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The concept of a consecutive-d digraph was defined by Du, Hsu and Hwang, It
generalizes many interconnection networks of computer and multiprocessor
systems. The problem of characterizing which consecutive-d digraphs are
Hamiltonian has been solved for d = 1 and 4 = 5. In this paper, we settle the
case d =2 and also give some results for d =3, 4.

I. Introduction

A consecutive-d digraph G(d, n, q, r) studied in [4] is a digraph with n nodes
labeled by the residues modulo n, Z,, and such that a link from node i to node
jexistsiff j=qi+r, ..., gi+r+d—1 (modn) for some given r € Z, and nonzero
qe Z,. It generalizes the class of generalized deBruijn digraphs (¢ =d, r = 0)
[2, 9, 12] and the class of Imase-Itoh digraphs (¢ = r = n—d) [10]. A digraph
is said to be Hamiltonian if it contains a spanning circuit as subgraph. The
Hamiltonian property is important in applications since a ring structure
facilitates implementation of certain protocols and algorithms [11]. The
characterization of Hamiltonian generalized deBruijn digraphs and Hamil-
tonian Imase-Itoh digraphs has been completely settled [2, 3, 7]. However, the
story for the consecutive-d digraph is a little different. Hwang [8] studied the
case d = 1. Du, Hsu and Hwang [4] showed that the consecutive-d digraph for
d > 5 is Hamiltonian iff gcd(n, q) < d. In this paper, we settle the case d = 2,
the case 0 < g <d and the case 0 <n—g<d.
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[47]



48 D. Z. DU AND D. F. HSU

Du, Hsu and Hwang [4] showed that if gcd(n, q) > 1, then G(d, n, q, r) is
Hamiltonian iff d = ged(n, g). Thus, without loss of generality, we can assume
ged(n, q) = 1 throughout this paper.

I. d=2

For a digraph G = (V, E). G* denotes the bipartite graph with node set VL V'*
where V* = {v*|ve V}, and with edges f[rom each node u to node v* if link
(u, v)eE. Let ¢ denote the map from link (, v) of G to edge (u, v*) of G*.
Obviously, ¢ is one-to-one and onto. It is a useful fact that a subset H of
E forms a l-factor of G iff ¢(H) forms a perfect matching of G*.

THEOREM 1. G(2, n, q,r) is Hamiltonian iff either G{l,n,q,r) or
G(1, n, g, r+1) is Hamiltonian.

Proof. The “if” part is trivial. Next we show the “only if” part. It suffices
to prove that G*(2,n,q,r) is a cycle using edges of G*(1,n,q,r) and
G*(1, n, q, r+ 1), alternately. Since gcd(n, q) = 1, for every node j, we can find
a node i such that j = qi+r (modn), i.e, (i, j*) and (i, (j + 1)*) are two edges of
G*(2,n, q,r). It follows that G*(2,n,q,r) is a cycle passing through
0*, 1% ..., (n—1)* consecutively and edges of G*(1, n, q, r} and G*(1, n, q,r)
alternately. =

Hwang [8] showed that G(1, n, q,r) is Hamiltonian iff one of the
following conditions holds.

(1) g=1 and ged(n, r)=1.

(2) ged(n, r)iged(n, g—1) and q belongs to the exponent n (mod tn) where
t = ged(n, g—1)/ged(n, ).

Thus, G(2, n, q, r) is Hamiltonian iff either condition (1) or condition (2)
holds for G(1,n,q,r) or G(1,n, q,r+1).

From the proof of Theorem 1, we can see that G(2, n, g, r) has exactly two
I-factors. Clearly, more 1-factors will give more possibilities for a graph being
Hamiltonian. Du, Hsu and Peck [5] improved G(d, n, q, r) by replacing all
loops by a circuit. The resulting digraph is denoted by D(d, n, q, r). They
showed that the connectivity can be enlarged by this simple improvement. The
next theorem shows that the number of 1-factors can also be enlarged by that
improvement.

THEOREM 2. Suppose that G(2, n, q, r) has loops. Then D(2, n, q, r) has at
most 2° 1-factors where s = ged(n, g—1). Moreover, the number of 1-factors of
D(2,n,q,r) can reach 2* if all loops of G(2,n, q, r) are replaced by an
appropriately chosen circuit.

Proof. If s =1, then G(2, n, q, r) has exactly two loops at nodes i and
j which are solutions of the following equations, respectively:
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i=gqi+r (modn), j=gqj+r+1 (modn).

D*(2, n, g, r) can be obtained from G*(2, n, g, r) by replacing two edges (i, i*)
and (j, j*) by (i, j*) and (j, i*). Note that the replacement does not break the
cycle. Thus, D(2, n, q, r) has exactly two 1-factors.

If s > 1, then G(2, n, q, r) has loops iff s|r or s|(r+1). We first consider
the case s|r. In this case, sf(r+1). Thus, G(2,n,q,r) has exactly s
loops, respectively, at s nodes which are solutions of i=gqi+r (modn),
0<i <...<i,<n—1. Note that each node of D* =D*(22,n,q,r) is of
degree 2. Hence, D* is a 1-factor. Moreover, D* can be constructed from
G* = G*(2, n, q, r) by replacing s edges (i, i¥) by other s edges. However,
removing s edges from G* would break it into s pieces. Thus, D* consists of at
most s cycles. Therefore, D* has at most 2° perfect matchings. Now, we choose
the way that connects i,,...,i into a circuit i, —»...—i —i,. Then, the
corresponding D* consists of exactly s cycles. Note that each piece obtained by
removing edges (i,, iff) from G* is of odd length (the number of edges). Thus,
each cycle of D* is of even length. It follows that D* has exactly 2° perfect
matchings, i.e., the corresponding D(2, n, q, r) has exactly 2* 1-factors.

In the case s|(r+1), the argument is similar except that to reach the
maximum number of 1-factors, we should connect nodes with a loop into
a circuit in decreasing direction. m

IIl.d=3,4

First of all, we describe a general approach.

Since ged(n,q) =1, C=G(l,n, q,r+1) is a 1-factor. Let C,, ..., C,, be
the set of disjoint circuits of C. If m = 1, we are done. If m > 1 then we want to
merge the m circuits into one circuit. Assume that nodes i and i+ 1 are on two
different circuits C; and C,. Let x (y) be the node preceding i (i+1) on C ;1 (CY).
Then we can replace the two links (x, i) and (y, i+ 1) by the two links (x, i+1)
and (y, i). C; and C, then merge into one circuit. We call this replacement the
interchange of (i, i+1). Note that the two new links are not in C but in
G(1,n, q,r+2) and G(l1, n, g, r), respectively.

Now, we state a procedure for merging the m circuits in C into one circuit.
Let S be a graph with nodes 0, 1, ..., n—1 and edges (i,, i, +1), ..., (i, i;+1)
such that no chain in S contains more than d—2 edges. Let C' be the
undirected version of C. Suppose that C'uS is connected. We use m—1
iterations. Initially, set P =S and Q = C. At each iteration, choose (i, i+ 1)
from P such that i and i+ 1 are on the different circuits C, and C, of @ and that
either (i—1, i)¢ P or i— 1 and i are on the same circuit of Q. The connectivity of
C' U S guarantees the existence of such (i, i+ 1). Make interchange of (i, i+ 1),
merge C, and C, to give the updated Q and reset P:= P\{(i, i+ 1)}.

Note that according to the procedure, no interchange of (i, i+ 1) follows
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the interchange of (i— 1, i). Moreover, by the property of §, the maximal chain
of interchange-performed edges contains at most d —2 edges. These two facts
guarantee that the new edges used in the procedure all belong to G(d, n, q, r).
Thus to show G(d, n, g, r) being Hamiltonian, it suffices to find the expected §.

Divide 0, 1, ..., n—1 into n’ groups g(0), g(1), ..., g(n'—1). Each group
contains at most d—1 consecutive numbers modulo n. Choose S such that
(i,i+1)eSiffi and i+ 1 belong to the same group. Define a graph H to be with
nodes g(0), g(1), ..., g(n'—1) and such that an edge between g(i) and g(j) exists
iff C' has an edge between a member of g(i) and a member of g(j). Clearly,
C’'uS is connected iff H is connected. In the proofs of the following theorems,
we will specify the group g(i).

THeOREM 3. If | < ged(n, g+ 1) <d and r is even, then G(d,n, g, r) is
Hamiltonian.

Proof. Let p = ged(n, q+1). Define g(i)={r/2+4pi,r/2+pi+1, ..., r/2
+pi+p—1}. Thus, n' = n/p. Note that

q@r/2+p)+r+1=r/2+p(qi+r(g+1)/(2p)+1,
qr/2+pi+ 1) +r+1 =r/2+p(qi+r(qg+1)/2p)+(q+ 1)/p).

Thus, g(gi+r(g+1)/2p) and g(qi+r(g+1)/(2p)+(g+1)/p) are connected
through g(i). Since ged(n’, q) =1, qi+r(g+1)/(2p) runs over 0, 1, ..., "' —1 as
i runs through 0,1, ..., n"—1 modulo n'. Therefore, for every j, g(j) and

g(j+(g+1)/p) are connected. Moreover, ged(n’, (4+1)/p) = 1. Hence, H is
connected. m

THEOREM 4. If 1 < ged(n,gq—1,r+1)<d then G(d, n, q,r) is Hamil-
tonian.

Proof. Let p=gcd(n, g—1, r+1). Define g(i) = {pi, pi+1, ..., pi+p—1}.
Then n’ = n/p. Note that

q(pi)+r+1 = p(qi+(r+1)/p),

gpi+1)+r+1 =p(gi+(r+1)/p+{g—1)/p)+1.

Thus, g(gi+(+1)/p) and g{(qi+(r+1)/p+(q—1)/p) are connected through
g(i). Since gcd(n’, q)=1, qi+(r+1)/p runs over 0,1,...,n"—1 as i runs
through 0, 1, ..., n’—1 modulo n'. Hence, for any j, g(j) and g(j+(q—1)/p)
are connected. It follows that if i = j (mod¢) where t = ged(n, (g—1)/p), then
g(i) and g(j) are connected.

For k=0,1,...,t—1, denote by H(k) the subgraph of H induced by
{g()|i = k (mod¢)}. Clearly, H(k) is connected. Since

gk+(r+1)/p=k+(r+1)/p (modt),
for any k, H(k) and H(k+(r+1)/p) are connected by H. Moreover,
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ged((r+ 1)/p, t) = ged((r+ 1)/p, ', (—1)/p) = 1. Therefore, all H (k) are connec-
ted by H. Hence, H is connected. =

Before presenting the next theorem, we show a lemma.

LEMMA 1. If r=r" (modh) where h=gcd(n,q—1) then G(d,n,q,r)
and G(d, n, q, r') are isomorphic.

Proof. Write r = hx+r'. Let y be a solution of the equation (g— 1)y = hx
(modn). It is easy to verify that the map f: i—i+y gives an isomorphism
from G(d, n,q,r) onto Gd,n,q,r). =

The next theorem is a generalization of the result in [3].

THEOREM 5. If d 23 and 0 <q<d (or 0 <n—g <d), then Gd,n, q,r)
is Hamiltonian.

Proof. We consider six cases.

Case 1: gq=1.If r=n—1 (modn) then gcd(n,r)=1, so G(1,n,1,r) is
a Hamiltonian circuit. If ged(n, r+1) = 1, then G(1, n, 1, r+1) is a Hamil-
tonian circuit. Thus, without loss of generality, we can assume that r # n—1
(modn) and gcd(n, r+1) = m > 1. Clearly, C consists of m disjoint circuits
contaning nodes 0, 1, ..., m—1, respectively. Choose S consisting of m—1
disjoint edges (0, 1), (r+2, r+3), (2, 3), (r +4, r+5), ... which interconnect the
m circuits of C. Then S meets our requirement.

Case 2: q = 2. Since G(d, n, 2, r) has the subgraph G(3, n, 2, r) which is
isomorphic to G(3, n, 2, 0) by Lemma 1, it suffices to show that G(3, n, 2, 0) is
Hamiltonian. Define g(i) = {2i+1, 2i+2} for i=0,1,..., | n/2] —1, and
g([n/2] —1)={0} if n is odd. We prove by induction on k that g(0),
g(1), ..., g(k) are connected in H. For k =0, this is trivial. For k > 0, since
(k, 2k + 1) is a link of C and k belongs to g(i) forsome i =0, 1, ..., k—1, g(k) is
connected to such g(i). However, by the induction hypothesis, g(0),
g(1), ..., g(k—1) are connected. Thus, g(0), g(1), ..., g(k) are connected. Hence,
H is connected.

Case 3: 3 < q<d. By Lemma 1, it suffices to show that G(g, n, g, r)
for g23 and 0 <r <q—1 is Hamiltonian. We first consider the subcase
r<q—2 Set = [nf(qg—1)] . Define g(i) = {i(g—1)+1, ..., (+1(g—1)}
for i=0,1,...,”=2 and g(w'—1)={(n"—1)(g—1)+1,...,n—1,0}. Since
(0,r+1) is a link of C, g(n'—1) and g(0) are connected in H.

Next, we show by induction on k that
(%) g(n—1), g(0), ..., g(k) are connected in H.

Consider k > 0. Since gcd(n, q) = 1, for every i, there exists i* such that
gi*+r+1=i (modn). If (i*-1, i*)eS for some ieg(k), then g(k) will be
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connected to either g(k— 1) or g(k—2) since i—q and i are connected through
edges (i*—1, i—gq), (i*—1, i*) and (i*, i) of C'uS. By the induction hypothe-
sis, we can conclude (»). If such an ieg(k) does not exist, then for every ie g(k),
i*=w(l@—1)+1forsomew=20,1, ..., n"'—1. Since i* =w(g—1)+1 for some
iegk) and w=n'—1,0,1, ..., k—1 implies that g(k) is connected to one
of g(n'—1), g(0), ..., g(k— 1), without loss of generality, we can furthermore
assume that for every ieg(k), i* = w(g—1)+1 for some w=k, k+1,...
.., —2. As w runs from k to n'=2, g(w(g—1)+1)+r+1 will cover the
total distance of (n'—2—k)q(g—1) < ng—(k+1)q(g—1). It covers at most
g rounds of the n-cycle even if the first round is defined to be from
kq(g—1)+q+r+1 to n—1.

If (k(g—1)+q)* = w(g—1)+1 for some w =k, k+1, ..., n =2, then each
round has to contribute one to k(g—1)+j, j=1,..., q. Let v, be the node
contributed by the ith round. Then v,—v;,, must be a constant which clearly
should be +1. Therefore, v, must be either k(g—1)+1 or k(g—1)+4q. Note
that 0 < v, = g(w(g—1)+1)+r+1 < n—1. Thus, v, = k(g—1)+1 implies that
kig—1) =(wq+1)(g—1)+r+1, contradicting 0 <r <g—2, and v, = k(g—1)
+q implies that k(g—1) = wg(g—1)+r+1, also contradicting 0 <r < g—2.

Hence, we have either (k(g—1)+¢)* not in the form w(g—1)+1, 0 < w
<n, or (kig—D+1)* =w(g—1)+1 for some w=n'—1,0,..., k—1. 1t fol-
lows that g(k + 1) is connected to g(n'—1), g(0), ..., g(k—1). Since (k(g—1)+1)*
is in the form w(g—1)+1, k < w < n'~2, we get ((k(g— 1) +1)*, (k(g— 1)+ 1)*
+ l)eS. It follows that g(k) and g(k+ 1) are connected in H. Therefore, (*)
holds.

In the subcase r = g—2, we have gcd(n, g— 1, r+1) = ged(n, q—1) < q. If
ged(n,g—1)>1, then by Theorem 4, G(q,n, q,r) is Hamiltonian. If
ged(n, g—1) = 1, then by Lemma 1, G(q, n, q, r) is isomorphic to G(q, n, q, 0)
which is Hamiltonian.

Case 4. ¢ = n—1. Note that gcd(n, g—1) =ged(n,n—2)=1 or 2. By
Lemma 1, G(d, n, n—1, r)is isomorphic to G(d, n,n—1, r)forr =0orr = 1.
For G(d,n.n—1,0), we choose S consisting of disjoint edges (0, 1),
(n—1,n-2),2,3),(n=3,n—4),... For G(d, n, n—1, 1), we choose S consist-
ing of disjoint edges (1, 2), (n—1,n-2), (3,4), (n—3,n~—4),... It is easy to
verify that the chosen S meets our requirement.

Case 5. q=n—2. Note that ged(n,n—3)=1 or 3. By Lemma 1,
G(d, n, n—2, r) has a subgraph isomorphic to G(3, n, n—2,r)forr' =0, 1, 2.
Set " = [n/27.

For G(3,n,n—2,0), define g(i) = {2i+1, 2i+2} for 0<i<n'—1 and
g(n'—1) = {0} if n is odd and {n—1, 0} if n is even. Clearly, g(n'—1) and g(0)
are connected in H. Furthermore, we prove by induction on k that
gin'—k—1),...,9(0),..., gk) are connected in H where 0 < k< [n/2].
Consider k > 1. Let j=01if nis odd, and j=1 if n is even. Observe that
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(k+j, 2" —k—1)+2—j) is a link of C and k+j < 2k. Thus, g(n'—k—1) is
connected to one of g(0), ..., g(k—1). Moreover, note that (n—k, 2k+1) is
a link of C and 2(w'—k—1)+1 < n—2k < n—k, so g(k) is connected to one of
gn'—k—1),...,g(n'—1), g(0). By the induction hypothesis, g(n'—k—1), ...
...y g(0), ..., g(k) are connected in H.

For G(3,n,n—2,7), ¥ =1, 2, define g(i) = {2i, 2i+1} for 0 <i<n' -2
and g(n' —1) = {n—1} if nis odd and {n—2, n—1} if n is even. By an argument
similar to the above, we can show that H is connected.

Case 6: 3 < n—q <d. By Lemma 1, G(d, n, q, r) has a subgraph isomor-
phic to G(n—gq, n, q, r') for some 0 < r' < ged(n, g—1). Thus, it suffices to
show that G(d, n,q,r) ford=n—q >3 and 0 <r < gcd(n, d+1) is Hamil-
tonian. We divide the proof into three subcases.

Subcase 6.1: 0 <r < d-2. Suppose (d—1)f(n+r). Setn' = [n/d—1)] .
Define

®) (i)={{i(d_'l)"'l'""(i"'l)(d-l)} if0<i<n—2,

{(W"-1d-1),...,0} ifi=n-1.

Clearly, g(n'—1) and g(0) are connected in H. Furthermore, we prove by
induction on k that

(*) gn'—1), g(0), ..., g(k) are connected in H.

Since gcd(n, gq) = 1, for any i, there exists a unique i*eZ, such that
qi*+r+1=i{modn). If (i*, i*+1)e S for some ieg(k), then g(k) is connected
to either g(k— 1) or g(k—2) (g(—1) = g(n’' — 1)). By the induction hypothesis, we
can conclude (*). If such an i does not exist, then for every ie g(k), i* = w(d—1)
for 1 < w < n'—1. (Note that here we consider k > 0, so i* # 0 for ieg(k).) It
follows that g(k) and g(k + 1) are connected in H. If g(k+1) is connected to
g(k—1), then by the induction hypothesis, (*) holds. If g(k+ 1) is not con-
nected to g(k—1), then we also have (k(d—1)+d)* =w(d—1) for some
w=1,...,n"—1. As wruns from 1 to n'~1, —wd(d—1)+r+1 will run from
—d{d-1)+r+1 to —(n—1)dld—1)+r+1 > —nd+r+1 which covers at
most d rounds of the n-cycle. Thus, each round has to contribute one to
k(d—1)+j,j=1, ..., d. Let v; denote the node contributed by the ith round.
Then v;—v;,; must be a constant which clearly must be +1. Hence,
v, =k(d—1)+1 or k(d—1)+d, ie, n—wdd—1)+r+1=k(d-1)+1 or
k(d—1)+d for some w, contradicting (d—1)¥(n+r). This completes our
induction. Therefore, if (d—1)4/(n+r) then G(d, n, q, r} is Hamiltonian.

Similarly, we can show that if (d—1)¥(n+r+2) then G(d, n, q, r+d+1)
is Hamiltonian, by defining

i) = {{i(d—1)+2, L (HDA=1+1} fOgi<n =2,

@ {0 —=1)(d-1)+2,...,0,1} if i=n'—1,
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and by noting that (1, r+2) is a link of C. By Lemma 1, G(d, n, q, r) and
G(d, n, q, r+d+1) are isomorphic.

Thus, we can assume (d—1){(n+r) and (d—1)|(n+r+2). This implies
(d—1)|2. Since d >3, we have d=3. If r=0, then gcd(n,d—1) =2,
so by Theorem 3, G(d, n, q,r) is Hamiltonian. If r > 0, then ged(n, d+1)
=gcd(n,4) > r > 0. Thus, n is even and hence r is even. By Theorem 3,
G(, n, q, r) is Hamiltonian.

Subcase 6.2:. r =d—1. By Lemma 1, G, n, g, d—1) is isomorphic to
G(d, n, q, 2d). If (d—1)4n, then we can prove that G(d, n, q, d—1) is Hamil-
tonian, by defining ($) and noting that (1, 0) is a link of C. If (d—1)f(n+2),
then we can prove that G(d, n, q, 2d) is Hamiltonian, by defining (§) and
noting that (2,1) is a link of C. Thus, we can assume (d—1)|n and
(d—1)|(n+2). This implies r=d—1=2. By Theorem 3, G(d, n,q,r) is
Hamiltonian.

Subcase 6.3: r =d. First, we consider d = 4. If 3}/(n+4), then we can
show that G(4, n, n—4, 4) is Hamiltonian, by defining

0 = {—3i+9, —3i+8, —3i+7} f0<i<n-2,
g {=3(m'—=1)+9, ..., 10} ifi=n—1,

and by noting that g(0) and g(1) are connected through g(3) since (0, 5) and
(=1, 9) are two links of C. If 3|(n+4) then 34(n—1) and we can show that
G(4, n, n—4, —1) is Hamiltonian, by defining

) = {—3i+8, —3i+7, =3i+6) i O0<ign -2,
90 = {=3(w—-1)+8,...,9} if i=n—1,

and by noting that g(0) and g(1) are connected through g(3) since (—1, 4) and
(—2, 8) are two links of C. By Lemma 1, G(4, n, n—4, 4) is isomorphic to
G(4,n,n—4, —1) and hence Hamiltonian.

Finally, we consider d = 3. Since gcd(n, 4) > 3, we have 4|n. We consider
G(3, n, n—3, —1) instead of G(3, n, n—3, 3). Define g(i) = {2i, 2i+1}. Note
that —3(2i)) =2(—3i) and —3(Q2i+1)=2(—3i—2)+1. Thus, g(—3i) and
g(—3i—2) are connected through g(i). Since gcd(n/2,3) =1, —3i will run
over 0,1,...,n/2—1 as i runs through 0, 1, ..., n/2—1 modulo n/2. There-
fore, for any i, g(i) and g(i—2} are connected in H.

We first look at the cycle R = {g(0), ¢(2), ..., g(n/2—2)}. Note that g(4)
and g(6) are connected through g(n/2—2). Now, we break g(n/2—2) into two
groups {n—4} and {n—3}. Then, R will be broken into two connected chains
{g(0), g(2), g(4)} and {g(6), g(8), ..., g(n/2—4)}. However, we have the fol-
lowing facts. '

(1) g(2) and g(n/2—6) are connected through the link (4, n—12) of C.
(2) {n—4} and g(6) are connected through the link (n—4, 12) of C.
(3) {n—3} and g(4) are connected through the link (n—3,9) of C.
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Therefore, g(0), 9(2), ..., g(n/2—4), {n—4}, {n—3} are connected in the graph
H corresponding to the new groups. Similarly, we can break g(n/2 —1) into two
groups {n—2} and {n—1} such that g(1), g(3), ..., g(n/2=3), {n-2}, {n—1}
are still connected in the graph H corresponding to the new groups. Now, we
reset

g(iy ={2i,2i+1} fori=0,1,...,n/2-3,
g(n/2—2) = {n—4},
g(n/2—1)={n-3, n—2},
g(n/2) = {n—1}.

It is easy to see that the corresponding H is connected. Therefore,
G(3,n,n—3, —1) is Hamiltonian. =
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