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1. Introduction

If the edge e of the 3-polytope M is incident with vertices 4, B and faces a, §,
the type of e is defined as the ordered couple of unordered number couples
((a, b)(m, n)) where a, b are valencies of A, B and m, n are numbers of edges of «,
B. In the present paper we deal with 3-polytopes having quadrangular faces
only and exactly two types of edges, therefore the notation can be simplified.
Notice that the vertices of such 3-polytopes M can have at most three different
valencies because of the connectedness of the graph of M. Let us therefore
denote by #(a, b, c) the family of all quadrangular 3-polytopes whose all edges
are either of the type ((a, b)(4, 4)) or of the type ((b, c)(4, 4)).

In [3] the first step in the study of the combinatorial structure of such
polytopes has been made. The following result to be used in the sequel has been
proved in [3]: The families ¥(3, 3, 4), (3, 3,95), ¥(3,3,c¢) for c = 11 and
F(4, 3, 5) are finite. The families & (3, 3,¢) for 6 £c <10, ¥(3,4, ¢) and
F(3,5,¢) for c24, ¥4, 3,c) and F(5, 3, ¢) for c = 6 are infinite. Every
quadrangular 3-polytope with exactly two types of edges belongs to precisely one
of the families mentioned.

In the present paper we continue our investigations of the combinatorial
structure of quadrangular 3-polytopes with two types of edges and make an
attempt to characterize vertex-vectors of such polytopes. (If v,(M) denotes the
number of i-valent vertices of M, (v;(M)) is the vertex-vector of M. In the sequel
the superfluous zeros will be left out.) The following sections contain conditions
for a triple (v,, vy, v} or couple (v, v,) of positive integers to be the
vertex-vector of a 3-polytope belonging to ¥(a, b, ¢) or #(a, a, c), respec-
tively. (Notice that ¥(a, b, ¢) = L(c, b, a).)

Unfortunately, we are unable to present, for certain triples (a, b, c),
a complete characterization of vertex-vectors of polytopes belonging to
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F(a, b, c). Therefore we state explicitly all undecided cases. Certain procedures
for the construction of planar 3-connected graphs (i.e. of 3-polytopes—see
Steinitz’s theorem in Griinbaum {2]) are employed. Some general prerequisites
must be stated first. To shorten the exposition one more symbol is intro-
duced: Let G,(a, c) denote the family of all planar maps with a b-regular
2-vertex-connected 3-edge-connected graph whose all faces are either a-gons or
C-gOons.

Almost all constructions in the sequel use the notion of the radial map
r(M) of a given planar map M (see e.g. Jucovi¢ [4], Ore [6]). Given a planar
map M we associate with M (with the vertex-set V' (M), edge-set E(M) and
face-set F(M)) a map r(M) so that V(r(M)) =VM)UF(M), and
e=XYeE(rM))«=XeV(M), YeF(M) and X is a vertex of the face ¥, or
XeFM), YeV(M)and Y is a vertex of the face X. As every edge ge E(M) is
incident with two vertices and with two faces of M, g determines a quadran-
gular face of r(M). So for every map M, r(M) is a quadrangular map whose
vertex set V (r(M)) is partitioned into two disjoint sets. The valencies of vertices
in one set are those of the vertices of V' (M), the valencies of the second one are
equal to the numbers of edges of the faces from F(M). It is not difficult to prove
that if the graph of M is 2-vertex-connected and 3-edge-connected, the graph of
r(M) is 3-vertex-connected and therefore realizable as the graph of a 3-polytope
(by Steinitz’s theorem, see [2]).

We shall use the following lemma which is not hard to deduce from basic
relations between M and r(M).

LEMMA 1.1. (a) If MeG,(a, c¢) then r(M)e F(a, b, ).
(b) If Pe&(a, b, c), a # b # c # a, then there exists a map MeG,(a, c)
such that r(M) =P,

The next lemma (due to Gallai [1]) is employed mainly for proving the
nonexistence of a planar map whose radial map belongs to an %(a, b, ¢).

LEmMMA 1.2. If all faces of a planar map M are p-gons and all vertices of
M have valencies = 0 (mod q) then the number of faces of M is an integer multiple
of the number of faces of P(p, q), the regular spherical mosaic with all vertices
g-valent and all faces p-gons.

The following lemma is straightforward:

LemMa 1.3. Writing v (M) = v,, if a # b # ¢ # a then for every 3-polytope
Me%(a, b, ¢)

(1) av, +cv, = by,.

Manipulations with (1) and with Euler’s formula yield necessary con-
ditions contained in
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LemMa 1.4. The vertex-vector (v,,v,,v) of a polytope Me ¥(a, b, c),
a # b # ¢ # a, satisfies the conditions

_ 4b—(2b+2c—bc)v,

(2) Yo = 2a+42b—ab ’
4a+2(c—a)v,
(3) %= at2b—ab

The vertex-vector (v4,v,) of Me¥(3,3,c) or Me¥(3, c, ¢) satisfies the
condition

@) vy = 8+(c—4)v,.

From Lemma 1.4 it follows that if we look for vertex-vectors (v,, v, v,) or
(v,, v.) of all polytopes belonging to #(a, b, c) or to ¥(a, a, c), respectively, we
can only examine, for every positive integer m, whether there exists an
Me¥(a, b, c) or ¥(a, a, ¢) such that v, (M) = m. (If so, such an m is called
a suitable value of v,.) In the next sections, for every triple (a, b, c) we state the
known suitable and unsuitable values of v,. The reader should try to answer the
undecided cases. In the sequel, every triple of integers (v,, v,, v.) which is
a candidate for the vertex-vector of an M e ¥ (a, b, c) is supposed to satisfy (3)
and (2) (and analogously, (4) holds for the pair (v4, v,)).

2, The families ¥4, 3, ¢)

Table 1 presents our knowledge of vertex-vectors of quadrangular 3-polytopes
belonging to (4, 3, ¢) (all letters denote nonnegative integers). Because of
Lemma 1.4, Table 1 deals with the coordinate v, of these vectors only. (The
same applies to other families #(a. b, ¢) in Tables 24

Table 1

The vertex-vectors (v,, v,, v) of polytopes from (4, 3, ¢)

c Suitable v, Unsuitable v, Undecided v,
1 5 2,4,6,8 all #£2,4,6,8 -
2 6 all 22 1 -
3 Bk+i,k=21,i=0,1,3,5 all even >2 all odd —
4 Bk+7, k=20 all even =2 all odd —
all even >2 odd v,
5 Bk+2, k21 all odd > 4k+3 ! I <v,<dk+3
all even > 2 odd o,
6 Bk+d k=1 all odd > 2k+5 ! 1<, <2k+3
7 8k+6 k> 1 all even > 2 ) odd v,

all odd >4k+5 1<v,<4dk+5
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Proof of the statements in Table 1.

2.1. First let us deal with the unsuitable values of v, (column 3).

Certainly v, # 1 because there exists no trivalent planar map M with
5. (M) =1 and 5(M) =0 for i # 4, c, as can be seen by direct construction.
(5;(M) is the number of i-gons of the map M.)

Lines 3 and 4: For the trivalent map M such that r(M) = Pe ¥4, 3, ¢),
from Euler’s formula it follows that 25,(M) = 124 (c—6)s,(M); if ¢ is odd, the
right-hand side of this equality is even only if s,(M) = v (P) is even.

If ¢ = 0 (mod 8), the evenness of v, follows from Lemma 1.2 applied to the
dual of the trivalent map from G,(4, c) whose radial map belongs to ¥ (4, 3, ¢).

2.2. All statements in lines 1 and 2 foliow from the validity of the
appropriate statements on those maps from G,(4, ¢) (for maps with 3-connec-
ted graphs see Grinbaum [2], Jucovi¢ [4]) whose radial maps belong to
(4, 3, c).

2.3. We now turn to the statements in the first column (and lines # 1, 2).
In all cases, first a map M e G,(4, ¢) having v, c-gons (and quadrangles) is
constructed; r(M) is then the desired polytope Pe ¥4, 3, ).

Procedure 1 increases the number of c-gons in a given map M e G,(4, ¢) by
two. Suppose we have a triple of quadrangles in M as in Fig. 2.1 (a). Insert
into the “middle” one ¢ —4 new edges as in Fig. 2.1 (b). Two new c-gons appear.
This creation of c-gons in pairs can be repeated any number of times.

Fig. 2.1(a) Fig. 21(b)

Now, if v, 1s even we begin with the c-prism and apply Procedure 1
(v,—2)/2 times.

To obtain odd numbers of c-gons the starting maps have to be changed.

For ¢ = 2 (mod 8) and ¢ = 6 (mod 8) the starting map (Fig. 2.2) contains
c/2+2 faces which are c-gons. Further, Procedure 1 is employed.

For ¢ = 8k +4 we start with the 6-prism; denote its side-faces by «,, ..., a,
and the bases by B8,, B,. Decompose each of the faces a,, a5, o, into 4k+1
quadrangles: a; ;, ..., %) 4k+15 X305 ---» A3 4k+1> s 1 ---, s 45+ 1 —the faces
®,, &4, 0 become (8k +4)-gonal. The faces §,, B, are changed into (8k + 4)-gons
as follows; The quadrangles «; ;, i = 1 (mod 4), i < 4k + 1, are divided by 8k—2
new edges into 8k — 1 quadrangles; each of the quadrangles a, ;, i = 3 (mod4),
is divided by two new edges into three quadrangles. All new edges inserted are
to be parallel with those edges of a,;, i =1 (mod2), which are common to



VERTEX-VECTORS OF 3-POLYTOPES 97

Fig. 2.2

these quadrangles and the face o,. The above procedure yields 2k+5 faces
which are all (8k+4)-gons. Procedure 1 is used to increase the number of
c-gons in pairs.

3. The families #(5, 3, ¢)

The vertex-vectors (v,, vy, v,) of polytopes from (5, 3, ¢)

c Suitable v, Unsuitable v,  Undecided v,

1 10k, k=1 all even all odd -
2 10k+1,k=1,2,3 all even 1 all odd >1

all #1,3,5,7,9,11, 3,5,7,9, 11, 13,
3 10k+1, k>4 13, 15, 17, 19 L 15, 17, 19
4 10k+j,j=2,3,k=1,2 all even 1 all odd > 1
5 10k+j,j=2,3 k>3 all # :;3'1:' 7.9, i 3,5,7,9, 11, 13
6 10k+i, i=4,5 k=21 all =2 1 -
7 10k+6, k=20 all =2 1 -
8 7 all even =2 1 all odd > 1
9 10k+7, k=1 all #1,3,5,7 1 3,5,7
10 8 all =2 1 -
11 10k+8, k=1 all #1,3,5,7 1 3,5,7
12 10k+9, k=0,1,2,3,4 all even =2 1 all odd >1

all #1,3,5,7,9,11, 3,5,7,9, 11, 13,
13 10k+9, k=5 13, 15, 17 1 15,17, 19

Proof of the statements in Table 2.

3.1. The nonexistence of Me ¥ (5, 3, ¢} with v, (M) =1 is demonstrated
exactly as the analogous statement for polytopes from £ (4, 3, ¢).

7 — Banach Center t.25
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If ¢ =0 (mod 10), the evenness of v, follows from Lemma 1.2.

3.2. Instead of polytopes from the family #(5, 3, ¢) we will again first
construct suitable maps M from G,(5,c), ¢ 2 6. As noted in Lemma 1.1,
r(M) =Pe (5, 3, c) for every M e G,4(5, c). It is easy to see that v (P) = s (M).

N
pa

Fig. 3.1(a) Fig. 3.1(b)

Procedure 2 increases the number of c-gons in a given map M € G,(5, c) by
two. Suppose we have in M a quadruple of pentagons as in Fig. 3.1(a). Add to
it 2¢—10 new edges as in Fig. 3.1 (b). Two new c-gons appear. Quadruples of
pentagons to be used for repeating the construction appear as well.

If v, is even, the starting map for every ¢ is the map of the regular
dodecahedron. Procedure 2 is performed v,/2 times. For odd v, the situation is
a little more complicated.

33. For v,=1 (mod2) we again construct only starting maps from
G,(5, ¢) with an odd number of c-gons. Each of these maps will contain

Yy X3 Y3 X3
Y X, Y, X,
v, Vs
X, X,

1 2
D

Fig. 3.2
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a quadruple of pentagons as in Fig. 3.1(a), to be able to perform Procedure 2.
A construction similar to that of Owens [6] will be used. A basic role is played
by the configurations V,, V;, D, and D,,. The first three of them are shown in
Fig. 3.2. The configuration D,,, m > 2, is obtained from D,_, and D, by
identifying the edge X, Y, of D,,_, with the edge X, Y, of D, and then deleting
these labels. All vertices of these configurations are 3-valent, apart from pairs of
adjacent 2-valent vertices X, Y,,i = 1, 2, 3. The edges X, ¥, which join them will
be called half edges. All interior faces of these configurations are pentagons.

To construct the required maps from the family G,(5, c), we take copies of
V., and D, (with suitable values of m and n) and connect them by identifying
half edges. To specify the pattern of joins and the values of m and n, we use
a 2-connected 3-valent planar multigraph with suitable labels. A vertex with
label m denotes V,,, an edge with label n denotes D, and incidence between the
vertex and the edge indicates that ¥, and D, have a half edge identified. An
unlabeled edge (or an edge with label 0) joining vertices with labels m and m’
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Fig. 3.5

indicates that the corresponding copies of V, and V,. have a half edge
identified. The success of the construction depends on the possibility of
choosing the parameters m and m’ so that all faces of the final map, other than
interior faces of copies of V, or D,, are c-gons. In any case the final graph is
3-connected.

For ¢ = 10k+i, k=1, i =4, 5, 6, a suitable multigraph is in Fig. 3.3
where r=s=2fori=4,r=2,s=3fori=5 andr=s=3fori=6. 1t is
clear that the corresponding map M is from S,(5, ¢) with s, (M) = 3.
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Forc=10k+i, k> 1,i=71, 8, a suitable map is in Fig. 3.4 where r = 2
for i=7, and r=3 for i =8. The corresponding map MeG,(5, ¢) has
5. (M) =09.

For ¢ =10k+i, k>3, i=2, 3, we obtain the starting map M from
G,(5, ¢) from the graph in Fig. 3.5 where r =2, s=3 for i = 2, and r = 3,
s =2 for i =3. In both cases s (M) = 15. '

For c=10k+1, k > 4, and ¢ = 10k+9, k > §, the starting map M from
3(5,¢) 1s in Fig. 3.6. For ¢ = 10k+1 any unlabeled vertex has label 2,

—4 and n.=2k—1. For ¢ = 10k+9, any unlabeled vertex has label 3,

—5 and n = 2k. In both cases we have s (M) = 21.

or ¢ = 6 it follows from Jucovi¢ [4] that there is a map M € G,(5, 6) with
Se(M)=4d for any d >0, d # 1.

=k
=k
F

Fig. 3.7

For ¢ = 8 we start with the dodecahedron. Three of its pentagons with
common vertex are changed as shown in Fig. 3.7. We obtain M e G,(5, 8)
with s¢(M) = 3. The map M contains a quadruple of pentagons as in Fig. 3.1 (a)
which can be used for performing Procedure 2.

4. The families ¥ (3,4, c) and ¥(3, 5, ¢)

It is perhaps caused by the close connection of our procedures of

construction of polytopes from ¥ (3, 4, ¢) and from £(3, 5, c) that the results
are so similar for these families.

Proof of the statements in Table 3.

4.1. Let us get rid of the unsuitable values »,. The necessity of v, # 1
follows from the nonexistence of either a 4-valent or a 5-valent planar map
containing triangles and one c-gon only.
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Table 3

The vertex-vectors (v3, vy, v,) of polytopes from (3, 4, ¢) and the vertex-vectors (v;, vs, v.) of
polytopes from ¥ (3, 5, ¢)

c Suitable v, Unsuitable v, Undecided v,
1 6k, k=1 all even > 2 all odd -
2,4,6,8,10, 12,
2 17 all > 14 1 3,5,7,9,11, 13
3 6k+1, k=2 2,4,6, a3l =8 1 3,57
4 6k+i, k21,i=2,1 all 22 1 -
5 6k+4,k=20 all 22 1 -
6 5 2,4,6,8,10, 12, ) 3,5,7,9,11, 13,
14, 16, 18, all > 20 15,17, 19
7 6k+5 k=1 2,4,6, all =8 1 3,5.7

Fig. 4.1

The evenness of v, in case ¢ = 0 (mod 6) is established using Lemmas 1.1(b)
and 1.2.

4.2. In constructions of polytopes proving the statements of Table 3 the
following procedures for construction of 4-valent and 5-valent planar maps will

be useful.

Procedure 3 is the well-known procedure replacing edges by quadrangles. 1t
is shown in Fig. 4.1 where dashed lines denote the original graph M.

The obtained map M’ has the following properties: To every m-gon and
every m-valent vertex in M there is associated an m-gon in M'. If two edges of
M are adjacent, the corresponding quadrangles in M’ will have a common
vertex. If two faces (vertices) of M are adjacent, the corresponding faces in M’
will be separated by a quadrangle. To the incident pair: an m-gon and an
n-valent vertex of M, there will be associated an m-gon and an n-gon of M’ with
a common vertex. Every vertex of M’ is 4-valent. For our purposes it is
important that s,(M’) = 5,(M)+v,(M) for all i # 4. If in M there are triangles
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and c-gons and trivalent and c-valent vertices only then every edge of M’ is
common to a quadrangle and a k-gon, k=3, c¢. If the graph of M is
2-connected, the graph of M’ is 3-connected (therefore polytopal). So if M has
vertices and faces of types just described, the dual of M’ belongs to #(3, 4, ¢).

Procedure 4 consists of two steps.

First by Procedure 3 the map M’ with a regular 4-valent graph is
constructed.

Second step: Every quadrangle of M’ corresponding to an edge of M is
divided by its diagonal into two triangles in such a way that we obtain
a S5-valent map M* for which s5;(M*) = s,(M)+v,(M) for all i # 3. (This is
always possible because of the orientability of the sphere.)

If the given planar map M’ has a 2-connected graph and contains triangles
and c-gons and trivalent and c-valent vertices only, then the map M* has
a regular 5-valent graph such that s,(M*) = s,(M)+v,(M) for i = 3, ¢ and its
graph is 3-connected.

It is clear that r(M™), the radial map of M*, is from the family &(3, 5, ¢).

4.3. To prove the statements in the second column of Table 3 it is
sufficient to construct suitable maps M mentioned above in Procedures 3 and 4.
Let ¢, =0 (mod2). We start with the map of the tetrahedron. A con-

3

A B
Fig. 4.2

figuration consisting of the triangle ABC and the vertex V as in Fig. 4.2 is used.
The edge AC of the triangle ABC is divided by the vertices 4,, ..., A, into
c—2 parts and new edges VA,,i=1,..., c—3, are inserted. A pair: a c-valent
vertex and a c-gon, appears. The valencies of the other vertices and faces are
not changed. The obtained map again contains a pair: a triangle and a 3-valent
vertex, needed for increasing the number of elements of degree ¢ of M.

Fig 4.3
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For v, = 1 (mod 2) the construction of the suitable map M depends on ¢ by
"mod6. A basic role in constructions will be played by the configuration R,,
k > 1. The configuration R, is shown in Fig. 4.3. The configuration R,, k > 2,
is obtained from R«-1 and R, by identifying the edge X, Y, of Ri-1 with the
edge X, Y, of R, and then deleting these labels. R, denotes an edge X, Y, only.
Our constructions begin with 2-connected planar maps with labeled edges. An
edge with label k denotes R,. An unlabeled edge (or an edge with label 0)
denotes R,.

Forc=6k+i,i=2,3,4, c =4, k>0, the construction starts with the
map in Fig. 4.4(i). The obtained map M, has three c-gons. All other faces and
all vertices have degree three. The further needed v,—3 elements of valency

k

(2)

(3)

(8)
Fig. 44

Fig. 4.5
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Fig. 4.6

¢ will be obtained by using pairs: a 3-valent vertex and a triangle, as described
above.

For ¢ = 6k+5, k > 1, the starting map M is shown in Fig. 4.5 and for
¢ =6k+1, k = 2, the construction begins with the map in Fig. 4.6. In both

Fig. 4.7
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cases the starting maps have nine c-gonal faces. The additional v, —9 elements
needed will be obtained as above using pairs: a triangle and a 3-valent vertex.

For ¢ =7 the starting map with fifteen 7-gons is shown in Fig. 5.5
(consider a trivalent vertex instead of a dark marked triangle).

For ¢ = 5 the starting map with 21 elements of valency five is shown in
Fig. 4.7.

5. The families #(3, 3, ¢)

Table 4

The vertex-vectors (v,;, v,) of polytopes from (3, 3, ¢)

c Suitable v, Unsuitable v, Undecided v,

1 4 2,3 all #2,3 -
2 5 2,6 all #2,6 -
3 6 alleven =22 all odd -
4 7 2, all =0 (mod3) and 26 3,9, all #£0 (mod3) 2

and # 9,21 and #2
5 8 2, all =0 (mod3) and =26 3,9, all £0 (mod3) _

and #3,9 and #2

1’314’ 576) 7' s) 9,

6 9 2 all even and =12 10, 11, 13 all odd > 15

2,all =0(mod3d)and >12 3,6,9, 15,
710 0 #15, 18, 21, 30, 33,45 all £0 (mod3) and 2 321:30,33.45
8 =11 2 all #2 -

Proof of the statements in Table 4.

5.1. Crucial in the proofs of unsuitability of certain values are the
following lemmas.

LemMma 5.1. If Me%#(3, 3, ¢), then M is the radial map of the c-gonal
pyramid or of a planar map belonging to G,(3, c).

Proof. No polytope Me ¥(3, 3, ¢) contains a quadrangle having only
3-valent vertices; otherwise M contains as a subgraph the graph of the cube
which has in M at most two c-valent vertices and so the graph of M is not
3-connected, a contradiction to Steinitz’s theorem concerning polyhedral
graphs.

By a 3-path (U, V) we mean a path joining two c-valent vertices U,
V whose every internal vertex is 3-valent. If P is the shortest 3-path (U, V) in
M, then its length is at most 3. Indeed, if this is not true and the shortest 3-path
U,V)isU=V, V,,..., V,=V, n>4, then the quadrangle ¥V, V,V;W has
every vertex of degree 3 in contradiction to our observation at the beginning of
the proof.
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All vertices of M can be regularly colored by two colors. If in M there
exist two c-valent vertices of different colors, then they are joined by a 3-path of
of length 3. From the unambiguity of the construction it follows that M has
exactly two c-valent vertices. In this case M is the radial map of the c-pyramid.
If the length of the shortest 3-path is 2, then all c-valent vertices have the same
color in accordance with our statement.

M is the radial map of the map with the graph G formed in the following
way: The vertices of G are all vertices of M colored by colors different from
those of c-valent vertices, and an edge joins two vertices if they are vertices
of the same quadrangle of M. The graph G is 3-edge-connected and
2-vertex-connected because in the opposite case its radial map is not polytopal.

LEMMA 5.2. For every M e £ (3, 3, ¢) with v, # 2 there exists a planar map
with a 3-regular graph having exactly v, faces which are incident with at least
h edges, h = c/2, each.

We obtain the required map by replacing every triangle of the 3-valent
planar map whose radial map is M by a 3-valent vertex.

From Euler’s formula the following lemma follows easily:

LEMMA 5.3. For the face-vector (s,, S,, ...) of a planar map with a 3-regular
graph we have:

(A) If s, #0 and s, =0 for all k> 4, k # c, then 35, = 124+(c—6)s,.
(B) If s3=0, then ) 545 2> 6.

(C) If s3=5,=0, then Y ;>s55,2 12.

(D) At least one face of M has less than 6 edges.

5.2. All statements in lines 1, 2 and 3 of Table 4 follow from basic
properties of planar 3-valent maps (see Grilnbaum [2], Jucovi¢ [4] and Lemma
5.3).

The unsuitability of integers #0 (mod3) and #2 in lines 4, 5, 7
is a simple corollary of Lemmas 5.1, 5.2 and 5.3(A).

The unsuitability of v, =3 and vy =3 or vy < 11 except vy =2 and
V0 =3,6,9 is a corollary of Lemmas 5.1, 5.2 and 5.3(B) or 5.3(C), respec-
tively.

The unsuitability of integers in line 8 follows from Lemmas 5.1, 5.2 and
5.3(D).

The unsuitability of v, = 9 or vy = 9 follows from a detailed investigation
of 3-valent planar maps having exactly nine 7-gons or 8-gons and triangles
whose radial maps could belong to #(3, 3, ¢), which we omit here. In fact, it
can be shown that they do not exist.

The proof of the unsuitability of v,, = 15 is similar.

The unsuitability of vy = 13 follows from the nonexistence of a map
MEeG,(5, 6) with s,(M) =1 (cf. [4, p. 61]).
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5.3. Let us prove column 2 in Table 4, the suitability of certain values.

The radial polytope of the c-pyramid, ¢ > 4, belongs to & (3, 3, ¢) and has
the vertex-vector {v; = 2c, v, = 2). The suitability of any other value of v, will
be proved (using Lemma 5.1) by constructing a map MeG,(3, ¢) with
s.(M) = v,. The following Procedures 5 and 6 applied to certain starting maps
are employed.

Procedure 5 consists in replacing a pair of triangles joined by an edge
(configuration C) as in Fig. 5.1 by the cell-aggregate O, in Fig. 5.2 (Procedure
5a) or by the cell-aggregate O, in Fig. 5.3 (Procedure 5b). In both cases the
map obtained contains configurations C for repeating the procedures.

Fig. 5.1 Fig. 5.2

VL-.

Fig. 5.3

The cell-aggregate O, contains six 8-gons; if the dark marked triangles are
changed into trivalent vertices, then O, contains six 7-gons. Therefore
performing once Procedure 5a causes increasing the number of 8-gons or
7-gons by six.

The cell-aggregate O, contains twelve 10-gons; if the dark marked
triangles are changed into trivalent vertices, O, contains twelve 9-gons. So
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—

Fig. 5.4 Fig. 5.5

performing once Procedure 5b causes increasing the number of 10-gons or
9-gons by twelve.

Now, performing Procedure 5a with the 8-gons or 7-gons on the map in
Figs. 5.4, 5.5 or 5.6 (a) (where the dark area is the map in Fig. 5.6 (b)) proves the
statements in lines 4 and S (for ¢ = 7 the dark triangles in Figs. 5.4 and 5.5 are
replaced by trivalent vertices).

Performing Procedure Sb with 9-gons on the six maps in Fig. 5.7 proves
the statement in line 6 for v, # 2.

Performing Procedure 5b with 10-gons on the map of the dodecahedron
whose every vertex is replaced by a triangle proves the statement in -line 7 for
v,0 = 0 (mod 12). To settle the remaining statements in line 7 a new procedure
is introduced.

Procedure 6 allows us to increase the number of 10-gons by 15 as follows:
Having in the given map a submap as in Fig. 5.8 (configuration K) it is replaced
by the cell-aggregate in Fig. 5.9; in it configuration K is contained making it
possible to repeat the procedure.

Except for the number 2 every number in line 7 and column 2 can be
expressed in the form 12m+15s (m > 1, s > 0 are integers). (The undecided

5

Fig. 5.6(a) Fig. 5.6(b)
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Fig. 5.7

values in that line cannot be expressed in that form.) Having the map with 12m
10-gons (constructed with the use of Procedure 5 which ensures the existence of
a configuration K in it) we perform on it Procedure 6 s times.

The radial maps of the constructed maps belonging to G,(3, c¢) are the
required maps, proving statements in column 2 of Table 4.
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Fig. 5.8 Fig. 59
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