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In function spaces of Besov-Triebel-Lizorkin type B}, (R") and F;  (R")
norms can be defined by a resolution of unity {;(£)}s2, in R} which is
connected with the symbol ||? of the Laplacian — 4.

In this paper we consider decompositions of R} x R} which are induced
by symbols a(x, £) of appropriate pseudodifferential operators. This means
that we may have different resolutions {¢;(x, £)}2, in R} for different x eRj.

In the special case that the decomposition is induced by an elliptic
pseudodifferential operator we will prove that such systems {¢;(x, &)}, of
symbols of pseudodifferential operators define equivalent norms in the usual
function spaces B} ,(R") and F;,(R").

In Section 1 we recall some facts about classical pseudodifferential
operators (see also [3], [6] or [7]). We use the notation of [3].

Section 2 deals with the proof of a vector-valued multiplier theorem in
L2(l) for pseudodifferential operators.

In the last section we define systems of pseudodifferential operators
{oj(x, £)}2 o belonging to an elliptic pseudodifferential operator and prove
that the norms defined by these systems are equivalent norms in the usual
function spaces.

1. Basic properties of pseudodifferential operators

Let p(x, ) be a polynomially bounded complex-valued function defined on
R} xR;. The pseudodifferential operator P(x, D,) with symbol p(x, ¢) is
defined by

P(x, DJu(x) = 2m)~" [ p(x, ) (Fu)(§)d¢  for ueS(R")

16 — Banach Center t. 22 [241]
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where S (R") denotes the Schwartz class and (Fu)(¢) = je“"u(y) dy denotes
the Fourier transform of w.

A function p(x,¢) belongs to the class S7; (—o0 <m < oo,
0<o<pe<1,d <1)if for any multi-indices a, B there exists a constant c,z
such that

PG (x, O < g <EYm7I* for (x, &) €R% xR,

where p@(x, &) = B Dp(x, &), oF = dlae}'...o6", DE=(—i)# & and
& =(1+(¢>)"2

We set §7* =), S,s. It is easy to see that (1, Sy s = (). ST, for any ¢
and 9.

The pseudodifferential operator P(x, D,) with symbol peSg'; maps S(R")
continuously into itself and can be extended to a continuous operator from
S'(R") into S'(R"), the space of all tempered distributions on R". The
mapping p(x, ) = P(x, D,) is a bijection.

For peS;, we define the seminorms |p|(%, by

(1) plimy =  max  sup {[p{§) (x, &)| ¢y~ mHelal—dlEh
lal SLIBI <k (x,8)

THEOREM 1. Assume that 0<d <po<1. Let P,(x, Dx)eS:,’, and
Py(x, D,)€S;3. Then P(x, D,) = P,(x, D,) P,(x, D,) belongs to Sp3* ™.

For the symbol p(x,¢) of P(x,D,) and for any N we have the
expansion formula

1 1(1_ )N 1
@ px, )= Y PP prw(x. O+N Y [—"r,5(x, 0 d9,
l:t=NO

|a|<~°‘ 7!
where
3) rs (X, &) = Os2m 7" [ [ e p{ (x, E+ W) payy (X +y, E)dydn.
{r,s)isi<1 is a bounded subset of Spi*™2 "% pyrthermore, for any
integers (I, k) there exist constants c, ¢’ and integers I, k' independet of 9

such that X
(m) +mqy—|a|(¢— &) (my) (m3)

4 1P Pawlany < clpila+ianp P2l jap
(my +mgy—|yl(e—6)) (myq) (mj)

(3) ,r7,3|(l,k) <c |P1|(l'.k) |p2|(l,k2')'

The theorem gives an estimate of each term of the sum (2) which is
obtained by the composition of two pseudodifferential operators. Especially
the estimate of the remainder term will often be useful. The proof is a direct
consequence of the definition of the seminorms and of [3] (Section 2); see
also there for details.

THeOREM 2. Let P(x, D,)e€SY; and 6 < 1. Then for all p with 1 <p < b
there exist integers (I, k) and a constant ¢, all independent of P(x, D)), such
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that
(6) |P(x, DJu| L)l < c!pl(Ph Ilu| L,
for all ueL,(R").

This was proved first by Illner [2] in 1975. Later for example Bourdaud
[1] and Nagase [5] considered non-regular symbols and got weaker condi-
tions on p(x, &).

CoroLLArY 1. Let P(x,D,)€ST; 0 <1, 1 <p<oo and —oo <t,m
< 0. Then there exist integers (I, k) and a constant c such that for
ueH, ™(R"

™ P (x, DyulHyll < clplid llu| Hy ™.

Again the constants are independent of P(x, D,) and u. H,(R") denotes the
Bessel potential spaces.

Let A(x, D,)eST; and d < 1. We say that A is elliptic of order m if there
exist constants ¢’ > 0, c >0 and R > 0 such that

8) " < lalx, Yl s c<¢H™  for [ = R.

DeriniTION 1. Let N be an integer. A symbol a(x, £) induces a variable

covering {QY°}2, of R} xR? by

W(x, &): la(x, &) <2/*N+) if j=0,1,..., N—1,

N.a _
Or 4= { x, & 27N <la(x, O < PN j= NN+

J is a constant which is fixed in such a way that |¢| < R always implies
(x, &) eQp”.

In view of (8) we can find such a J for every elliptic pseudodifferential
operator. '

Variable covering means that at different points x€R} we may have
different coverings of R, in contrast to the classical dyadic coverings of R}
which are the basis for the definition of the spaces B3, (R") and F;,(R").

The definition is a special case of Definition 2.2 in [4] where variable
coverings of R} xR} were considered also for hypoelliptic symbols of the
class S(m, m'; 0). S(m, m’; §) denotes the class of all symbols a(x, £) which
fulfil Condition (H) in [3], p. 83, with the parameters g =1, <1 and
O<m <m.

2. A vector-valued multiplier theorem

Let 0<p<x and 0 <g< . If Q= 1Q,)%, is a sequence of compact
subsets of R", then we denote by

LR() = w: u=u}2, < §'(R"),supp Fu, < Q, if
k=0,1,2,... and |lu | L,(I)]| < o0},
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where

N | L, (1) =([(§ |ty (X)|9)79dx)"?  (modified if q = o0),

RN k=0

an L,(l)-space of analytic functions.

The following theorem generalizes a Fourier multiplier theorem of
Triebel ([8], 1.6.3) to the case of pseudodifferential operators and will be
useful in the next section.

THEOREM 3. Let 0 <p <00,0<g < 0, let {d}2, be a sequence of
positive numbers and {(Q,)2, a sequence of compact subsets of R" with
Q < & g <d,). Let \m(x, E)}Zo =S ® be a sequence of symbols with
(10) suppmy, < {(x, &): (x, {) €R} xR} and edy < |¢] < d}
where ¢ is a fixed real number, independent of k.

If | is an even natural number with | > n+ n/min(p, q), then there exists a
constant ¢ such that

(11 1My (x, D) uy | L, (Il < ce™"sup |my|{%, llu | Ly (]
J

for all systems {u};%o€L2(l). Here |mj|{,, are the seminorms in S, and
M;(x, D,) are the corresponding pseudodifferential operators.

Proof. Because the symbol m,(x, &) belongs to S~ * it is easy to verify
that the corresponding pseudodifferential operator M, (x, D,) has the C*-
kernel representation

M, (x, D)u(x) = [Ky(x, x—y)u(y)dy for ueL,(R"
where
(12) Ki(x, w) =(2m)~"fe™ m(x, & dE,

and for any multi-indices f, y and natural numbers /' the kernel K, (x, w)
satisfies

sup { w'| 88 L K, (x, W)} < oo.

(x,w)

On the other hand, we have {u,} eL?(l)) which implies , €L, (R") for all k.
Now in complete analogy to the proof of Theorem 1.6.3 in [8] we get
for 0 <r <min(p, q)

I(Mk (x’ Dx) uk)(x_z)l
(1 (W)

<
P T M = W)™

JIKe(x—2, x~z—y)| (1 +]dy(x = y)"")dy
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and this leads to

' su lug (w)|
P T 1d, = wy"

X Sup“Kk(x—Z, x—z—y)|(1 +|dk(X—y—Z)|"/')dy

(13)  IMi(x, Dy) (%) <

where the constant ¢’ is independent of x, k, d, and of the functions u,
and m,.
It suffices to estimate the second factor in (13) uniformly for arbitrary
x€R:. Then the first factor will be estimated by a maximal inequality.
Let [ be an even natural number with | > n+n/r. So we obtain in view
of (12) '

(14)  sup [IKi(x—z, x—z =) (1 +|di(x—y—2)|"")dy

(x,2)

< ¢ fsup| fe™ my (x—z, dn) (1+ 1wl dn|(1+ W) (1+wl) " dw.

(x,2)

Furthermore, if y is an arbitrary multi-index with |y| = I, we get by (12) and

(10) the estimate
(15) [fe™ m(x—z, dym)w” dn| < |[*d} (Dym)(x—z, dn)dn|

ce™! lmklﬁz‘?’o)

n N

where the constant c is independent of x, z, w and m,. Since | > n+n/r (11)
is now an immediate consequence of (13), (14), (15) and the maximal
inequality in [8], Theorem 1.6.2.

By a small modification in the estimate (14) we can prove, in complete
analogy to [8], 1.6.3, the following assertion.

COROLLARY 2.
IMi (x, D) u | L, (Il < csuplm;(x, d;€) |[H3 (R| Lo (RN N | L, (I
J

for all systems {u}o€L2(l), all sequences of symbols {m(x, &)}2,
< 8™ % with |lm(x, )|H5(RY)| Lo (Rl <o and p > n/2+n/min(p, g).

3. Equivalent norms in F},(R")

Let a(x, £) eST; be the symbol of an elliptic pseudodifferential operator of
order m and 6 < 1.

DeriniTioN 2. We say that a system [9;(x, £)} 2 belongs to the symbol
a(x, &) if for an arbitrary fixed N and all j=0,1, 2,... the following
conditions are satisfied:
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(i) ;€C®(R} xR and ¢;(x, £) > 0.
(ii) supp @; < Q¥“.
(iii) @3 (x, O < cqp <€)7+ ¥ for any multi-indices a and B, where the
constants c,; are independent “of ;.

(iv) Y @;(x, &) =c®*>0.
j=0
It is easily seen that there always exist non-trivial systems ,¢;(x, <)|/Zo
(non-trivial means that the symbol ¢;(x, £) does depend on x).
By assumption (ii) and (iii) we get @; €S~ *. The following estimates for
the seminorms of ¢; are simple consequences of (ii), (iii) and (9):

(16) 015 < Cpog 2774

for all real numbers » and with constants c,, independent of j.
Also, from (iii), respectively (16), it follows that the seminorms of the ¢;
are uniformly bounded in S? ;. Together with (ii) and (iv) we get in this way

J
Y @i(x, & =" in S, weakly as J = c.
j=0
The weak convergence in S{ ; and Corollary 1 imply that for every v e H3(R")

J
@j(x,D)v—>c*v in H,(R") as J >
j=0

J
(see also [3], Ch. 3, §7, where this fact was proved for L,(R"). But in view of
Corollary 1 there is no difficulty in carrying over the proof to the case 1 < p
< oo and the Bessel potential spaces for arbitrary real s (see [4], Lemma
2.1).

DeriniTION 3. Let 1 <p<oo, 0<g<< o0, —00 <s<oc and let
0i(x, &))<, be a system belonging to a(x, £). We define

B3%(R" = {u: ueS'(R") and |ju| B}3|I® = l|23j<pj(x, Dx)ullq(Lp(R"))ll <o},
F5°(R™ = {u: ueS’(R" and |ju| F34|1° = 112¥ ¢;(x, D)u| L,(R", L)|| < o0}.

-4

Remark. Let a(x, &) = (&), so that {Q}¥“}2, is a fixed covering of
R} xR¢ which is independent of R}. Furthermore, suppose that the system
loi(x, ©)}2o belonging to (&> is also independent of x. Then ¢;(%)
= @;(x, &) can be interpreted as a Fourier multiplier and Definition 3 is the
usual definition of Besov-Triebel-Lizorkin spaces. As far the notation used is
concerned we refer to [8], 2.3.

Remark. The definition of B}4(R" is a special case of Definition 3.1 in
[4] where we introduced and studied in detail Besov spaces of variable order
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of differentiation based on more general hypoelliptic symbols a(x, &)
eS(m, m’; ). In the case of elliptic symbols a(x, &) of order m it turns out that
the spaces B;3(R") coincide with the usual Besov spaces B,%(R") ([4],
Corollary 3.3).

Here we have also defined spaces of Triebel-Lizorkin type for elliptic
symbols and in view of Theorems 2 and 3 we will prove for the spaces
F3%(R") a similar result to the one obtained for the Besov spaces Bj5(R").
But in order to prove this we need a lemma. This lemma contains a first, not
necessarily sharp embedding of F;;5(R") in the scale of Bessel potential spaces

and will be useful in the last step of the proof of Theorem 4.
LEMMA. Let-1 <p<oc, 0 <qg< o0 and —oo <s <oo. Then
F,4(R" < H,(R")
if x <sm.

Proof. Step 1. By the monotonicity of the [,-spaces and by a simple

calculation we get the first elementary embedding
(17) F3a(R" < B3 (R")

if l<p<oo,0<g<oand —0 <5 <s <.

Step 2. Let 1¢;(x, {)}j2, be a system belonging to the elliptic symbol
a(x, &) with ¢ =1. '

We introduce a second function system ¥ ({)}2o © S(R") with:

@7 (&) =1 on suppe,,

@ (&) < c, ¢~ for all « and c, independent of j,
[ suppo} < QY% = {(x, &): (&) < 2HUTIIM

if j=0,1,...., N—1,
supp @¥ < QFax = {(x, &): 279HUTNIm < (£ < Qa+UHRIm)

if j=N,N+1, ...

(18) 1

In view of (8) there always exist constants d' and d, both independent of j,
such that QF* c QY** for all j. Then by Theorem 1 we obtain

@} (DJ @j(x, D,) = ¢;(x, D)+ R;(x, D,),

(19) .

(pj(xs D;\') (P_, (D\-) = (pj(xv D\)
and
(20) ’ |"j|=mq < Cikpy 270

for arbitrary real numbers u and v where the constants ¢,,, are independent
of j.
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This yields for J =0,1, 2, ...

J—-1 @®

(21) u= (pj(x’ Dx)u+ (p;(Dx) ¢j(x9 Dx)u—RJ(x: Dx)u
ji=o j=d

with

22) R'(x, D) = ¥ R(x, D).

i=J

By (20) we get the convergence of the infinite sum (22) in S% , for arbitrary p.
The seminorms of R’(x, D,) can be estimated by

(23) P18 < cwu 27’

where the constants c,, are independent of J.
Step 3. Let s <0 and let » < sm be fixed. Then by Corollary 1 and (23)
with u =0 we have

IR? (x, D,)| L(H}, HPIl < ¢, 277

This implies that the inverse operator of I+ R’(x, D,) exists and it also
belongs to L(H}, H}) if J = Jo(x, p). I stands for the identity.

Step 4. Let s’ = x/m, ueB;{(R" and

v_={q’j(xa Dx)u lf.’=0, 1,...,‘.’0,
4 (P‘T(Dx)(pj(x’ Dx)u ifj=J0+1,J0+2,...

As a consequence of Corollary 1 and (18) we see that
”q);k (Dx) (pj.(x’ Dx) u | H:” < cxp l‘P;'{tjk,)‘) ”(pj(x, Dx) u ILp”
< 2% (lg;(x, D u| Lyl

lf_] = J0+1, J0+2, cen
A trivial estimate gives

x, 1 4=J05 4js'
lps(x, DJul Hyll < ¢'277° 2 |lg;(x, DJu| Ll
if j=0,1,...,J,. c and ¢ are independent of j. We obtain from these two
estimates
d —-Jos’ .
Y. llv;| Hyll < max(c, ¢'2 °%)||u| B35l
j=0

Together with (21) this implies that

[« o]
v=) v;=u+R’'(x,D)u
j=o

belongs to H%(R").
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By step 3, the same must be true for u and we get
llu| Hyll < "I+ R~ L(H;, H) llu| B;11I°

if s<0,% <sm and s’ = »x/m.
Now the assertion of the lemma follows in view of (17).

Step 5. In the case s >0 the proof is simpler. Let 0 <x <sm and
s’ =x/m. If ueB:;{(R" then it is straightforward to see that

ZII(P,(x, Dyu| L)l < cllu] By 1II°

is absolutely convergent in L,(R". In this way we get ueL,(R") and
lul LIt < cllu| B
On the other hand, it follows from (19), (20) and Corollary 1 that
Z llp;(x, D,)u| Hjl

i=

[0 o]
<Cxp(z I(Pﬂ(tk))”‘l’;(x Dx)“le||+ Z Ir I(lk))IIuILp”)
j=0

j=

<c Y 27l@;(x, DJul Lyli+c llul Ll
j=0
< ¢”llu| BRI
We get ueH,(R") with
flul Hll < ¢’ |lu| B:7II?
and again the assertion of the lemma follows in view of (17).

THEOREM 4. Let {@;(x, )} 2, be a system belonging to an elliptic symbol
a(x, é)andlet1<p<oo 0<g< o0, —0 <s <.

Then the spaces F}3(R") and F} (R) coincide and there exist constants
¢ >0 and ¢ > 0 such that for all ueF g (R

¢ llu| Fpall < llul FEell® < cllu] F3Lll.

Proof Step 1. We assume that |;(x, £)}2, is a system with ¢ =1 and
10¥ (©)} 2 is a function system as described in the last proof. Hence (18)23)
hold.

t (Y, (&)} o = S(R" be a classical dyadic resolution of unity, i.e.
suppy, < (& 2T < ¢y <2 for k=1,2,...,

2P Ol<c, and ) (@) =1
k=0
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#(k) and .¥'(j) denote the index sets
F (k) = {j: max(0, k—1-d)ym—N) <j <(k+1+d)m+N},
A ()= tk: max(0, j—Nym—d' —1) <k <(j+NY/m+d+1).

Then for any fixed k we obtain

(24) suppy, Nsuppof =@ if j¢ 5 (),
and for any fixed j we have
(25) supp ¥, Nsuppof =@ if k¢ 7 ()).

Step 2. Let ueF}7(R"). As in the classical case we get
(26) “ :2js (Pj(x, Dx)u}JZOILp(Iq)I'
<c|{ ¥ loj(x, D) 2% (DI ul [ 0| L, (L)]].

Jje 7(k)

Let u, = 2™y, (D)u, d, = 22X 149 (¢’ 1 2M)1™ and let mi!>, be a finite set
of systems. For fixed k and i =1, 2,..., [2N+(2+d+d')m] we have

mi (x, &) = Ojk.iy (X, ¢)

where j(k, i) runs over the index set ¢ (k).

By Definition 2, {¢;.(x, &)}, fulfils (10) and the seminorms |4 ,|{h)
may be estimated uniformly for all kK and je€ ¢ (k). Now Theorem 3 applied
to (26) shows that

lulFRall® < cllul FRgll.
Step 3. Let ueF}%(R". Then we get by (19), (21) and (25)
Q7 N2 (DI uii o | Ly (I
<c|{ X WD) 2”97 (D) 9;(x, DJul[iZ ol L, (1)

ke X (j)
+¢'[|[{2% Yy (D) RO (x, DJulZo| L, (III.
We can apply Theorem 3 only to the first term on the right-hand side of (27).
For the second term the assumption that |R%(x, D,)u! >, belongs to a space
L2(l,) of analytic functions is not fulfilled.

It is then obvious that as in the previous step we get from (27), by
Theorem 3,

llu | F2I
< c”2js ‘Pf (Dx) (pj(x’ Dx)ul Lp(lq)“+c’”2ks '//k (D\) Ro(x’ Dx)ul Lp(lq)”

-
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Now by (19) we obtain
(28)  llul Fimll < c(lul Fygll* + 112 Ry(x, DJul LI+
+12 Y (DI RO(x, D] Ly (U)]).

Step 4. The proof will be completed by showing that the remainder
terms in (28) can also be estimated by the norm of u in F}5.

By a simple calculation, Corollary 1 and (20) with y =sm—¢, v=s+2¢
and fixed ¢ > 0 we obtain

12 R;(x, D)u| L(I)ll < cllu] HZ™*|].
Now from the embedding proved in the lemma it follows that
12 R;(x, DJu| L, (Il < ¢’ [lu| F35ll°.

pq

The third term in (28) may be estimated in the same way and so the proof is
complete.

Remark. We cannot carry over this proof to the case 0 & p < 1. Since
the remainder terms in (28) do not fulfil the assumptions of Theorem 3 it is
not possible to estimate them by this theorem. So we need Corollary 1 and
Theorem 2 in the last step of the proof. But in the presented form they are
only true in the case 1 < p < 0.
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