COMBINATORICS AND GRAPH THEORY
BANACH CENTER PUBLICATIONS, VOLUME 25
PWN--POLISH SCIENTIFIC PUBLISHERS
WARSAW 1989
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In the paper sufficient conditions are given for the existence of a perfect

2-matching, for the existence of a 2-factor and for the pancyclicity of
a connected K, j-free graph.

1. Introduction

In this paper we consider only finite undirected graphs without loops and
multiple edges. Let G be a graph with vertex set V(G) and edge set E(G).
A spanning subgraph of G will be called a factor of G; a k-regular factor of
G will be shortly called a k-factor of G (for k = 1, the term perfect matching is
also used). We say that a graph (subgraph, component etc.) is odd or even
according as it has an odd or even number of vertices. A 2-matching of G is
a factor of G whose every component is a path or a circuit. A 2-matching is
called perfect if its every component is an edge or an odd circuit.

A Hamiltonian circuit in G is a connected 2-factor, i.e., a spanning circuit.
If G has a Hamiltonian circuit, then we say that G is Hamiltonian. Denote by
|M| the number of elements of a finite set M. We say that G is pancyclic if
G contains a circuit of length k for every k, 3 < k < |V(G)|. G is said to be
panconnected if for every pair of distinct vertices x, y of G and every k,
d(x, y) < k < |V(G)|—1, there is a path of length k in G with x and y as
end-vertices (by d(x, y) we denote the distance of x, y).

Throughout the paper, for M < V(G), we denote by (M) the induced
subgraph on M and by I'(M) the set of all vertices in V(G) which are adjacent
to at least one vertex in M. For a vertex ve V(G), the induced subgraph
N, (v, G) = {I'(v)) will be called the neighbourhood of the first type of v in G.
We say that an edge xy € E(G) is adjacent to v if x # v # y and x or y (or both)
is adjacent to v. The edge-induced subgraph on the set of all edges which are
adjacent to v will be called the neighbourhood of the second type of v in G and
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denoted by N,(v, G). G is said to be locally connected if the neighbourhood
N,(v, G) of every vertex ve V(G) is a connected graph. Analogously, we say
that G is N,-locally connected if for every ve V(G) its second-type neighbour-
hood N,(v, G) is connected. Obviously, every locally connected graph is
N,-locally connected.

We say that a graph G is K, ;-free if G contains no copy of K, 5 as an
induced subgraph. Evidently, every induced subgraph of a K, y-free graph is
also K, j-free. Finally, if H is a subgraph or a set of vertices of G, then by G\H
we mean the induced subgraph on the set of all vertices which belong to G but
not to H.

2. Matchings

In [11] Sumner proved that every connected K, ;-free graph with an even
number of vertices has a perfect matching. Since every induced subgraph of
a K, i-free graph is also K, ;-free, we easily see that if G is an odd connected
K, 3-free graph on at least three vertices, then for any x € V(G) for which G\x is
connected, the even subgraph G\x has a perfect matching and hence G has an
almost perfect matching, i.e., a factor with one vertex of degree 2 and all other
vertices of degree 1. Hence every connected K, ;-free graph on at least two
vertices has a 2-matching. Nevertheless, the graphs in Fig. 1 show that
a connected K, ;-free graph with an odd number of vertices need not have
a perfect 2-matching.

-
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Fig. 1

LEMMA 1. Let G be a connected K, y-free graph with an odd number of
vertices and suppose that F is a factor in G whose each component is either
a single edge or is odd. Then there exists a factor F' in G such that the only odd
component of F' is identical to some odd component of F and all the other
components of F' are single edges.

Proof. Suppose that such a factor F' does not exist and let F” be a factor
of G such that (i) every odd component of F” is identical to some component of
F, (ii) every even component of F” is a single edge, and (iii) F” has a minimum
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number of odd components. Since |V (G)| is odd, F”’ has at least three odd
components. Let P be a path in G such that the end-vertices of P are in
different odd components H,, H, of F”" and no other vertex of P is a vertex of
an odd component of F” (existence of such H,, H, and P follows from the
connectedness of G).

Denote by N the set of all vertices x for which there exists a vertex y on
P such that {x,y) is a component of F' and let M =V(H,)UV(H,)
VU V(P)U N. Then evidently every component of F” either is a subgraph of (M)
or is disjoint from {M). Since |M| is even and {M) is a connected induced
subgraph of G, (M) has a perfect matching, which contradicts (iii). =

THEOREM 1. Let G be a connected K, 3-free graph with an odd number of
vertices. Then the following conditions are equivalent:

(1) G has a perfect 2-matching.
(i) G has a perfect 2-matching with exactly one odd circuit.

(iii) In G there exists an odd circuit C such that each component of G\C is
even.

Proof. (i)=(ii) follows from Lemma 1.

(ii)=>(iii). If C is the only odd circuit of a perfect 2-matching, then G\C has
a perfect matching and thus cannot have an odd component.

(iii)=>(i). Choosing a perfect matching in each component of G\C and
adding C we obtain a perfect 2-matching in G. =

Another sufficient condition is given by the following assertion.

THEOREM 2. Let G be a connected K, 5-free graph with an odd number of
vertices, and let |V (G)| = 3. If G has at most one vertex of degree 1, then G has
a perfect 2-matching.

Proof. By Tutte’s theorem (see, e.g., [4], Corollary 6.5.1), G has a perfect
2-matching if and only if |I'(4)| = |A| for every independent set of vertices A.
Thus, in a connected K, ;-free graph G with no perfect 2-matching there exists
an independent set A such that |[I'(4)| < |A|. Since G is K, ;-free and A is
independent, every vertex in I'(A) is adjacent to at most two vertices in A.
Hence the vertices in A are contained in at most 2|I"(A4)| < 2(|4|—1) = 2]4| -2
edges and since no vertex has degree 0, necessarily at least two vertices have
degree 1. =

3. 2-Factors and pancyclicity

Oberly and Sumner [6] proved that every nontrivial connected, locally
connected K, j-free graph is Hamiltonian. Clark [1] strengthened this result
by showing that under the same conditions, G is vertex pancyclic. Kanetkar
and Rao [3] proved that every connected, locally 2-connected K, ;-free graph
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is panconnected. Some other hamiltonicity results in K, ;-free graphs (not
using local connectedness-type arguments) can -be found in [2], [5], [8].

In [7], the sufficient condition for hamiltonicity from [6] is weakened: it is
shown that a connected, N,-locally connected K, ;-free graph without vertices
of degree ! is Hamiltonian if it satisfies the following condition:

Fig. 2

ASSUMPTION (A). G does not contain an induced subgraph H isomorphic
to either G, or G, (Fig. 2) such that N, (x, G) of every vertex x of degree 4 in
H is disconnected.

Further, examples are given in [7] showing that a 2-connected, N ,-locally
connected K, ;-free graph need not be Hamiltonian. In this section we show
that (i) every such graph has a 2-factor, and (ii) if G satisfies (A) and is,
moreover, 3-connected, then G is pancyclic.

THEOREM 3. If G is a connected, N ,-locally connected K, 3-free graph with
"minimum degree 6(G) = 2, then G has a 2-factor.

Proof. Suppose G has no 2-factor and let C be a 2-regular subgraph with
a maximum number of vertices. For each xe V(C) denote by C, the only
component of C containing x, and by x’, x” the vertices neighbouring x on C,.
Since G is connected, an edge x,u can be found such that ue V(C) while
xo ¢ V(C). Since G is N,-locally connected and §(G) = 2, we can find a shortest
path P in N,(¥, G) from x, to one of «, u”; we may assume without loss of
generality that P is a path from x, to « and that 4" ¢ V(P).

Let the largest 2-regular subgraph C and the edge x,u be chosen so that
C has the minimum number of components and, among all such 2-regular
subgraphs, the path P is the shortest possible. Let x,, x,, ..., x, = 4’ be the
vertices of P. By the choice of P, no x;, x; are adjacent for |i—j| > 1. Obviously
X, is adjacent neither to u' nor to u”; since {x,, «, #”, u} cannot induce K, .
necessarily w'u’ e E(G). Similarly we see that k > 2 and at least one of x;
(1<i<k-1)is in V(C).

CLAIM 1. At most one vertex on P is nonadjacent to u. If x,_ € V(C,), then
x;—ué E(G).
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If two vertices x;, x; of P are nonadjacent to u, then for |i—j| = 1 the edge
x;x; does not belong to N,(u, G) and for li—jl =22, {x;_;, X;+1, Xj+1, 4}
induces K, 3.

Let x;_,eV(C) and x,_,uecE(G). Then x;_,u¢ E(G), since otherwise,
replacing in C, the path u'uu” by the edge w’'u and the edge xj_,x,_, by the
path x),_,ux,_,, the path P can be made shorter; similarly x;_,u¢ E(G). Since
{x}—1, X§—y, Xz, #} cannot induce K, ,, necessarily x;_,x,_,€E(G), but
then, replacing in C, the path x;_,x,_;xy—; by the edge x,_,xy-, and the
edge v'u by the path u'x,_,u again makes P shorter.

CLAaM 2. x,¢V(C).

Let, on the contrary, x, € V(C,). Evidently x, is adjacent to neither x’, nor
x| (since otherwise C, can be extended through x,) and since {x}, xY, x,, x,}
cannot induce K, 5, necessarily x| x} e E(G).

Suppose that x, is adjacent to. u. If |V(C )| = 4 (i.e.,, xix] = v'u"), then,
deleting from C, the edges x, 4" and uw’' and adding the path x, x,u and the
edge u'u”, C is extended. Thus the length of C, is at least 5, but then, replacing
in C, the path x}x,x] by the edge x/ x}, the path «'uu” by the edge v'u” and
adding to C a new component {x,, x,, 4y, we again have a contradiction.
Hence x,u¢ E(G) and necessarily x,ue E(G).

If x, ¢ V(C), then from {x,, x}, x,, x,» we see that xx,e E(G) and C,
can be extended through x,; hence x, e V(C). Similarly, if x,x, € E(C), then
replacing v'uu” and x,x, by u'u” and x,x,ux, gives a contradiction; hence
x;x, ¢ E(C).

Consider C,, (not excluding the case C,, = C,). At least one of x3, x5 (say,
x3) is not on P. Since x,u¢ E(G) and {x,, x5, u, x,} cannot induce K, j,
necessarily x} is adjacent to x, or to u, but in both cases C,, can be extended
through x,.

CLamM 3. k<3

If k = 5, then {x,, x,, W, u} or {x,, X5, ¢, u} induces K, 3; thus k < 5. Let
k = 4. Then, considering {x,, x,, &, u>, we have obviously x,u¢ E(G) and
hence both x; and x, are adjacent to u. By Claim 1, x,¢ V(C,) and since
evidently x,e€ V(C), necessarily C,, # C,. If x3ue E(G), then replacing in
C x3x, and v'u by xju and x,u', the number of components of C is decreased;
thus x3u¢ E(G). Similarly xyu¢ E(G) and since {x}, x3, u, x5} cannot induce
K, i, necessarily xjx3e E(G). If the length of C,, is at least 4, then the
replacement of x3x;x43 by x53x5 in C,, and of u'u by ' x,u in C, contradicts the
choice of P. Thus C,, is a triangle and considering {x,, x3, &, x,) and
{x,, x5, W, x5) we easily see that, if x3 # x, # x73, then both x and x5 must be
adjacent to x,.

By Claim 2, x, ¢ V(C,) and since x,u€ E(G), by the choice of P we have
x,eV(C), ie, C,, # C,; since C,, is a triangle, also C,, # C,,. If one of xj,
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x7 (say, x1) is on P (ie., x{ = x,), then deleting from C #'u, x,x and x, x, and
adding x,u/, x,x3 and x, 4, the number of components of C is decreased; hence
both x} and xj are not on P. Considering {x,, x}, X}, x,) we see that xj and
x{ are adjacent; from {x,, X3, X,, x,> and {x,, x7, x,, x,» we further deduce
that both x} and x7 are adjacent to x,.

Evidently x, is on C. In the case x5 = x, (or, analogously, x5 = x,), one
can easily obtain a contradiction; thus both x’, and x3 are not on P and from
{x,, X3, X, X, we see that x’, is adjacent to x, or to x,. In the first case we
replace in C the edges x,x5 and x,x3 by x,x3 and x}x,, while in the second
case we replace x,x) and x,x5 by x,x5 and x)x, for C,, # C,, and u'y,
Xyx, X7, x,x5 and x3x53 by xixY, x,;x5, x,x5, xyu’ and x,u for C,, = C,, In
each case the number of components of C is decreased, a contradiction.

CLamm 4. k<2

Let, on the contrary, k = 3. Evidently at least one of x;, x, is on C.

If x,¢V(C), then, by Claim 2, C, # C,; since obviously x) cannot be
adjacent to x,, we see, considering (x,, x}, x,, X,), that x} is adjacent to x,,
but then, replacing x, x; by x, x, x} gives a contradiction. Similarly, if x, is not
on C, then, by the choice of P, x,u¢ E(G) and, by Claim 1, x,ue E(G) and
C,, # C,. Since obviously x’, cannot be adjacent to x, and {x,, x3, ', x,}
cannot induce K, 3, we have x5u' € E(G), but then the number of components
of C can be decreased joining together C,, and C,. Thus both x, and x, are on
C and C,, # C,. Considering {x,, x}, xj, x,> we see that x;xjeE(G) and,
similarly, each of xj, xi{ which is not on P is adjacent to x,.

Suppose that x, is on C,,. Then x,x, cannot belong to E(C) (since
otherwise replacing in C v'u and x, x, by u'x, and x, x,u, C is extended) and
hence both x, and x3 are not on P, Since x’ is not adjacent to u’ (otherwise
replace u'u, x,x5 and x} x,x} by «'x5, x) x{ and x,x,x,u) and {x,, x5, &, X,}
cannot induce K, j, necessarily x, x5 € E(G), but then, replacing u'u, x,x3 and
x1x,x7 by xix{, u'x, and x3x,x,u, we again have a contradiction.

Suppose that x, is on C,. By Claim 1, x, is not adjacent to u and hence
x,u€ E(G). Clearly C, has length at least 5 (otherwise replace u'u, x,u” and
x, Xy by x}x,, u'u” and x, x,u). If x3x, € E(G), then, replacing x, x5 and x, x}
by x,x5; and x}x,, the number of components of C is decreased. Thus
x,x3 ¢ E(G), and, similarly, x,x’ ¢ E(G) (not excluding the cases x>, =« or
x3 = u'). From this, considering {x,, x3, x3, x,>, we have x,x3 e E(G), but
then, replacing in C x5x,x5, v'uu” and xj x,x7 by x3x53u’'u” and x}x,x7 and
adding to C a new component {x,, x,, ¥), C is extended.

Thus C,, # C,, # C,; from (x,, x5, &, x,) it then follows that x} is
adjacent to x, or to ', but in the first case,-replacing x, x; and x,x’, by x, x5
and xix,, the number of components of C is decreased, while in the second
case, replacing «'u, x,x; and x,x} by w'x5, xjx, and x; x,u, C is extended
through x,. Thus, Claim 4 is proved.
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Now, since x, cannot be adjacent to v/, ie., k > 2, by Claim 4, k = 2, By
Claim 2, x, ¢ V(C,), and since evidently x, € V(C), we have C,, # C,. Consider
(x4, X1, W, X;): X, can be adjacent to neither x; nor u' and hence x u’ € E(G),
but then again C can be extended through x, by replacing «'u and x,xj
by xju’ and x,x,u. This contradiction completes the proof. =

ExaMpPLE. The graph in Fig. 3 is a connected K, j-free N,-locally
connected graph which is maximally non-Hamiltonian (see [9], [10]). Deleting

intermittent edges gives a connected K, j-free graph with 6(G) > 2 and without
any 2-factor.

THEOREM 4. Let G be a 3-connected N,-locally connected K, ;-free graph
which satisfies the assumption (A). Then G is pancyclic.

Proof. (1) Let r be the smallest integer such that in G there is a circuit of
length r, but none of length r+1; suppose that r < |V(G)|. Then for every
circuit C of length r there exists an edge x,u such that ue V(C) and x, ¢ V(C).
Denote by u,, u, the neighbours of # on C. Since G is N ,-locally connected, we
can find a shortest path in N,(u, G) from x, to one of u,, u,; we may assume
without loss of generality that P is a path from x, to u, and that u, ¢ V(P). Let
the circuit C of length r and the edge x,u be chosen so that the path P is the
shortest possible and let x,, x,,...,x, =u; be its vertices. From the
minimality of P we have x;x;¢ E(G) for |i—jj > 1.

(2) At least one vertex x; (1 <j < k-1)is on C. Suppose, on the contrary,
that the only vertex of P lying on C is u,. If x, _, is adjacent to u, then replacing
in C u,u by u, x,-,u we extend C; hence x,_,u¢ E(G) and thus x,_,ue E(G).
Since G is 3-connected, an edge vw can be found such that u, # v # u, vis on
C and w is not on C (otherwise C is a bicomponent of G with biarticulation
{u, u,}). Let v/, v’ be the neighbours of v on C. If wv' e E(G), then, replacing in
C v'v by v'wy, C is extended; thus wv'¢ E(G) and similarly wo” ¢ E(G). Since
{v, w, V", v} cannot induce K, 5, necessarily v'v” € E(G}, but then, replacing
v'ov” by v'v” and u,u by u,x,-,x,_,u, we have a contradiction.

» (2a) By the minimality of P, every vertex of P which is adjacent to u
is on C.



144 Z. RYJACEK

(31{18): the rest of the proof is quite analogous to the proof d the main
lemma of [7] (in part (14), use (2a)), and is therefore omitted. »

™ ——— b—

Fig. 4

ExampLE. The graph in Fig. 4 is a 2-connected N,-locally connected
K, ;-free graph satisfying (A), which is Hamiltonian, but not pancyclic.

Summarizing the obtained and some other recent results, we have the
following table.

Let G be a connected K, ,-free graph on at least three vertices.

If Then References
IV (G)| is even G has a perfect matching
IV(G)| is odd G has an almost perfect matching [11]

G has at most 1 vertex

of degree 1 G has a perfect 2-matching

G is N,-locally connected,

5G) =2 G has a 2-factor

G is Nj-locally connected,
3(G) =22, (A)

G is N,-locally connected,
3-connected, (A)

G is Hamiltonian (7]

G is pancyclic

G is locally connected G is vertex pancyclic 1
G is locally 2-connected G is panconnected 3]
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