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In this note we estimate the LP-error of trigonometric interpolation for
bivariate functions of bounded variation in the sense of Hardy—Krause.
Especially we consider blending interpolation and Lagrange interpolation
with respect to uniform meshes. Some of these results can be given with
explicit constants and can be extended in a simple manner to the multi-
variate case.

1. Introduction
Let BV be the set of all 2n-periodic real-valued functions f: R = R with

bounded variation on I = [0, 2r]. By Vf we denote the total variation of f
on I. Further, let

1/
(lef(x)l"dx) ’ if 1<p<oo,
(1) Ifll, = § \2* 1 ,
sup|f (x)| if p= 0.

xel

A real-valued bivariate function f: R? = R, 2n-periodic with respect to both
variables, is said to be of bounded variation on Q = I? in the sense of Hardy-
Krause [1] if f(-, y), f(x, -)€eBV for some fixed x, yel and if

u—-1 v—-1

Hf =sup Y Zl 14f (x> nml

31+32 k=1 m=

is finite, where
(2) B
3) 32:
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are arbitrary decompositions of I and

Af s M = [ (ks 1 Mms 1) =S v 15 M) =f Eis M+ 1) +S Cis M)

The class of these functions will be denoted by HBV. If f e HBYV, then f (-, y),
f(x, -)eBV for any fixed x, y €l. The values V; f(y) and V, f(x) are defined
as the total variations of f(-, y) and f(x, ) on I, respectively. For f e HBV
we also have Vi f, Vo f€BV (see [1]). Hence

Vif=supV f(y), V'f=supV,f(x)

yel xel

are finite. Analogously to (1) we denote the norm of a bivariate function f by

1/
(41: {§1f (x, y)I’dxdy) T if1<p <o,

sup If (x, yl if p=o0
x,y)eQ

4) WM, =

Now we introduce interpolation operators with respect to equidistant
nodes

X = Y = 2kr/(2n+1), k=0,..., 2n,
by

2
Lf(x) =+— Z S (x) Ky(x—x)
in the univariate case and by

Ll f(x’ y) z f(xko y)K (x xk)

m+1,5

2
L, f(x, y)-m Z [ (%, V) Ky = Ym),

Lf(x,y)=LyLyf(x,y) =Ly Ly f(x,)

4 2n  2n
=g L, LS e v Kalx =5 K=
k=0 m=

in the bivariate case, where

K,(x) =4+ Y coskx

k=1

is the nth Dirichlet kernel. Here L is the bivariate Lagrange interpolation
operator. The blending interpolation operator [2] is given by

B=L,+L,—L.
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Further, we consider for 1 < p< oo and a function f the moduli of
continuity defined by

o(f, p, )= sup If(-+B)—=fCl,
0<h<s

in the univariate case and by
dj(fv P, 6) = Sup ”If('+v’ .+W)_f('+v’ ')—f('9 '+W)+f(', ’)l”p

0<v,w<d

in the bivariate case.

2. Univariate interpolation
. L]

The proofs of our theorems are based on known results of univariate
interpolation, which we briefly - recall here.

TueoreMm 1 ([S], [6)). If f€eBV and 1 < p < o0, then for all n
Nf=Lfll, < Vf(2n+1)" P A(p, m)

¢

with
20+4.2Inn ifp=1,
Al(p, ) < <83+5(p—-1)"' ifl<p<2,
7.6 if 2<p <.
The order of the estimate is best possible. This is shown by the example
1/2 if x=0,
gix) =<0 if 0 <x<2n,

g(x+2n) if xeR.
A simple calculation yields

1 con~llnn if p=1,
s —Lgll, = —— K I, > :
(5) lg=Lally = 2,7 WKl {czn-w if 1 <p<oo.

Further, ffom the method of proof in [7] we get the estimate
b< sup (2n+ DV If- Ly <4 |
for all n.
THeOREM 2. If the derivative f® €BV, r > 1, and 1 < p < o, then for all n

Ci,lnn ifp=1,

6 _ SV") -r—1jp, o



312 J. PRESTIN AND M. TASCHE

Proof. From [3] (see also [6]) we obtain
Cilnn ifp=1
_ <n’ (r) ’
() f=Lfll, < n""(f7, p, 1/n)- { c, f1<p<am
and
o(f?, p, 1) S VfOn~lP u
The order of (6) is again best possible and in the case 2 < p <0 we
have C, < 13.75 [4].
THeoreM 3. If f®eBV NC, r20, and 1 <p < o0, then
Nf=Lfll,=0(m™""'?) as n—>oo0.

Proof. The assertion is well known for p = c0. Hence let 1 < p < o0 and
0 <t <1—1/p. Then we use the inequalities

W= LS, < I1f =LA L f= L1,
in the case r =0, and
o(f?, p, 1/n) S o (f?, o, 1/n) o (f®, p—tp, 1/n)*

in the case r > 0. The assertion now follows from Theorem 1 and (7). =

3. Preliminary results

LeEmMA 1. If feHBV, 1 < p< oo and 0<t<1-1/p, then for all n
@(f, p, 1/m) < n” 2P (Hf)' "' &3 (f, o0, 1/n)'.
Proof. (1) The case p = oo is trivial. Because of

I < A AN

for | <p <ooand 0<t<1-1/pwe can assume in the following that t = 0.
(ii) By defining H,,,c similarly to Hf, but with respect to the rectangle
[a, b] x[c, d] instead of Q, it is sufficient to show, for 1 < p < oo, that

| [(HZ3 "+ ") dxdy < vw(Hf)P.

This follows from
HH‘*”*‘"dvdy— H(H**”w H§o™ — Hg%™™ + Hy%) dxdy

2r+w 2x+v 2r 2r+v 2n+w 2n 2r 2x

=(§ [T =1 1 -1 [+]][)Hgbdxdy

w v 0 v w 0 [V ]
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2r+w w 2x+v v

= zj; —(5))( zj; ~£)H’6:{>dxdy

2z+w w 2r+v 2n+w 2r+v

=( [ —[) [ Hygdxdy= | [ Hi%*dxdy
2x 0 2x 2r 2x

=uvwHf. =

LemMMA 2. Let f e HBV. Further, let 3,, 3, be arbitrary decompositions of
I of the form (2), (3) respectively and let

u-1
hl (31’ y) = Z If(¢k+l’ y)—f(ék’ y)la
k=1

v—-1
h2(32’ x) = Z If(x9 Nm+ l)_f(xa r’m)l

m=1

Then for x, yel
Vif() =suphy(3:,y), Vaf(x)=suph,(3;, x).

3 32

Proof. We only consider V; f(y) for yel. Let ¢ > 0 be arbitrary given.
We set h(y) = H3%’. Since V, f, he BV, we can find a decomposition 3, of the
form (3) so that for every yel there exists an 7, €3, with

MOV =Vif(n)l <&, |h(y)—h(na)l <e.
Now we choose a decomposition 3; so that for every m=1,...,v

Vi f () < hy (31, nm) €.
By construction for every yel there exists an 7, €3, so that

lhy (315 Y)— 11 (3es 1)l S R (Y)—h (0| <e.

Hence we obtain

hi (31, Y S VL f () S Vi f (M) +8 < by (345 M) + 26 < By (34, ¥)+ 36
This completes the proof. o

4. Blending interpolation

Here we give estimates for the error ||| f— Bf]||, of blending interpolation.
Using the representation

J=Bf =(E—-Ly)(f-L.f),

where E denotes the identity, we derive the following results from those of
Sections 2 and 3.
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THEOREM 4. If feHBV and 1 < p < o, then for all n
lf—=Bflll, < Hf 2n+1)~ %7 A(p, n)?
with A(p, n) as in Theorem 1.

Note that the order of this result is again best possible. This is shown by
the example (see (5))

1/4 if x=y=0,
g(x,y) =<0 if (x, y) €[0, 2m)%\ {(0, 0)},
g(x+2r, y+2n) if (x, y)eR?,

( .

More generally, but without explicit constants we obtain

THeOREM 5. If the partial derivative f"® e HBV, r,s 2 0,and 1 < p < 0,
then for all n

=B, < CEIf ) n""'z"’-{:"z " ; e
For 2< p <, ¢, <190.
THeoReM 6. If f*9eHBV NnC, r,s>0, and 1 < p < o0, then
Ilf=Bflll, =o(n™""*"*?) ¥as n > 0.
Proof of Theorems 4-6. From
If=Bflll, < IKE—Ly)(f—L; N,
it follows by Section 2 that
litf=Bflll, < Dy IVy (f "2 =L, f*),

with some D, = D, (p, n, r). We note that (L, /)"?® = L, /"9 and that D,
can be specified from Theorem 1 or 2. Because of Lemma 2 we have

V(2= Ly £, = sup Zi IE =L (50 G 1 )= G -
If we apply again Theorem 1, 2 or 3 to
SO%C41s )= ), k=1, .., u—1,
we finally obtain
lf—BfIll, < Dy D, Hf "



TRIGONOMETRIC INTERPOLATION FOR BIVARIATE FUNCTIONS 315

with some D, = D,(p, n, s), which can be specified from Theorem 1 or 2.
The modifications needed to verify Theorem 6 are obvious. m
Note that we can also prove Theorems 5 and 6 beginning with (7) and
applying Lemma 1. This yields, for f"?eHBYV, rs>0, 1 <p< o and
0<t<1-1/p, the more general inequality

ILf=Bflll, < Cpn~""*"2P(Hf "' "' @3 (f"?, o0, 1/

5. Lagrange interpolation

Now we describe two possibilities of proving error estimates for Lagrange
interpolation.
‘A first way is to apply the inequality

W= Lf U, < Wf—= Ly Sillp+ 1L =Lz flllp+ 01— BSlll,-
Using Theorems 1, 2, 4 and 5 we immediately obtain the following results.
THeoreM 7. If feHBV and 1 < p < oo, then for all n

£ L11ll, < A(p, my@n+ 1)~ Y21V, fll,+ 11V, fll,+ A(p, m) (2n+1)~ "7 HY)
with A(p, n) as in Theorem 1.

TueoreM 8. If f"9e€HBV, r,s 20, and 2 < p < o0, then for all n

13 50V, OO, U2 fO9N, 13.75HFES
mf—Lf”Ip ( ln,. p 2"" p+ n,-+s+l/l’ ‘

An analogous result is true for l p <2, but the carresponding con-
stants are unknown. This approach works only for functions belonging to
HBYV. However, the same order of convergence can be obtained for a wider
class of functions with weaker conditions on the variation. For that reason
we present a second approach to error estimates for Lagrange interpolation.

Setting for i=1,2and 1 <p<

1/p
M, f=IIVifll,, Nif= Z Vf(xk)">

(7.2

we now consider functions f: R? — R, 2n-periodic with respect to both
variables, which satisfy the conditon

®) min (M, 9+ N, f©9, M, f®9+ N, f*9) < o0

for some r, s > 0. Note that f e HBV fulfils (8) withr =s=0and 1 < p < 0.
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On the other hand the function
1 if x =ye[0, 2n),

g(x,y) =140 if (x, y)€[0, 2m)?, x # y,
g(x+2m, y+2n) if (x, y)eR?

does not belong to HBYV, but satisfies (8) with r=s=0 and 1 < p < .
Now let f be a function satisfying (8). Setting

M = min(M, f*9+B(p, n) N, {9, M, f®+B(p, n N, f*?)
with

1.5+@/nd)nn if p=1,

17/(p-1)+3  if 1<p<2,
B(p, n) = fp=1) p

12p+3 if 2<p<w
we have obviously
M < HBzﬂ(V'f(r’o) + an(o_s))'

THEOREM 9. Let f: R? >R be a bivariate function, 2n-periodic with
respect to both variables, which satisfies (8) for some r,s 20 and 1 < p < 0.
Then we have as n — o
On~Y’"'In?n) ifp=1,

O(n~1ry) ifl<p<oo,

with t =min(r, s). Especially we have in the case 2 < p < o

/= Lo, = {

If-Lflll, < 13.75 Mn~ /P~

for all n. I{t t]ze caser=s=0and 1 <p <o

/=LA, < A(p, HM(2n+ 1)~/
Jor all n with A(p, n) from Theorem 1.

Proof. We can estimate the error in the form

L~ LAl < Nf= Ly fll,+ Ly (F= L2 NIl

or

/= LMl < W f=La fll,+ MLz (F = Ly il
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Now we apply the inequality (see [8], Chap. 7 and 10)

1 1/p
Ly S, < B(p, n)( Z ILy f (% y)I"dy)

2n 2+1

1/p
N Z IS (e, ')IIZ) ,
k=0

which immediately yields all the results by the corresponding univariate
estimates. =
From the above proof a corresponding o-result follows:

1
= B(p, n) (2n+

THeOREM 10. Let 1 < p < 0. Suppose that f fulfils the assumptions of
Theorem 9 and that {9, fO9eC if r=t or s =t with t = min(r, s). Then

Nf-Lfll,=0o(n™*""» asn—co.

6. Discrete Fourier coefficients

The Lagrange interpolation operator can be represented in the form

Lfx,9= Y X P

j==nl=-n
with the discrete Fourier coefficients

1

2n  2n
(9) c_(u'll) = (2n+ 1)2 kzo m; fkm -lh0k+lm)

where h =2n/2n+1) and f,,, = f(x, yn). Note that the discrete Fourier
coefficients may be computed very efficiently by a FF T-algorithm.

Now we discuss the asymptotic behaviour of discrete Fourier coefficients
for a given function f € HBV.

THeorem 11. If f e HBYV, then for j,l= —n, ..., n
ATV i j#0,1=0,
[Pl < 27 Vf ifj=0,1#0,
Teljll" Hf if jl#0.

Proof. For short we only consider the case jl # 0. Setting
e—i(k+ 1/2)jh e—i(m+ 1/2)h

Wim =

h
—2isinjg —2isinl§
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for k, m=0,1,..., we déduce from

e—ix/Z . . e—i(k+ 1/2)x
+e 4. te T =———  0<|x <2nm,

10—  =2isin(x/2)’

that

AW 11 = Wim =Wk 1m=Wim-1F Wi (m—q = € HUk+Im
for k,m=1, 2, ... By using the bivariate Abelian summation it follows from
(9) that

2n+1 2n+1

05'7) = 2n+1)? k§1 "El Sem AWy {m—1

1 2n+1 2n+1

@ L e

Now we have

2n+1 2n+1
Y Y |4l <Hf
k=1 m=1

and
h h\! n \?
< ST R r =(=1)1i -11-2
ol < (4 13-sinll 2) (2) 2,

so that the assertion follows. =
If we consider the Fourier coefficients

1 .
= Wj;zjf(x, y)e iUt dxdy,

then we find for f e HBV that
!
—=vs if j#0,1=0,
2n

1 - " : .
leal <9 Elll ‘v'f if j=0,1+#£0,

1
(2m)?

jIIT Hf if jl#0.

\

Finally, we estimate the error between the discrete Fourier coefficients
ci? and the Fourier coefficients c;;.

THEOREM 12. If f € HBYV, then for j,1= —n, ..., n and for all n
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C
. 74 i '=I=0’
) i
L (1% re i my i #0,1=0,
2n+1 4 4
| | < 1 n 1, 0140
—_— el V" +—l_ H j .= [y # ]
g (15 v gur )
1 1 1 n\ ._, - o
—4— +1°? 1#0.
L 2n+1Hf(2n+1+(4+16)("' i )) il

Proof. For short we only consider the case jl # 0. By writing

.(ﬂ)— jl - Il+12+13+14
with

2n  2n
l Y Y (ks ) ~fem—S (x, p)+S(x, ym)e~ 'U’“")dxdy

' (23)2 k=0 m=0 Qg

I = (21)2 z,*: Zn jj(ﬁun—f(xb .V)) iU dx dy,
k=0 m=0 Qpm

1 'l 'I
13=(2n)2 Y Y [f(fam—S(x, y..J)e"‘“"“’"dxdy

k=0 m=0 Q.

. 2n 2n

4 (2 )2 Z Z j'j‘f (e—lh(jh+lm) —i(jx+ly))dx"dy’

k=0 m=0 Qyp,

where Q,,, = [kh, (k+1) h] x[mh, (m+ 1) h], we have to estimate these four
integrals. It is easy to see that
1

|ll (2 +l)2 f

Integrating with respect to x, we obtain for I, the expression

1 e—lh] 1 2n+1

P —ihjk
1y =g L he

with

2n (m+1)h

=Y | (fim=S(x, y)e P dy.
mh

m=0
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Setting
e” i(k+ 1/2)jh

U =

h

—2isinj—

smj2
we have by (10) for k=1, 2, ...

Auk_l =U—U- 1= e_ihjk.

By using Abelian summation it follows from (11) that
1 e—ihj_ 1 2n+1

Z uy Afy

2T TR i &

and hence
1
I, € —————Hf.
L2l 4(2n+1)|jl f
Analogously we obtain the estimate
5] < : Hf
BZFa4en+)

Computing the integral I, we get
Iy =P (Rjl+ (e ™M —-1)(e M- 1))h"2(jl)‘ 1

and hence by Theorem 11

) | -
s iNj __ ihl __ .
Wl < Tz Wi+ = Die™™—1)

Since for x, yeR
y x
xy+(e *=1)(e"?=1) = | [(1—e "**)dsdt,
00

we obtain the inequality

Iyl Il

Ixy+(e =1 (e " -1 < [ [(s+1)dsdt =4%|xyl(x|+y),
o0

so that

e 1 1
L)< —— =+ )Hf.
el 16(2n+1)<|j| Ill) 4

Summarizing, we get

Wl S ——|—+|=-+= || =+ ’
leit =l 2n+1(2n+1+(4+16)(|jl+|1|>>Hf :
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