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1. Introduction

Let IY =[0, 1]¥ be the N-dimensional unit cube. If f is a measurable
function on IV, then the nonincreasing rearrangement of f is a function f* on
[0, 1] which is nonincreasing and equimeasurable with |f]. f* may be given
by the formula

f*@t)= sup essinf|f(x)) (0<tr<]).

E CIN,|E|=K xek

Rearrangements have important applications in various problems of
approximation theory, harmonic analysis and the theory of function spaces.
In this paper they are studied basically in connection with the theory of
embedding of function classes.

The sources of embedding theory are contained in the papers of Hardy
and Littlewood [15], [17]. They obtained embedding theorems for the
classes Lip(a; p) with various norms, as well embedding theorems with limit
exponent for the fractional integrals and analytic functions of class H”.

The embedding theorem for the class of fractional integrals was proved
by Hardy and Littlewood with the use of F. Riesz’s inequality for rearrange-
ments of three functions (see [18], Ch. X). Generalizing this inequality to
radial rearrangements of functions of several variables, S. L. Sobolev [29]
proved the embedding theorem with limit exponent for the classes Wy.
Sobolev’s paper initiated the theory of embedding for classes of differentiable
functions in several variables (see [2], [25]).

In the late sixties, P. L. Ul'yanov [33]-[35] formulated a number of
extremal problems on finding necessary and sufficient conditions for em-
beddings of some function classes. The methods he proposed were based on
estimating nonincreasing rearrangements by moduli of continuity.

[205]
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The modulus of continuity of f e LP(I") (1 < p < ) is defined to be the
function
w,(f;0) = sup (j If ()= f(x+h)Pdx)'/? (0<d<1)

lh,-ISJ ’N
i=1,.., N

(for simplicity we assume that f is periodic in each variable with period 1; in
the nonperiodic case, the integral on the right-hand side is over I}
=\x:0<x; < 1=HI)).

Every nondecreasing continuous function w on [0, 1] which satisfies
w(0)=0, w(@0+n <w(@@)+w(n for 0<d<o+n <1 is called a modulus of
continuity. If o is a modulus of continuity and 1 < p < oc, we denote by
H v the class of all feLP(I) satisfying w,(f:d) = O(w(d)). We also put
Lip(a; p) = H’;:\- 0<a<).

Basically, the present paper deals with estimating rearrangements and
some maximal operators by integral moduli of continuity. We also consider
embedding theorems for HY y classes which can be proved by using these
estimates.

2. Estimates for rearrangements of L’ functions

In [34] P. L. Ul'yanov established the following inequalities: if f € LP[0, 1]
then

(1) f*=f*0<ct "o, (fit)y (1 <p <o),
(2) f*<clo(f0/+0fl1] (p=1),
where

f**@ =171 [ f*(s)ds.
0

Later E. A. Storozhenko [30] proved that for feL* [0,1] (1 <p < )

1

) SO <2(fu™ "o, (f s wydu+ifl).

t

An inequality of the same type was obtained by A. M. Garsia [10] who used
it in some problems of the theory of Fourier series. Garsia’s proof is based
on the following remarkable inequality.

THeoreM 1. For every even function ¢ nondecreasing on [0, c0) and for
every measurable a.e. finite function f on [0, 1]

@) Fle(f*)—r*)dxdy < [[o(f(x)— f(y)dxdy
Es Ej

for 6€[0, 1], where E; = \(x, y) [0, 1]%: |x—y| < 6.
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Inequality (4) was obtained independently by A. M. Garsia and E.
Rodemich [11], P. Oswald [26] and 1. Wik [36]; its proofs use combinato-
rial methods and are rather complicated. Using this inequality, P. Oswald
[26] and independently 1. Wik [36] proved that for all feL?[0,1] (1 <p
< oo)

5) @, (f*;0) <2w,(f;0) (0<6<1/2

(the moduli of continuity here are the nonperiodic ones). For p =1, such an
inequality was obtained by P. L. Ul'yanov [34]; he also conjectured its
validity for all p > 1. Yu..A. Brudnyi [4] also proved (5) by other methods
(with a less precise constant).

Let us point out that inequality (5) has applications in embedding
theory (see [21], [27)).

In the sequel we consider periodic functions only.

Inequalities (1) and (3) are “weak type estimates” — they give bounds
for the individual values of f** and f*. These bounds are not exact if fis not
smooth enough. The author [20] obtained a more precise estimate: for
felP(IMy (1<p<ow,N2=1)

(6) [LF*(0)-f*@Pdt < 205(f: 1% (0 <7< 1/2).
0

For N =1 this follows immediately from (5); however, as we shall see, the
proof for N > 1 can be obtained by very simple considerations.

Note that for N > 2 the estimate (6) is not sharp if the order of w,(f; J)
is close to the limit order O(d). Investigating this case, P. Oswald [27]
proved that for all feL(I?

1

[t 12 @ dt < cloy (f: 8)/0+1If1l,].

82 '
His method of proof makes essential use of the specific character of the case
p=1. By other means, the author [23] established the corresponding
estimates of f* by w,(f; é) for all p, N > 1.

THeEOREM 2. For felP(IM 1 <p<x®) and s=1,2,...

(7) Y 2CW (41 2TMP < 2Pl (f; 27,
n=1
where ¢ is a constant depending on p and N only (%).
Note that the estimates (6) and (7) are complementary — the first is
exact whenever w,(f; d) decreases not too fast as & —»0; if, however, the
order of w,(f; d) is close to O(d), then (7) is an essential strengthening of (6).

(!) Here and in the sequel, 44, = A,,,—A4,.
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In the case 1 < p < N, inequality (7) can be transformed to
1
®) feoN(f = f,M)*P () dt < cwlb(f;0)677,
N

where f,y = v f(x)dx.
Let 0 < p, g < 0. A measurable function f on I™ belongs to the Lorentz
space L% (IV) if
P dt
j(t /qf‘(t))pT < Q0.
(1]
Clearly, L% < L7 for q = p.
From (8) we immediately obtain the embedding
©) Lip(1;p = L7 (1<p <N, q* =Np/N-p)).

Since the Sobolev space W! is contained in Lip(1; p) (1 < p < o) (see [25],
p. 166), (9) in turn yields the Sobolev embedding theorem [29]

W, (I cL(I") (1<p<N,q*=Np/(N-p)

(for p =1 this was proved by Gagliardo and Nirenberg; see [2], p. 143).
In Section 5 we cite some embedding theorems which can be established
with the aid of the estimates (6) and (7); now, we briefly discuss their proofs.
Denote by J(x, h) (h > 0) the cube centered at x with edge length 2h.
Let feL?(I¥) (1 < p < 0); without loss of generality we can assume
that f> 0. Further, let t€(0, 1/2]. It can easily be seen that there is a set
E c IV with |E! = 1 such that f(x) > f*(t) for all xeE and

[LF* O ~f*@1ds = L7091 O dx.
0

Let x€E and put h =2YN"1¢1N Since |J(x, h)| = 2t, we have

lyed (x, by: fO) < f* @Y > <.

Consequently,
JLfG)=f*@PPdx <7t fdx | |f()—fO)Pdy
E E J(x.h).
STl [ du [If()—f(x+u)rdx
JO.K N
< 203(f3h),

and this proves inequality (6).
In the proof of (7) we use approximation by Steklov means. For
feL(I®) and h > 0 define

L =2h~N [ F)dy, fi(d =

J(x,h)
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If feL?(I™) (1 < p <), then for he(0, 1]
(10) A, <SG  ILf= Al < @, (S h),
(11) 10/ Oxill, < w,(fs W/h (j=1,..., N).

These inequalities are well known.
Let first p>1.Set h=2"*(s = 1) and J,(x) = J(x, 27 "). For xeI" and
n=1,2,...

Iy €Ja(x): £ < f*27"1] 2 H ().

Therefore
fO-r*2™™< | 1f()=fWldy = 25,(x).
|/ (x)] Jp(x)
Hence
F@7 N - 27 < 283 (27 DM,
Furthermore,
8n(X) < 8, () +1f ()= [N+ 27| £ = Fll,

where

8y(x) = 20"ON (| f(x)= fu()ldy.

I nlx)

Consequently (see (10)),
S (27N L FEQTT N4 (f — fr 27N L 2N I — ],
SEFQMIN L 2NP g (f: D).

We now estimate 8*(2-™*»V)_ It can easily be seen that for yeJ,(x)
o 1
()= A< N2 [g(x+1(y—x))dt,
V]
where ¢(z) = |grad f,(z)]. Consequently,

1
5,(x) < 2N fdt | g(x+tz)dz.
0 J, 0

Since for every set E < IV with [E| =27 "*2N and fixed t, z we have

|EI™ ' fg(x+12)dx < g** (27 2N),
E

it follows that

5: (2"(n+ 2)N) < (.2—ngn(2—(n+ 2)N).

14 — Banach Center t. 22
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Thus for n=1, 2, ...
AT < e[27 g QT IN 2VP w,(f ).
Hence (recall that h = 27°)

i 220~ (Af* (27" < clllg**)I5+ 2P wb (f; 279)].
n=1

Since p > 1, the Hardy inequality (see [18], p. 289) and (11) yield
llg**Il, < ¢, llgll, < cp v 2P 05 (f 3 279).

This finishes the proof of (7) for p > 1.
Let now p=1, N = 2. We will prove inequality (8) (which implies (7)).
Write g(x) = |f (x)— f,sl. For x =(x,, ..., xy) ERN, put

-§|=(xlv--'s xi—lsxi+]1"-9xN)9 X=(x,',-f,') (l=l,,N)

For fixed he(0, 1], define for i=1,...,N

x;+h

gi(x) == [ g(t. X)dt, g;(%)= sup g;(x).
x;—h x;€(0,1])

It is not difficult to show that
(12 llg—gilly < @,(f; h),
(13) [ G:(»dy < co(f;h/h.

IN-1

Let 0 <r<1; we estimate g*(t). It is easily seen that there is a
measurable set E < IV with measure ¢ such that

g*(t) = essinfg(x).

xeE

Furthermore, there are measurable sets E,, ..., Ey such that
E=E,oE, >...oEy, |E|="'E_,|=2"t,

and for i=1,..., N

(14) gi(x) <essinfg;(y) for xeE,_,—E,.

yeE;
Let Q < Ey be a reduced (%) F,-set with measure 2~ ¥¢. Denote by Q@ the
orthogonal projection of Q onto the hyperplane x; = 0. By the Loomis-
Whitney inequality (see [14], p. 227), there is j such that the (N—1)-

() A measurable set Q is called reduced if |Q nI| >0 for every cube I such that

0~ £0.
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dimensional measure of QU satisfies
(15) m QY > 21~ NN-DIN,

By (14), g(x)sIg(x)—gj(x)l+essinf,EEjg,-(y) for xeE* = E;_,—E;. Hence
(see (12))

2N .
g*(t) < essinfg(x) < i (f; h)+essinfg;(y).
xeE* yeQ

Since Q is a reduced set, using (15) we obtain
essinfg;(y) < essinfg;(z) < g¥ (2~ NV~ 1/N),
yeQ ze@W

Consequently, (13) yields
1
ft g @ dt < cloy (f; W/h+IgHlL] < o, (f; hyh,
wN

which completes the proof of inequality (8) for p=1, N > 2.
As already noted, for p=1, N =2 inequality (8) was proved by P.
Oswald [27] by other methods (in particular, he used inequality (5)).

3. Estimates for rearrangements of maximal functions

In the sequel we denote by Q an N-dimensional cube with sides parallel to
the coordinate axes.
Let feL(I"). The Hardy-Littlewood maximal function is defined by

Mf (x) = suplQ|™* fIf () dt,
Q

xeQ

where the supremum is taken over all cubes Q containing x with |Q| < 1.
We have the inequalities ([19], [1])

(16) 3TN @) S(MNO*() < f**(27 ).

Let us observe that the idea of estimating (Mf)* from above by f** goes
back to Hardy and Littlewood [16].

Using (16), it is not difficult to deduce from (6) and (7) the analogous
estimates for the maximal function Mf (for 1 < p < ). .

In connection with some interpolation problems, Fefferman and Stein
[9] introduced the maximal function f *, measuring local mean oscillations:

S7() =suplQI™ [If() - foldt, fo=1Q7" [f(dy.

xeQ Q Q
Bennett and Sharpley [1] proved that Peetre’s K-functional satisfies

K(f:t: L', BMO) ~ t(f")* ().
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Using this relation, R. De Vore [7] obtained the following result.
THEOREM 3. Let fe€LP[0,1] (1 £ p < ). Then
(17) (f)*W)<csup 6 VPw,(fi8) (O<r<).

t<és!

The author [22] obtained an analogous inequality for functions of
several variables (taking into account the different behaviour of the function
in the direction of different coordinate axes). However, as remarked earlier,
the estimates of the type (17) are not sharp in the limit cases. The following
more exact estimates were established by the author [23] in terms of the
“isotropic” modulus of continuity w,(f:9).

THEOREM 4. Let felP(I¥) (1 <p< oo, N> 1) and
o={n: A(f**Q2 """ Y50}
Then for s=1, 2, ...

(18) Y 2P gp < 2P el(f; 277,
(19) Y 2™ 4P < coB(f; 279,

where A, = (f *)*(2™"M).

The estimates (18) and (19) reflect special structural properties of f *. In
particular, the following result follows from (18): if feL?(I") (N <p < o)
and liminfé~ VP w,(f; 8) = 0, then (f *)* is constant on some subinterval of

3-+0 .
each interval [0,7],0 <7< 1.

If 1 < p< N, then the assumption n€s on the left-hand sides of (18)
and (19) may be dropped. (18) remains valid also for p=1, N > 2.

In the sequel, K denotes the class of all positive concave nondecreasing
functions on (0, 1]. )

Let feL(I® and neK. Put

1
# ; = - d ,
b ST F A
1
1y f(x) =sup )= f(x)dt,

xeQ ”(IQ) IQI Q

where the supremum is taken over all cubes Q containing x with |Q| < 1, and
Iy 1s the length of the edge of Q.

Observe that f,“(x) <2 t, f(x), and if n()t™* is increasing for some
x -0, then .+, f(x) < ¢f,” (x) ae.

For n(n =1 (0 <x<1) such maximal functions were studied in a
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number of papers of several authors, beginning from a paper by A. Calderon
[5] (see [1], [3], (6], [8).

Owing to the arbitrariness of n €K, the maximal functions f,” and 1, f
yield flexible characteristics of various metric properties of £ On the one
hand, f,” measures the local mean oscillations, and .1, f the local smooth-
ness of f: for x, yelI®

(20 )= fON<STA S+ 105,/ (0]n(lx—yh.
On the other hand, using f,” we can also estimate the maximal function Mf.
THeOREM S. Let feL(I") and neK. Then
(M*()—(MO*(2) < en(@'™) (f,)* (1) (0 <t <1/2).

This theorem was proved by Bennett and Sharpley [1] for n(1)
=1* (0 <a < 1); in the case of a general neK the proof is similar.

K. I. Oskolkov [28] investigated the question of quantitative estimates
related to Lusin's C-property:

Lfx)—fn< (Cf(-\'H‘Cf(y))'?“x_}"),

where C, is an a.e. finite function and 5(r) =0 as r —0. By (20), one can take
C,(x) =1, f(x). The corresponding result of K. I. Oskolkov [28] may
essentially be interpreted to be a necessary and sufficient condition for <K
to satisfy . |, f(x) < oc a.e. for all f eH},) 5. This condition may be formulated
in the form (see [23])

(21) Y [ /N2 ")y, < =,
n=1
where
(22 Y= Lmin(w,,—w,,ﬂ, w,—'w,_y), o,=mw27".

The author [23] established the estimates of the rearrangements of the
maximal functions .1, f and f,“ by w,(f: d).

Denotc;'by & the collection of all even nonnegative functions ¢ nonde-
creasing on [0, o). If pe® and ¢(2t) < co(t) (0 <t < o0), then ¢ is said to
satisfy the 4, condition.

Further, we introduce the following definition. Let w be a modulus of
continuity and 1 < p < 0. We denote by E,(w) the class of all nonnegative
sequences ¢ = \g,! such that for s =1, 2, ...

Ly P 4]
Z 2"PeP L 2P (27Y), Z e <wP(27Y).

n=1 n=s
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THEOREM 6. Let feLP(I") (1 <p <o), w(d) =w,(f;9d), neK, and
suppose

[ o}
(23) sup Y &/nP(27") < 0.
GEEP(G)) n=1
Then .+, f€L?(I"), and there is a sequence |t,) €E,(w) such that for any
@ e® satisfying the A, condition with ¢(t)t™" increasing on (0, o),

(24) Z_lfp(d(.‘/'.,f)“(Z"'"))T""

<c(p, N, ¢) f e(2™Pe,/n2™M27™  (s=1,2,..).

n=s

For p =1 the theorem is no longer true. Under the same assumptions,
an analogous inequality is also valid for f,*.

One important point has to be emphasized: the sequence {¢,} in
Theorem 6 depends not only on w,(f;d), but also on other structural
properties of f. If w is a modulus of continuity, then in general it is not
possible to choose a sequence ¢ €E,(w) in such a way that (24) holds for all f
with w,(f; 8) < w(d).

Note, moreover, that conditions (21) and (23) are equivalent.

4. Rearrangements of the modulus of an analytic function

A function f analytic in the unit disc D, = {z: |z] < 1) belongs to the Hardy
space H?(0 < p < o0) if

2z
WAl = JSup {[1f(re?)Pdo}!? < co.
0

<p<i]
If feHP, then according to a theorem of F. Riesz the limit
lim f(re®) = f(€'®)
r—»1-0
exists for a.e. ¢ €[0, 2n] and represents an L” function.
Hardy and Littlewood [17] proved
THeEOREM 7. Suppose f is an analytic function in the disc D, and f’ € H” for
some p with 0 <p < 1. Then f eHY, q* = p/(1 —-p).

The problem arises of obtaining exact estimates for the rearrangement of
the modulus of the boundary function which would in particular imply
Theorem 7.
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Let f eH? (0 < p < ). The L? modulus of continuity of the boundary
function f(¢®) is defined by

2n -
wp(f; d) = os<l;l.g,, {(j)‘ |f(e““’”")-f(e“’)|"d(p}””.

If feHP (0 < p < o), f # const, then as shown by E. A. Storozhenko,

liminfw,(f; 6)/6 > 0.
s

—-+4+0

For 0 < p < 1 this is caused by the analyticity of f(z) and is not true for real
L* functions.

If f is analytic in the unit disc, then f'(z) is in H? (0 < p < o0) if and
only if f €eH? and

(25) w,(f;90) =0()

(this was established by Hardy and Littlewood [17] for 1 < p < co and by A.
E. Gwilliam [13] for 0 < p < 1).

The author obtained estimates of the rearrangement of |f(¢'°)| by
w,(f; ), analogous to (6) and (7).

THEOREM 8. Let feH? (0 <p<1) and let f* be the nondecreasing
rearrangement of |f(e?)]. Then for s=1, 2, ...
(26) Y 2T (Af* 27N <, 2% wh(f; 279,

n=1

27) T 2-W(AS* 2N < ¢ wb(f; 277).

Using (26) and the above-mentioned result of A. E. Gwilliam we obtain

CoROLLARY. Suppose f is an analytic function in the disc D, and f' € H" (0
< p < 1). Then the boundary function f(€'°) is in the Loreniz class 197, gq*
= p/(1-p).

This assertion is a strengthening of Theorem 7.

Note that for real functions in L?[0, 2r] with 0 < p <1 the estimate
(26) does not hold, and (25) does not ensure that f belongs to LY with the
limit exponent ¢* = p/(1—p).

On the other hand, inequality (27) is not related to analyticity. It holds
for any f eL?[0, 2r] (0 < p < o0), and the proof is exactly the same as that
of (6) for p>1.

We now sketch the proof of the main estimate (26).

First, we use the following inequalities due to E. A. Storozhenko [31].
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[32]: if feH? (0 <p < 1), then for all he(0, 1]

o . 0N
(28) [ £ @)= f((1=hye®) dg < c,wb(f; h),
1}
2n
(29) (S (1=me?)rde < c,wb(f; hh™".
0

For feH? we denote by ./ f the nontangential maximal function

M f(9) = Sunl; /@I, ¢el0, 2n],

where Q, is the region bounded by the two tangents to the circle [z| = 1/ \"'—2-
drawn from the point ¢ and by the longer of the two arcs of the circle with
ends at the points of tangency. By the Hardy-Littlewood theorem [16]

(30) -7 fll, < Apllfll, (0<p<x).

With the above results, the proof of the inequality (26) is very easy.
Let h=2"%(s=1). Define

Fi(o) = |/ (€)= f((1-h)€?),
g(re?) = f(1-hre?), O0<r<l.
Fix ¢ €[0, 2n]. For every n=1, 2, ... there is 8 = 6(¢p, n) such that
lop—-0l<27"*? and [f(£9) < f*(277),
Fa O < FEQ™™, (- 49)(0) < (-4g)*(27".
We have
£ (@)= f*277 < |f (€9~ f(°)
< Fu(@)+Fp(0)+1g () —g(e”)
S Fu(@)+Fr 27" +1g(¢?)—g ().

Let z, be the intersection point of the tangents forming part of the bound-
aries of Q, and Q, respectively. Then

20— €%l = |zg—€"] < 27"
Consequently,
ly (€)= g ()] < lg (€)= g (2o)l +1g (z0) — g (€]
< c[(-#g') @)+ (-#g)(O)]27".
Thus

SN =f* (27" < Fyl@)+c27"(.g) (@) + FR (27" +c27" (. #g)* (277).
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Hence
f* (2—n—l)_f* (z—n) < 2Fh* (2-"—2)-}-6'2—"(-//9')* (2—11—2),
and we obtain (see (28)+30))

s

Y 20D Y= A7 < ¢ (2SI A1)
1

< (2P wf(f: 27 +Ig15) < 2P wp(f5 27,

The proof of inequality (26) is complete.

5. Some embedding theorems

As already noted in Section 1, P. L. Ul'yanov was the first to propose
methods for investigating extremal problems of embedding theory, based on
estimates of nonincreasing rearrangements. Using inequalities (1) and (2), P.
L. Ulyanov proved the following

THEOREM 9. Let | S p <gq < x and let @ be a modulus of continuity.
Then Hp, < [0, 1] if and only if

1
[x" P (x)dx < .
V]

For N > 2 the problem of embedding H%y < L(I") has been considered
in a number of papers of various authors (for the references see [21], where
necessary and sufficient conditions for the anisotropic classes H,' "N to
embed in L9 are obtained).

Let oed (see §$3). We denote by ¢(L) the class of all measurable
functions f on IY with gofeL(IV).

P. L. Ulyanov posed the problem of finding necessary and sufficient
conditions in order that

G Hy y = o(L),

where @ e® satisfies the 4, condition.

In the papers of P. L. Ul'yanov [34], [35], L. Leindler [24] and E. A.
Storozhenko [30] necessary and sufficient conditions were obtained to have
the embedding

Hy, <cLl'y(L) (I1<p<g<x,N=1)
under additional assumptions on the function ¥; in particular, it was

assumed that y (1?) = O(y (1)) as 1 = x.
The author [20] proved that under minimal additional assumptions on
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¢ the embedding problem (31) may be solved with the use of inequality (6)
together with a decomposition of the sequence |w(27")] according to a
decreasing geometrical progression.

THeoreM 10. Suppose N < p < o0, @ P satisfies the A, condition and
@(1)t™? is increasing on (0, c0). Then the embedding (31) holds if and only if

Y o(2™Pw (2" )27 "N a, < o,
n=1

where a,=[w2 -0 " )]/w™.

As already noted, in general inequality (6) is not exact if the smoothness
of w,(f; d) is close to the limit one O(J); however, this degree of smoothness
is not required to have the embedding (31) for p> N. For N>2and 1 <p
< N the situation is different (e.g. H2y = L*(IY), ¢* = Np/(N—p), if and
only if w(d) = 0(0)). In this case, for solving the embedding problem (31) one
uses both estimates (6) and (7) together with simultaneous decomposition of
the sequences {w(2™")! and {2"@w (27"} (®).

We obtain the following result.

THEOREM 11. Suppose 1 < p < N, q* = Np/(N—p), and ¢ €® is such that
@(t)t P increases and @(t)t™9 decreases on (0, ). Then the condition

Y o(2™MPw(2 )27y, <0
n=1 -

is necessary and sufficient for the embedding (31) to hold (*).

Note that the assumption of ¢(t)¢t~9 being decreasing does not restrict
the growth order: we show that Lip(l;p) < ¢(L) if and only if ¢(t)
=0(%) (1 <p<N).

The main difficulties in Theorem 10 and 11 arise in the cases where the
order of growth of ¢ is close to |t|° or |t|* (the latter case is most
complicated). By excluding these cases, we obtain

CoRroLLARY. Suppose 1 < p <0 and @ €D has the following properties:
1) ¢ satisfies the A, condition.

2) For some € >0, @(t)t™ "¢ is increasing on (0, o0).

3 If L <p <N, then for some ¢ >0, @(1)t=% "¢ is decreasing on (0, o).
Then the condition

(32 i e(2"™Pw(27M)27"N <0

n=1

is necessary and sufficient for the embedding (31) to hold.

(*) Such a simultaneous decomposition was first used by K. I. Oskolkov [28].
(*) The sequence |y,) is defined in (22).
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Observe that the sufficiency of (32) is easily established with the use of
the inequality (see (1), (6))

f*(t)—f*(Zt) < 2‘““’!‘””(0,,(f; tl/N),

and remains valid for any ¢ e® satisfying the 4, condition (for N =1 this
was shown by L. Leindler [24]). -

We also point out that M. L. Gol'dman obtained the assertion of the
above corollary for moduli of continuity of any order.

Using the estimates (26) and (27) we establish the analogue of Theorem
11 for subclasses of the Hardy space H”.

Let 0 <p <o and let @ be a modulus of continuity. We denote by
HP?(w) the class of all functions in H? for which the modulus of continuity of
the boundary function satisfies w,(f; d) = O(w(d)).

Put

1 2R . 1/p
Mp(r:f)=(££lf(re"’)l"d<p) . 0<r<l.

E. A. Storozhenko [32] proved
THeOREM 12. Let f€H?, 0 < p < 0. Then for all q€(p, )

M, (r; f) < ¢, [If O +1(M],

where

1
1) =( | x"7?0l(f; x)dx)'/1.
1-r
This theorem gives an exact condition for the embedding H?(w) < H? (0
<p <q <o) to hold, except the limit case 0 < p <1, g = p/(1 —p), w(d)
= 0(J), covered by Theorem 7.
Let o €e®. We denote by ¢(H) the class of all functions f (re’®) analytic
in the unit disc with

2n
sup [ o(f(re9)))do < .

0<r<1 ¢

Applying Theorem 8, we obtain~the following result (cf. (22)):

THeorReM 13. Suppose 0 <p <1, q* = p/(1—p), and @ €P is such that
@(1)t™" increases and @(t)t™ decreases on (0, ). Let w be a modulus of
continuity. Then the condition

i e(2"Pw(2™ )27 "y, <

n=1

is necessary and sufficient for the embedding H?(w) < ¢ (H) to hold.
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Finally, we note that using Theorem 6 it is possible to obtain a
necessary and sufficient condition for the embedding

Hon<Ch (1 <p<cx,nek, ped)
to hold, where
1 =.feL(: 1, fep(l)

(in case @(1) = |t|" (1 <r < x) we write C}} = C}). In particular, the following
theorem holds [23]:

THeorRem 14. The embedding H,y < C} (1 < p<gq < o) holds if and
only if

33 Y 2P D w27 /(27N v <

n=1
where (1) =t'Pinfy .., "' n(1), B=N(1/p—1/g) < 1.

For p=gq, Theorem 14 can be deduced from the results of K. I.
Oskolkov [28]. For n(r) =t*, the classes C} are studied in detail in the
monograph [8]. If n(t) =* with 0 <x <1—-N(1/p—1/q), then the sequence

7.1 in condition (33) may be dropped; in this case Theorem 14 is contained

in [8].
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