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If I denotes the set of finite undirected graphs G = (¥, E) without loops and
multiple edges we can define five elementary relations R,on I',i =0, 1, 2, 3, 4,
in the following way: Let G and H be two graphs of I Then we define:

(0) (G, H)e R, iff the graph H arises from G by deleting an edge e of G or
an isolated vertex v of G with H=G—e or H=G-v.

(1) (G, H)eR, iff H arises from G by contracting the edge e = {v,v,} of
G with 1 < y(v;, G} <2 for some i =1, 2, where y(v;, G) is the degree of v,
in G.

(2) (G, H)eR, iff we obtain H from G by contracting the edge e = {v,v,}
of G with y(v,, G} =3, i=1,2.

(3) (G, H)eR, iff H arises from G by substituting the trihedral
ve{v,, v,, v3} of G by the triangle (v,, v,, v5, v,).

(4) (G, H)eR, iff H arises from G by substituting the double trihedral
{ty, u}e{u}*{v}x{v,, v,} of G by the double triangle K,*{w}=K’ with
K, = {u;}»{u,} and K = {v,}»{v,}.

If (G, H)eR,, i=0,1,2,3,4, we can also write GR,H or H = R,(G).
Figure 1 shows R,(2+3) = K, and R, (K3 ;) = K where K, is the complete
graph of order 4 and where K3 5 and K are the two Kuratowski graphs. By
means of these five elementary relations, we are now able to introduce the
following five partial orderings >;,i=0,1, 2,3, 4; If G, H are two graphs in
I’ then we define: (G, H)e >, or G >, H iff either G = H or there is a sequence
of graphs G,,...,G,, n=2, in I such that G,=G, G,=H and
(G,, G,,)€R,, for each v=1,...,n—1 with j e{0,1, ..., i}.

[19]
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It is obvious that >, and >, are the well-known partial orderings called
subgraph relation and subdivision relation respectively where G >, H means
G 2 H and G >, H means G >, H. Furthermore, it is clear that G >, H means
that G is subcontractable to H. >, and >, are two new partial orderings
which are very useful as we shall demonstrate below.

If MI),i=0,1, 2,3, 4, denotes the minimal basis of I" with respect to
>, with M,(I') = {GeT|G is >;minimal}, we obviously get the two inclusion
chains:

) >,2>3;2>,2>,2>, and
(ii) M,(I) € My(I') € M,(I < M, (I = My(I).

Using these notions and denoting the set of all nonplanar graphs in I' by
r',, we obtain two very short and elegant statements each equivalent to
Kuratowski’s theorem:

(ili) M,(Fo) = M,(Io) = My(T'g) = {Ks, K3} and
(iv) M (Iy) = {Ks}.

If & denotes an orientable surface §, of genus pe N, or a nonorientable
surface ﬁq of genus g€ N, or the spindle-surface S, obtained from a torus or
a Klein bottle by contracting a meridian to a single point, and if
I'(¥) = {Ger|G is not embeddable in §}, we can generalize Konig's question
by asking: Is it possible to obtain a Kuratowski type theorem for every
surface §&?

In the case of the projective plane &,, we know the answer. While
C. S. Wang [9] proved that
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(v) The minimal basis M,(I'({¥,)) consists of exactly 103 > ,-minimal
graphs,

R. Bodendiek, H. Schumacher and K. Wagner [2] were able to show that
(vi) M (I'($%,)) consists of exactly 12 > ,-minimal graphs.

In the case of the torus &, H. Glover et al. conjecture that the minimal
basis M (I'(%,)) consists of more than 1000 graphs. R. Bodendiek and
K. Wagner were able to prove that the minimal basis M, (I'(F,)) has at
least 23 graphs. They conjecture that M ,(I'(J,)) consists of less than 30 graphs.

On the basis of these facts it is obvious that the partial ordering > , eases
the problem of determination of the minimal basis M(I'(§)) for every §.
Therefore we shall use >, for constructing a theorem in the style of
Kuratowski’s theorem.

For the spindle surface &,, the problem of determination of the
minimal basis M (I'(S,)) is much easier than the determination of M (I'({,)).
Therefore we restrict ourselves to the investigation of M (I'(S,)). Before we
can start to investigate if a graph G = (V, E) is embeddable in &,, we have to
explain the meaning of the singular point s of S,. Figure 2 shows a planar
model of &,. In order to get useful embeddings of graphs in &,, we have to
postulate that the singular point s of &, is at most an element .of the vertex set
V of G = (V, E) or, in other words, that s cannot be an inner point of any edge
in embeddings of G.

Fig. 2

Furthermore, the authors proved in [1] the following theorem:

(a) A graph G = (V, E) belongs to M,(I'(S,)) iff G is not embeddable in
©, and R((G) is embeddable in &, for each i=0, 1, 2, 3, 4.

(b) A graph G = (V, E) is embeddable in &, iff there is at least one vertex
veV such that the following condition holds: The graph G -v, arising from
G by deleting v and all edges incident to v, is so embeddable in the plane (or in
the sphere) that exactly two countries of G+v contain all the vertices of
G which are adjacent to v on their boundaries.

Now, let G = (V, E) be a graph in M ,(I'(&,)). Then we know that G is not
embeddable in S,. According to the definition of S,, G is not embeddable in
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the plane. Hence, G contains a subdivision graph S(K) or a subdivision graph
S(Ka,3). So it is obvious that the investigations are simplified if we know all
possibilities of embeddings of S(K) and S(Kj ;). Figure 3 shows the two
topologically different embeddings of S(K, ;) in &, and the three topologically
different embeddings of S(K,) in S,. By means of Fig. 3 and of the above
theorems (a) and (b) we are able to prove the following theorem (cf. [1] and

[51):

LA
N
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Fig. 3

THEOREM 1. The twelve graphs G, = KUK (the union of two disjoint
Ki), G,=K,*1+xK, (two disjoint K are stitched in one vertex),
G, = K;*K, K, (two disjoint K are stitched along an edge), G, = 1K} 3,
G, =2+3#3, G, =K, and G, Gg, ..., G,,, shown in Fig. 4, belong to
M (I(S)).

Remarks. More precisely, we can say according to [5] that there are
exactly three graphs G in M,(I'(S,)) with G2 S(K;) and G P S(K,,).
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Furthermore, it has been shown in [5] that every graph Ge M,(I'(S,)) with
G # G,, G,, G, is 3-connected and contains a subdivision graph S(Kj ;).
Therefore, it remains to determine the set of > ,-minimal graphs G in I'(&,)
with G 2 S(K, 3).
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In order to describe the method of determining this set, we introduce some
new notions and notations. Let G = (V, E) # G, G,, G, be a 3-connected
graph in M,(I'(S,)) with G 2 S(K3 ;). As S(Kj,;) is embeddable in S, the
graph G contains edges or vertices that do not belong to §(Kj ;). If such an
edge e joins two vertices u and v of S(K 3 3), then e = {u, v} is said to be a chord
of S(K3,3). For example, the > ,-minimal graph G = G, = K of Theorem 1
arises from S(K,.)= K3, by adding six chords. Let G* be the induced
subgraph with vertex set V* = {ve V|v does not belong to S(K, )} and with
G*=X,u...vX,, neN,, where X,, ..., X, are the components of G*. As
G is 3-connected, each component X, i=1,..., n, is joined to vertices of
S(K3,3) by edges which are said to be the bridges of X;. These bridges with their
endpoints form a bipartite graph, denoted by Y;. The union graph Q, = X, U Y,
i=1,...,n, is said to be a relative component of G with respect to S(K, 3).

The graph X; = X (Q,) is called the center of Q,. The order of X is called
the order of Q,. A relative component Q, of order 1 is called a star, analogously
Q, of order 2 is called a double star. The vertices of ¥, belonging to S(K ;) are
called the basis points of Q,. As a consequence, we know that G consists of
S(K;,3),m(eNy)chordse,, ..., e, of S(K, ;) and n (e N,) relative components
0 ..., 0, of G with respect to S(K;3), and that G is the following union
graph:

(*) G=S(K;3 yuQu...u@,ule,...,e,}, m+neN.

For example, G = G, = 1¢K, 5 is the union graph G, = K, 30, where Q,
being a star, is the only relative component of G with respect to K,  with six
basis points. Analogously, G, is the union graph G = K; ;uQ, vQ,, where
Q,, Q, are two stars with the same three basis points.

The equation (») expresses the fact that we know all > ,-minimal graphs of
M, (F(S)\{G,, G;, G4} iff we are able to answer the following three
questions:

(1) Which chords e,, ..., e, of S(K, ;) might be added to S(K, ,)?

(2) What can we say about the center X, = X(Q,) of the relative
component @, = X,uY, i=1,...,n of G with respect to S(K3;)?

(3) What can we prove about the basis points of ¢, = X;,u Y, i=1,..., n?

In order to answer these questions it is useful to define two more notions.

The trace T(Q) of a relative component Q of G with respect to S(K3,3) is
the union of the set of all edges of K; ; on which at least one basis point lies
which is an inserted vertex of Q, and of the set of all vertices of K, 5 which are
basis points of Q and are incident to no edge of T(Q).

Furthermore, a relative component Q of G with respect to S(K, 3) is said
to be of type q iff all the basis points of Q lie on a (subdivided) quadrilateral g of
S(K3.3). If the basis points of Q do not lie on a (subdivided) quadrilateral g of
S(K3.1) we call Q of type g.
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In this paper, we shall investigate some properties of relative components
Q=XuYof Ge M (I'(S)\{G,, G,, G} of order | X(Q)| = 2 and prove some
statements on the structure of Q. We start by repeating a theorem proved in an
earlier paper:

THEOREM 2. If a graph Ge M (I (€)\{G,, G,, G,} contains exactly one
relative component Q with respect to S(K, ;) with G = S(K3.3)u(Q, then G is of
type 4. If Q is a star, then necessarily G =G, = 1»K, 5.

Proof. The second part of the statement is clear. The proof of the first part
is a little more difficult. We suppose that all basis points of Q lie on
a quadrilateral g of S(K3 ;) with g =(1, 2, 3, 4, 1). As Q is the only relative
component of G with respect to S(K3 ,), all main paths incident to the main
vertices 5 or 6 of S(K, ;) have length 1. If we apply the clementary relation R,
to the vertex 5 or 6, then we know that the graph R,(G) is embeddable in S,
and that the graph quQ is planar. Hence G is embeddable in &,. This
contradiction proves the first part of Theorem 2.

A similar theorem is

THEOREM 3. Ifa > ,-minimal graph Ge M (IS )\{G,, G,, G} has arel-
ative component Q = X 0Y of order |X(Q) =2 with respect to S(Kj 3),
whose trace T(Q) contains the four edges of a quadrilateral q of K 5 5, then Q is of
type q.

Proof. Suppose that Ge M, (I'(S))\{G,, G,, G;} is a graph with a rela-
tive component Q of order > 2, whose trace 7(Q) contains the four edges of
a quadrilateral q of K3 5 and which is of type q. Then we consider the two
graphs G’ and G*, where G’ = S(K; ;)u @ and G* arises from G by substituting
Q by the star Q* with the same basis points, or, in other words, by contracting
the center of X (Q) to a single point. While G* is embeddable in &, because of
the minimality of G, the embeddability of G' in S, follows directly from
Theorem 2. Because of the assumption that the trace T(Q) contains the
quadrilateral q there are two possibilities («') and («”) of embedding the relative
component Q of G’ = §(K;,3)uQ in &, illustrated in Fig. 5. In the embedding
of G*, we may not substitute Q*, lying in ¢, by Q for G is not embeddable in
S, . But therefore we know that Q of G' = §(K,3)uQ is in («') and in ()
normally embeddable for a cleavable embedding of Q might be possible at
most in (o”) of Fig. 5. But in this case, we can identify the two vertices 4 of Fig.
5 so that Q is even embeddable in («”). Therefore we are able to substitute Q*
by Q in each embedding of G* in S,. Hence G would be embeddable in S, .
This is a contradiction to the hypothesis.

Before we prove further propositions concerning the structure of relative
components Q of Ge M, (F(S)\{G,, G,, G,} we shall try to answer the
question how many relative components are possible in the representation of
G. The first statement is
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THEOREM 4. For every graph Ge M, (I'(S,)\{G,, G,, G,} the following
holds: For every S(K, i) with G = S(K,.3), G contains at most two relative
components Q,, Q, of order =1 and of type q.

Proof. Suppose that G is a graph in M, (I'(S)\{G,, G;, G5} which
contains three relative components Q,, Q,, @, of order > 1 and of type § with
respect to S(K3.3). As G is 3-connected G contains at least three basis points
b,, b,, b, so that for at least one of the two triples {2, 4, 6}, {1, 3, 5} of main
vertices of K;;—without loss of generality, we can choose the triple
{2, 4, 6} —the following holds: For each i = 1, 2, 3, b, is either equal to the
vertex 2i or equal to an inserted vertex of one of the three main paths of S(K, 3)
(ie. the subdivided edges of K, ;). By applying R, to G several times if
necessary we get

G>,8(K335v0,00,00;>,K;33,00TU03U0Y,

where Qf, 0%, Q% are stars whose basis points are either 2, 4, 6 or 1, 3, §.
Hence at least two of these three stars have the same basis points. We can
assume without loss of generality that Qf, 0% have the basis points 2, 4, 6 so
that

G>,Ky30Qtu0t >, 25383 =G,
That is a contradiction to the minimality of G, which completes the proof.

Now, we turn to the question of whether there are also >, -minimal
graphs Ge M, (I'(3)\{G,, G,, G,} containing relative components Q of type
q with respect to S(Kj ;). The first statement is given in:

THEOREM 5. If Q is a relative component of a graph GeM (I'(S,))
\{G,, G,, G;} of type q and of order = 2 with respect to S(K3 3) < G, then the
trace T(Q) is necessarily equal to one of the five cases (i)}{v) illustrated in Fig. 6.
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Proof by verifying the cases (i}{v) to be the only possible ones for the
trace T(Q).

The next theorem 1s a refinement of Theorem 5:

THEOREM 6. If Q is a relative component of a graph GeM, (I'(S,))
\{G,, G,, G} of type q and of order > 2 with respect to S(K, ;) € G, then Q has
one of the following five properties (1)5):

(1) Q contains three or four basis points which are main vertices of S(K3 s)
(i.e. vertices of K, i) and which lie on a quadrilateral of S(Kj ,).

(2) Exactly one main path P (i.e. a (subdivided) edge of Ki,) of the
quadrilateral q—we can choose the main path P=1...2 without loss of
generality — contains an inserted vertex of P. All other basis points of Q lie on
P or are main vertices of q.

(3) Each of exactly two adjacent main paths P, and P,—we can choose
P,=1...2 and P, =2...3 without loss of generality—contains at least one
basis point of Q as an inserted vertex. Each other basis point of Q lieson P, UP,
or is equal to the fourth vertex 4 of q.

(4) Each of exactly two disjoint main paths P,, P, of q—we can choose
P,=1...2 and P, =3...4 without loss of generality—contains at least one
inserted vertex as basis point of Q. All other basis points of Q lie on P, UP,.

(5) Each of exactly three main paths P,, P,, Py—we can choose
P,=1...2,P,=2...3, P, = 3...4 without loss of generality — contains at least

one inserted vertex as basis point of Q. All other basis points of Q lie on
P,UP,UP,.

The proof follows from Theorem 3.

In the following, we investigate the centers of the relative components Q of
Ge M, (@ )\{G,, G,, G,} with respect to S(K3 3) S G. Due to [4] we know
that the center X (Q) of every relative component Q of G is a Husimi tree. Now,
we want to try to improve this result.

In order to do this, let Q be a relative component of order > 2 with respect
to S(K3 3) € G. Furthermore, let G* be the graph arising from G by contracting
X(Q) to a single point or, in other words, by substituting Q by the star Q*
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having the same basis points as Q. Because of the minimality of G, the graph
G* is embeddable in S,. For every embedding of G* in €, the star Q* lies
cither inside a (subdivided) quadrilateral or inside a (subdivided) hexagon of
S(K,4). If we denote this n-gon, n = 4 or 6, of S(K3 ;) by Z, we can say that all
basis points of Q* lie on Z. If we substitute @* by @, then the graph ZuQ is
not planar because otherwise G would be embeddable in S,. By means of
Theorem 1 of [8] we are now able to characterize the graph Z u Q. Before we
carry out this in an elegant way we make the following definition. Let Q, Q' be
two relative components of G with respect to S(K; ;). Then Q contains
a subdivision S(Q’) iff the basis point set of Q’ is a subset of the basis point set of

Q with S(Q) < Q.
Now it is possible to state a theorem in the style of Theorem 1 of [8]:

THEOREM 7. If Q is a relative component of Ge M (F(@ )\{G,, G,, G3} of
order = 2 with respect to S(K; 1) € G, then Q necessarily contains a subdivision
of one of the four relative components Q, Q4, O3, Q} illustrated in Fig. 7 (where
Z has the meaning introduced above).

Proof. As Theorem 7 is a generalization of Theorem 1 of [8] it will do for

b,y by
V4 z
b, b,
b, b,
Q) Q)
b,
r4
b, b,

Fig. 7
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our purpose to say that the proof of Theorem 7 follows from the proof of
Theorem 1 of [8].

Now, we are leaving the centers for a moment and prove another relevant
theorem concerning the vertices v of Ge M (M(SIN\{G,, G,, G,} of degree
¥(v, G) = 3.

THEOREM 8. Let v be a vertex of a > ,-minimal graph Ge M (I'(3)))
\{G,, G,, G} of degree y(v, G) = 3, and let v,, v,, v, be the three vertices of
G adjacent to v. Then the set {v,, v,, v3} is independent, i.e. no two vertices in
{vy, v,, v3} are adjacent.

Proof. Assume that v, and v, are adjacent in G and that the edge
e = {v,, v,} joins v; and v, in G. Because of the minimality of G, the graph
G —e is embeddable in &, . If there is an embedding of G—e in &, such that v is
not equal to the singular point s of S,, then it follows from y(v, G—e) =3
that we can embed the edge e in &, without crossing any edge of G —e. Hence
G is embeddable in &, . Therefore it follows from this contradiction that there
exists an embedding of G—e in &, such that v is equal to the singular point
s of S,. Because of y(v, G—e) = 3 we can reduce this case to the above one by
finding a new embedding in’ which v, or v, is equal to the singular point
s of S,. Similarly to the first case, we can add the edge e without crossing other
edges of G—e. So we get a contradiction again. That proves Theorem 8.

Now we are interested in the main vertices of degree 3 of S(Kj3)
S Ge M (TS )\{G,, G, G,}.

THEOREM 9. If {1, 3, 5} and {2, 4, 6} are the two triples of main vertices of
Ge M, (I'SO\{G,, G,, G3} and if y(1, G) = 3, then the vertices 2, 4, 6 are
adjacent to 1.

Proof. The proof is quite involved. Therefore we have to omit it.

THEOREM 10. The set of all graphs Ge M, (I'(SI\{G,, G,, G} with
G 2 8(K,.3) and G 2 S(K14) and with the property that G contains only one
relative component Q with respect to at least one S(K, ;) € G is empty.

Proof. Assume that there is a graph GeM, (I' (S ))\{G,, G,, G,} with
G = S(K33)uQ and G $ S(K, 4). According to Theorem 2 we know that Q is
of type 4. If {1, 3,5} and {2, 4, 6} are the two triples of main vertices of
S(K3,3) then at most two vertices in {1, 3,5} are basis points of Q.
Analogously, at most two vertices in {2, 4, 6} are basis points of Q. Therefore
there are at least two main vertices of S(K, 3}—we can choose the vertices
1 and 2 without loss of generality—of degree y(1, G) = y(2, G) = 3. As Q@ is of
type g, at least one of the five main paths which are incident to 1 or to
2 contains an inserted vertex. We can choose the main path 1...2i,i=1, 2, 3,
without loss of generality. If we apply R; to 1, then we know because of the
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Fig. 8

minimality of G that the graph R,(G) is embeddable in €,. If we denote the
three vertices adjacent to 1 and lying on the main paths 1...2,1...4,1...6 by
b,, b,, b, then it follows from b, # 2 that R,(G) consists of the new §'(K; 3)
(Fig. 8) (instead of S(K 3 3)) with the two triples of main vertices {b,, 3, 5} and
{2, 4, 6}, the three main paths b,...2, b,...b,...4 and b,...b,...6, the same
Q and the additional edge {b,, b} with R,(G) = §'(K; ;)uQu{b,, b;}. Then
it follows from this representation of R,(G) that the graph G = S(K, 3)u@ is
embeddable in &,. This contradiction proves Theorem 10.
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Remark. 1t follows from Theorem 10 that every graph GeM,(I'(S,))
\{G,, G,, G,} that contains only one relative component Q with respect to one
S(K3.3) € G contains an S(K, 4) as a subgraph. Figure 9 illustrates this remark.
It exhibits the two > ,-minimal graphs G,, = K3,uQ and G,, = K5 ;u(Q".

We finish this paper by formulating the following conjecture: M (I'(S,))
consists of exactly 12 graphs.
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