator Ty, =1,,1, T 1,, turns out to be absolutely 2-summing so that the
generalized approximation numbers a, (Tx ,; 75™) with respect to the dual
absolutely 2-summing norm make sense:

a (Tx s 75™) = inf {n3"* (Tx,, — L): rank (L) <k}.

They satisfy the estimate
@ (Tg,us 75™) < H o ol @ UM N TN 23 (1 2,4).

Since 73 (I1) < 1, TR < 1Kl 00 I wgll < 1, and a,(J) < ge(X), we ob-
tain
o (T 5 75™) < 01Ky, o0 85 (X).
The reiteration theorem (cf. [C-S1]) together with the dual version of The-
orem 7 (i) yield by a little calculation
d*Zn— 1 (T'K.u) S Cs1/2n—1/2 an(TK,n; n%ual) g chl/zllK“a,oo n- 12 8:(X)-

The second assertion of the theorem may be treated similarly.
From Theorem 9, Theorem 1 and the method employed in [H-K] one
may derive the following statement.

THEOREM 10. Let (X, d) be a connected compact metric space. Then, for
Ten € 2(L(X, @ L(X, W), we have

sup d(Tx )X sup e, (Tx,) Rn Y2e5(X)
Kl o €1 1Kl g, €1
Null <1 Null €1

provided that 2 <r < oo, and
sup Cu(Tx, )X sup e (Tx,) Xn~2er(X),
] 1

1Kilg, %1 Kllg, o<
llull €1 el €1

provided that 1 <r < 2.

5 — Banach Center t. 22
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Very recently the behaviour of the Kolmogorov numbers in case
Tk.. €Q(C(X), C(X)) has been treated in [C-H-K] (cf. [C-S2]). Besides,
there one can also find connections with the metric dimension of the
underlying compact metric space (X, d). Moreover, the behaviour of the
Kolmogorov numbers of positive-definite kernels over metric compacta
satisfying a Holder condition was also determined.
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