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We consider a numerical solution of a two-point boundary value problem
' (x) = f(x)u(x), xe[0, T], u(@}=¢, v'(T)=0, where ¢, TeR (T > 0) and
f is a nonnegative function with r continuous derivatives. We prove a sharp
lower bound on the error of any algorithm that uses n values of f or its
derivatives to approximate u. We show the algorithm ¢° with best convergence
properties, based on a spline approximation of the function f. The algorithm
uses # values of f, and has the error o(n™"), as n - + 0. A multiple shooting
method is used to implement the algorithm ¢°. The number of arithmetic
operations needed to compute approximations to the solution u at n points is
proportional to n, i.e., ¢* has almost minimal cost. We report some numerical
experiments which confirm theoretical properties of ¢

Introduction

In this paper we deal with a numerical solution of the following problem. Let
feC ([0, TT)} (r = 0) be a nonnegative function, ¢, T be real numbers and
T>0. We wish to find a function u = u, such that

(1.1) Wix)y=f(xu(x), xe[0,T], u@=c, w(T)=0.

There exists a unique solution u, to this problem. Equivalently, the function u ,
is a unique solution of some optimal control problem (see (2.1)).

There are many well-known numerical methods for solving (1.1), so that
from a practical point of view the problem (1.1) causes no difficulties. However,
some theoretical questions remain open, even for this simple problem. Any
method for solving (1.1) is based on some information about j, which usually
consists of the values of f or its derivatives. For example, this kind of
information is used in the finite element method in which integrals of f
appearing in the formulation are replaced by quadrature formulas.
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In this paper, we ask what is the best use that can be done of this
information. More precisely, we are concerned with the following question:

What is the maximal speed of convergence of an algorithm that uses
n values of f or its derivatives, as n - +00?

By the error of an algorithm we mean the maximum norm error in [0, T,
and we study its asymptotic behavior at each f. In a different setting, a similar
problem was recently considered in [7], where optimal properties of the finite
element method were shown.

Before giving the answer to our question, we study a spline algorithm ¢°,
which will be shown to have the best convergence properties. In this algorithm,
we first replace f by a spline ¢° which interpolates f at n points from [0, T].
Next, we approximate the solution u® of the problem

(1.2) W) =g (ulx), xe[0, T], u(0)=c, u'(T)=0.

The idea of substituting an original problem by a simpler one is commonly
used in numerical analysis, for instance, for an integration problem (inter-
polation quadratures), or for the problem of solving nonlinear equations
(Newton’s method). Expected advantages in our case are due to the fact that g
has a simple piecewise polynomial form, in contrast with a possibly very
complex form of the function f. Therefore, we can easily compute information
about g° (e.g. derivatives or integrals of g°) which may be very expensive or even
impossible to compute for the function f (see Section 3.1).

The spline g* which substitutes f in (1.2) is given in Section 3.2 using the
values of [ at n (possibly equidistant) points [rom [0, T]. We show that ¢°* is
well defined, and that its error. is o(n™"), as n— 4 o0, for any nonnegative
function feC"([0, T]).

The algorithm ¢° is not meaningful in practice unless we show a way of
computing the function u° from (1.2). Following the suggestions of [6] for
one-dimensional problems, we apply to (1.2) the multiple shooting method. To
obtain o(n"") approximations to u, at m points from [0, T], m = & (n), we
need to solve a linear system of 2m equations. The matrix of this system
is five diagomal (the bandwidth is independent of r), and its condition
number is O(m). It is lo note that in difference or finite element methods
the bandwidth of a matrix depends on r, and the condition number is usually
O (m?). We compute this matrix with the cost proportional to r? m arithmetic
operations.

To solve the linear system, we use a stable Gaussian elimination, which
requires 8m —4 arithmetic operations (independently of r). The total cost of the
algorithm ¢° is therefore proportional to n, i.e., proportional to the number of
evaluations of f which are used as initial data. Thus, ¢* has almost minimal
cost.

In Section 3.4 we describe numerical tests which confirm theoretical
properties of the algorithm ¢*.
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Finally, we address the main question: is it possible to define an algorithm
with convergence faster than that of ¢*? We show that the answer is negative, It
is proven in Section 4 that the convergence of any algorithm based on n values
of f or its derivatives cannot be faster than 6,n~", where the sequence {5,} may
tend to zero arbitrarily slowly. Furthermore, the set of functions for which the
convergence is no faster than §,n~" is dense. This means that the algorithm ¢*
enjoys best convergence properties.

2. Formulation of the problem

Let f: [0, T] - R be a continuous nonnegative function and D = {u: [0, T]
- N: u0)=c, ueC*([0, 7))}, where T>0 and ¢ # 0. The problem con-
sidered in this paper arises, for instance, when dealing with the following
optimal control problem:

Find u =u,eD such that

(2.1) [[(u 2 +f(x)(u(x)}*]dx — min  (in D).

[t is known that the unique solution u = u, of (2.1) is also the unique
solution of our boundary value problem

{ (\)—/(x)u(\) ye[0, T7.

2 0O)=c, u(T)=10

(see e.g. [6], p. 532).
We wish to approximate u, from (2.2) for functions [ from the class

={f feC{[0,T], f(x}=0}. r=0.

We assume that information about f is provided by » values of f or its
derivatives at certain points from [0, T]. More specifically, by information we
mean a sequence N = {N,}%,, where the mapping N,: C"([0, T])— R" is
defined by

2.3) N, (f) = LF5 ), ... £ 7,

for points t"e [0, T] and 0 <, ..., i" < r. The numbers /], ¢} are given, and
i 1 n

i} and t§ may be chosen as functions of the previously computed values

f“"l’(t’{ /"J sy (=2, .., ), so that information N ={N,} /-,
may be adapuve VdrlOLlS ChOlCEb of if, ¢ (j=1,2,...,n) define different
information sequences N.

By an algorithm ¢ using information N we mean a sequence ¢ = {¢, )=,
where

(2.4) ¢, N,(F)—-C({0,T]
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is an arbitrary mapping. This means that the algorithm ¢ gives a sequence
{¢,(N, ()}, of continuous functions which approximate the solution u,.
The nth approximation ¢, (N, (f)) is based on the values (2.3). We stress that we
do not impose restrictions on the mappings ¢,, so that a large class of
algorithms is considered.

The error of an algorithm ¢ at f is defined as

(2.5) e (. N,J)=|lu;— &, (N, (... SeF.

where |u],, = SUPyeo.17 1 (X)| for ue C([0, T7]). We arc interested in algorithms
with minimal errors and minimal cost. They are studied in subsequent sections.

3. Algorithm ¢*

In this section we define an algorithm ¢* with the error of order o(n™"), as
n— +cc, which requires O (n) arithmetic operations to compute approxima-
tions to u, at n points from [0, T].

3.1. Preliminary remarks. Denote the problem (2.2) by P(/). We apply the
following idea for approximating the solution of P(f):

(S.1) replace f in (2.2) by a continuous function ¢ of a simple form, using
available information on f,

(S.2) approximate a solution u, of P(g).

That is, we replace the original problem P(f) by its approximation P(g).
We shall see that for our problem, a suitable choice of ¢ will lead to the
minimum error approximation to u, (see Sections 3.2 and 4). Possible
advantages of the procedure (S.1), (S5.2) are the following:

(a) g can be chosen in a convenient simple form. It is then possible to
compute easily information for g which is not available (or is expensive)
S (see Sections 3.2, 3.3). It is therefore more convenient to deal with a problem
P(y) instead of P ().

(b) Information about f is used only in the first step (S.1). The step (S.2)
does not involve extra evaluations ol f, no matter what method is used to solve
P(g).

Standard considerations show the following properties of the perturbed
problem:

LeMMA 3.1, Let feC([0, T]) be a nonnegative function. There exists
a positive number 6 = 3(f) such that for any ye C([0, T7) with |g—/f1 .. <
we have:

(1) P(g) has a unique solution u,;

(i1) Ju, () —u, (N <D lg—fll,. xe[0, T]., where D, is a constant which
depends on | fl,, cand T =

oy
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It follows from (i) that the procedure (S.1), (S.2) is well defined for feF,,
provided that ||g—f|, is sufficiently small. In the next section, we use (ii) to
define an algorithm with the error o(n™"), based on a spline approximation of f.

3.2. Spline algorithm ¢°. To define the algorithm ¢°, we first appro-
ximate the function f by an interpolating spline ¢ Let the points
O=x4<x;<...<x,=T (m=1) define a partition of [0, T] and let

h, =max(x;+;—x]: i=0,1,...,m—1). We assume that A, = O(m™1'), as
m— +o0. Let r 20 and f EC' [0 T]) In deh subinterval [x X;+1] choose
k = max(r, 1)+ 1 distinct pomls 2, xy=Zl<h <. <z <= x4,
(i=0,1, m—1). We define ¢* in [x;, x;+ ] as the interpolating polynomial

of degree s k—1 satisfying
Fliy= ), j=12,... k

The spline ¢* is then continuous in [0, T7]. Using twice the error formula for
Lagrange interpolation, one can show that

(3.1) " () =f XN <e(f,r,mm™,  xe[0, T],

where e(f, r,m)—»0 as m - + o,
To construct ¢* we need information about f given by n=m(k—1)+1
evaluations ol [

32)  NL(/)

= [/("l) / g) . -,./-(Zl?—l)i "‘a./(z'ln—l)if(z’_;,,—l)a . f Zz' ll) f T)]T
To complete the definition of N§ for all n, we set Ny =Ny = ... = Nj_; =0
and N0, , =Ni,o= ... =Ny—a =N, forn=mk—-1)+1, m=12,....

let feF,. The algorithm ¢° = {¢;};=, that uses information
N = {N;}% | is defined for n=m(k—1)+1 (m=1,2,..) by

(3.3) dn (N2 () = v,

where u* is a solution of the problem

(3.4) ' (x)=g*x)u(x), u@)=c, u'(T)=0.

The definition of ¢% is completed for all n by setting ¢} =3 = ... = i1 =0
and @S, =Pia= ... =iy, =0¢) for n=mk-1)+1 m=1,2,..)

Due to Lemma 3.1, the transformation ¢3 is well defined for sufficiently large n,
and we have the following error bound

THEOREM 3.1. For any r2 0 and f€F,,
e, (d’s’ Nﬂ?/) = 0(” r)’ n— 400,

Proof. Since m = 0(n), the desired relation follows from (ii) of Lemma 3.1
and (3.1). =
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Remark. Information N® is nonadaptive in the sense that the points 2! in
(3.2) can be chosen independently of the function [ For instance, they can be
taken as equidistant points from [0, T7].

Though the algorithm ¢* has the error of order 0 (n™"), its practical value is
small unless we show a way of computing u* from (3.4). In the next section we
study the implementation of ¢% taking advantage of a piecewise polynomial
form of ¢

3.3. Implementation of ¢*. Since the [unction ¢* 1s a piecewise polynomial
of low degree, we can easily compute various types of information on ¢° (e.g.
the values of g*, its derivatives or integrals). Thus, any commonly used method
can be applied to (3.4). We follow suggestions of [6] [or one-dimensional
problems, and apply the multiple shooting method.

Denote by u;; the solution of the inttial value problem

(3.5) w(x) =g xu(x),  ulx)=90;,, ux)=20,,,
where x e[ x;, x;.,], d;; is the Kronecker delta,j=1,2and i =0, 1, ..., m—1.

Let a vector [s4, 56, 845 814 .0y 8,0 Su] ' be the solution of a linear system of
equations

biyy ity si—=siyy =0,
(3.6) di+]Sl'+rl'+l‘\‘:'—Si|1 =0, ’=0, l,...,”?-‘—],

\ — ’ ‘I —
So =0, S, =0,

where. aiy = uh; 0640 by =i (a0),  rie = upi(xioy) and  diy,
=, ;(x;4+,). The solution u* of (3.4) then has the form

(37 wi(xy=suy ()¢ Uy (%), xelx.xi00], i=0,1,..., m—1.

Thus, v*(x;}) =s; and (¥)(x)=si. i=0,1,..., m See [6], pp. 483-487 and
475.
We wish to approximate the values s,, which satisfy (see Theorem 3.1):
max |s,—u (x)l=o0(n"") (=0(m™),
I 2i€m
as m— + o,
In matrix form. (3.6) reads (m = 3)

ap 0 -t 0 0 0 5o —b,
ry =10 0 0 0 8 —d,
(3.4) 0 II)2 a, O -—-1 0 ¥ _ 0 .
0 d, r» =L 0 0 5y 0
0 0 0 by uy O 5 0
L0 0 0 dy ry —1] |8y 0]
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The matrix A,, of this system is nonsingular for sufficiently large m, since (3.4)
has a unique solution.

To compute approximately s;, we first have to approximate the unknown
numbers a;, b;, d;, r; in (3.6). We use their Taylor expansions d,, Bi, cf,-, Fi
respectively. We set

r+1 1

Bi+1 = Z Fu(k+1)(xi)(xi+l—xi)ks
k=0

R |
d|'+l = 2 C_u(lk)l(x)(xl'l‘l l)ka

i=0,1,...,m—1.

Replacing u, ; by u, ;, we obtain similar formulas for d;; ; and #;;,. Using
(3.5) to express the derivatives of u;;, we sec that the approximations d;4,,
biy1, div1, Fisy are based on the values ¢*(x,), (¢°) (x), ..., (§°)"(x,). Here and
above, a derivative at x; is meant as a right hand derivatlve This information is
readily available, since g* is a polynomial in [x;, x;+,]. Observe that for the
original problem with f, the Taylor expansion could not be used as above,
since the derivatives of f may be unknown (see (3.2)).

By definition, we have for feF, that

(3.9) g, = max max(la,—d,, |b,=b|, |d;—d], Iri—#))
1<ism
_Jo(m—1) if r=0,
S lomTerYy ifrz 1,

[1 L)

as m— + o, where the “0” and “O” expressions depend on f, r and T
Replacing a;, b,, d,, r, in (3.8) by 4;, b;, d;, ¥, respeclively, we get a new system
with a matrix A,,,. We now show thdt the new system has a unique solution
(36, $15 $4s ovvs Sm—15 Sm-1, 5,17, and that for feF, we have

(3.10) max [§;—u (x)| =0(m™"), m— +o.
1€i€m
We [irst note that a; = 1+o(m") d=1+0(m?), r,=x—x;_1+o(m™?)
and b, = g*(x;— ) (x;— x;— ) +o(m™'), whlch yields, after some calculations,
that |A4,)l.=0(1) and |A,'|,=0(m), as m— +o0. Since A,
= A, (I-+A; (A,—A,)) and |4, — Al = o(m~" ") (see (3.9)), A, is nonsin-
gular for sufficiently large m. Furthermore, it is known that (see [8])

. _ o (1) if r=0,
ma I5 =81 = 0 14n "l el = {O(m""“)) i r 31

1€i€m

which proves (3.10). Thus, the numbers §; approximate u,(x;) with the same
error as §;, i=1,2,...,m

To compute §;, we use Gaussian elimination without pivoting for solving

the system with the matrix /Tm. For stability reasons, we first slightly modify
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A,. Note that the numbers d,, d; and F; are positive for sufficiently large m,
while b, may assume negative values. It is possible however to show that
max |max (b, 0)—b] = o(m~"*Y), m - + co. Hence, negative numbers b, can

1€ism

be replaced by 0 without affecting (3.10). The modiﬁqd matrix 4, has therefore
the form (3.8) with a;:= d;, b;;= max (b, 0), d;:=d; and r;:=F,.

Eliminating superdiagonal nonzero elements we get relations for com-
puting §,, $;, ..., 5,

(3.11) {P"FO’ pi-1 = (max(h;, 0)+d, p)/@+Fp) i=mm—1,..1,

SO=C, '§l=(di—ffp'_1)sl_l’ l=1,2,...,n1.

Since d,+#;p, >0 (i=1,2,..., m), this algorithm is well defined. Gaussian
multipliers used in the elimination (see [8]) are equal to 1/(d;+7;p;) and p;,. It
is not difficult to see that they are nonnegative and bounded {rom above by
a constant independent of m, which indicates stability of the elimination (in the
sense of Wilkinson [8]).

We now consider the cost of the algorithm ¢*. In the first step, we compute
coefficients of the linear system to be solved, that is, we evaluate ¢*(x),
@) (x), ..., (¢°)(x,)) and next compute d,, b,, d; and 7, (i =1, 2, ..., m). Since
¢' is a polynomial of degree < max(r, 1)in [x;, x;+ ], the number of arithmetic
operations in this step is equal to /(r) m, where [(r) depends only on r, and is
proportional to r2. In the second step, we solve the linear system of equations
by means of (3.11), which requires 5m — 2 multiplications and 3m— 2 additions.
Note that this part of the cost is independent of the order r.

The total cost of the algorithm ¢* is therelore equal to (/(r)+8)m—4
arithmetic operations. Since ¢* is based on n = max (r, 1)m+ 1 pieces of initial
data (see (3.2)), its cost depends linearly on n. This yields that the algorithm ¢*
has almost minimal cost.

Remarks. 1. As pointed out in [5], the algorithm (3.11) is well behaved
in the following sense. Denote by §; an approximation to §; computed by (3.11)
in ¢t digit floating point binary arithmetic. It is possible to show that the
numbers §; are exact results for a slightly perturbed data 4, = d,(1+a),
b, = max(h;, 0), d; =d,(1+p), 7, = F,(1+¢,)., where max (o], 5], le)) is of

LEig€m

order 6-27",
This yields that the error max |§;—§| of the computed approximation is
" 1€ism
of order 6-27"||A,, '}, max [§].

1€ism
2. Iterative refinement can be used to improve accuracy of the solution of
(3.8) obtained in ¢ digit floating point binary arithmetic. Recall that for the
system A, s = b, one step of iterative relinement is defined as follows:
— compute an approximation s' to the exact solution s using some

algorithm A4,
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— compute the residual r = 4, s'—b,

— solve 4,,d = r using the algorithm A4 to get an approximation d* to d,

— compute the new approximation §=s'—d*.

To guarantee that § is more accurate than s', usually higher precision has
to be used to compute the residual i (see [8]). It has been however observed in
[2] that for some linear systems derived by discretization of differential
equations a sufficient accuracy of the computed residual can be obtained using
only single precision. As pointed out in [5], the same idea can be adapted to
the system (3.8). In single precision, the residual for (3.8) can be computed with
an absolute (maximum norm) error of order m™'27. If A4 is Gaussian
elimination algorithm (as in (3.11)), such accuracy of the computed residual
guarantees that for sufficiently large m the error ||§—s||, is of order
(27'+m*2~ %) |s| . Recall that for the algorithm (3.11) without refinement, the
error |[§—s|, of the computed solution is of order m27*||s|

3.4. Numerical results. We report in this section numerical results ob-
tained by using the algorithm ¢* with r = 1 for problems v (x) = f(x)u(x
xe[0, 1], u(0) =1, u'(l) =0, where (accordingly):

[ +sin? x

(i) J(x) =

cos*x ’

with the solution

) 1 sin 1 sin x -+ X
up(x)= — . sin x +—— );
! cosx cos’l+cos!+sinl cos X

2

" e

with the solution

(x) = X X2 e 3 hxt3),
4 T 3 Toga—4log2\“x+1 Bx12 !

1
(1) Sx) ==+

l—xe! ™" +e

with the solution
up(x) = d(e*—ex+1).

We have used information given by evaluation of f at equidistant points
from [0, 1],

Nolf) = [f (o) f(xp), o n S ()17, m=m+1,



250 B. Z. KACEWICZ

where x, = ih and h = 1/m. Since we take r = 1, the function ¢° is linear in
[x;, x;+1] and we have in (3.11)

d; = Ji = 143021 (x;-4),
F,o=h,
by =4n(f (xi-1)+f (%),

fori=1,2,..., m It follows from (3.10) that for any feF, the approxima-
tions §,, §,, ..., §, satisfy
e, = max [§,—u,(x)=o(m 1), m— +w.

1sism
Since the functions [ given (i)-(iii) belong to C* ([0, T]), we even have
e, =0(m %), m~ +oo. Indeed, now e(f,r,m)=0(m"") in (3.1) and
g, = 0(m?) in (3.9), which yields the desired bound on e,

Calculations have been performed on an IBM PC-XT computer with
relative computer precision about 1077 (single precision) and 10~ ' (double
precision). Both single (sp) and double (dp) precision results have been
computed for m varying from 10 to 20 000, which allows to see the theoretical
behavior of the algorithm as well as its sensitivity to rounding errors. The
table below contains the values e, m? for the problems (i) (iii).

(i) (1) (i) (11) (iii) (1)

m sp dp sp dp sp dp

10 047 0.47 0.11 0.11 0.11 0.11
50 0.43 0.43 0.11 0.10 0.099 0.097
100 042 042 0.11 0.10 0.097 0.096
200 0.42 042 0.10 0.10 0.12 0.095
300 0.43 0.42 0.11 0.10 0.13 0.094
450 0.24 041 0.18 0.10 0.16 0.094
500 r0.79 0.41 0.51 0.10 0.58 0.094
1000 6.8 0.41 44 0.10 4.5 0.094
3000 270 0.41 490 0.10 360 0.094
5000 2000 0.41 590 0.10 2200 0.094
9000 4500 0.41 780 0.10 3900 0.094
10000 2000 041 2200 0.10 2100 0.094
20000 18000 0.41 9300 0.10 11000 0.094

The results in double precision (where rounding errors may be neglected)
confirm the theoretical properties of ¢*. In single precision, the influence of
rounding errors becomes significant for m > 500. Since the condition number
of A, is of order m, the perturbation due Lo these errors may be of order
m10~7. The obtained results show that for our problems the influence of
rounding errors is sligtly below this level. In all examples, the minimum error
in single precision is obtained for m = 450, and e s, < 1.6+ 1079,
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4. Optimality of ¢°

In this section we prove the main result of this paper. We show that the error of
any algorithm cannot be essentially less than §,n7", as n —» + o0, where the
sequence {d,} may tend to zero arbitrarily slowly. This will indicate the
optimality of the algorithm ¢°

We first state the theorem. Let a norm in C'([0, T]) be defined by
=3 1P

THEOREM 4.1. Let N be any information given by (2.3) and ¢ be any
algorithm using N. Then for any sequence {8,}, 8, — 0, the set

en(®, N.S) _ 0}

B=B(¢,N, {5})) = {/‘eF,z lim —
o1

n=+aom

has empty interior in F,, i.e, F,—B=F, m

Before presenting the proof, we comment on this theorem. Consider any
algorithm ¢ = {¢,}7% | (with no restriction imposed on the mappings ¢,) that
uses evaluations of [ or its derivatives. For functions f from a dense subset of
F,, the error of ¢ cannot converge to zero faster than 6,n™" (n - +o0). More
specifically, for any feF, there exists geF, with derivatives ¢, ¢, ..., g
arbitrarily close in [0, T to those of f, such that limsup,- 4+ €,(¢, N, ¢) %
x(6,n")~! > 0. This holds for any positive sequence {4,}, arbitrarily slowly
convergent to zero.

Theorems 3.1 and 4.1 together with considerations in Section 3.3 lead to
the following conclusion.

COROLLARY 4.1. The algorithm ¢° has best convergence properties and
almost minimal cost in the class of all algorithms that use any information of the
form (2.3). m

The remaining part of this section is devoted to the proof of Theorem 4.1.
Note first that C" ([0, T]) is a Banach space under the norm defined above, F,
is a closed subset of C"([0, T]), and u depends continuously on j. For feF,
define

4.1) d (N,./)=sup{llu;—usl,: geF,. lg—fIl < N,(g)=N,(/)}

The number d, (N,, f) measures the maximal distance between the solutions
for / and for a function from the unit ball around f, which shares the same
information with f. We call it the local diameter of information N,. We now
recall the theorem from [3], which we use to prove Theorem 4.1. By
N, (/) © Nus1 (/) we mean below that the first 1 components of N,,(f) are
the same as the components of N, (f).

THEOREM 4.2 Let N be any information given by (2.3) such that N,(f)
SNy (fYJor all , n=1,2,.... Let ¢ be any algorithm given by (2.4). If
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(@) d,(N,,f) < +oo for feF, and sufficiently large n,
(b) for any feF, there exists a positive constant C(f) such that

da(Nmf) ? O(C(f)dl (Nn’f)a

for 0€[0, 1] and sufficiently large n,
then for any sequence {3,}, 8, —0%, the set

@ NS
={feF,.. lim 5.4, (N,,,f 0}

n—++ o

has empty interior in F,, ie, F,—A=F_. =

We need to show that (a) and (b) hold for our problem. To do this we need
an upper bound on the distance between two solutions of (2.2).

LEmMMA 4.1. Let f, geC([0, T]) be nonnegative functions. Then for
xe[0, T]

(4.2) luy (x) =14, (%) < D5 (gl e, X) sup | [R(O)u,(0)

xel0,TT T T
where h=g—f and for a =0
D, (a, x) = 1(3 (e’ T +e™YeT) 4 1)(e¥4T %) f ¢~ Va(T~x)

Proof. The proof is typical for this kind of results, and we present it only
for completeness. Let y = y, (x, s) be the solution of the initial value problem
YV'ix)=gx)y(x), xe[0, T], y(T) =35, y(T)= 0, where seR. From Lemma
Al we have for xe[0, T]

43)  u, () —u,(x) jjg(o) 0)—u, (0))d0di+ [ { h(0)u, (0)d0ds
TT

0t
—mg(O)—l(ﬂg(O)(yg(o, s})-u,w))dom:ﬂjh(o)u,(o)dt)dt),

where m,(0) = 9y, (0, 0)/0s = 1 and s§ = u,(T). We need an upper bound on
ly, (x, sf) up(x)l, xe[0, T]. From (A.1) of Lemma Al and Lemma A3 we get

44) 1y, (x, sH—up (1 < $(exp (/191 (T—x)) +exp(—+/lgll . (T—x))) B

for xe[0, T]), where
B= sup |{[h(0)u,(0)d0dt|.
xe[0,T) TT
Using this in (4.3), we obtain the inequality
x 1
@) 1y (0=t G < gl ] [l (O)—1a, 00 d

B(3(exp(/lgll, T)+exp(—/lgll, T)+1), xe[0, T1.
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Relation (4.2) now follows {rom (4.5) and Lemma A3, which completes the
proof. =

We also need the following lower bound on the distance between two
solutions of (2.2).

Lemma 4.2. Let functions f, ge C([0, T7]) be such that solutions u, and ug of
(2.2) exist. Then

4.6 g0 > Dy (lgl) sup ] [ h(O)u, (6)do e

x[0,71 TT
where h=g—f and D,(a) =3(1+3T?*a)""! for a2 0.
Proof. From (2.2) we have for xe[0, T]

?

up(x)—u,(x) = —zih(())uf(())dl)dt+§jrg(())(uf(é))—ug(ﬂ))d()dt,
which gives
4.7) lug—tplle = (1 +5xQRT—x)lIglle) " |§ih(0)uﬂ())d0dt|.
It is easy to see that

sup |[[H(t)dt| =% sup |f H(r)dz,

xe[0.77 O xg[0,T] T
for any He C([0, T]). Using this in (4.7), we get (4.6). m
We are ready to show that Theorem 4.2 can be applied to our problem.

LemMMa 4.3. Assumptions (a) and (b) of Theorem 4.2 are satisfied for the
problem (2.2) and information (2.3).
Proof. Inequality (a) (for n =1, 2, ...) follows from (4.2) and Lemma A2.

We show that (b) holds. Let f, geF,, lg—f| <1 and h = g—f. From Lemma
4.1 we get

(4.8) lu, —usll, € Dy (f1l,+1.0) sup |f §h(0)u,(6)d0dr.

xe[0,T]1 TT

Let gy, = f+oh for e [0, 1]. Then g,€F, and ||g,—f| <« From Lemma 4.2
with g:= g, we have

(4.9) lu, —ull o = D3(lf I+ Ve sup || fh(O)u,(6)d0dr].

xel0,T] T T
Combining (4.8) and (4.9) we obtain for ae(0, 1]

_DalIf N, +1,0)

(4.10) g =gl < I ttg, =4 -
2T DI e+ D
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Assume now that N,(g) = N,(f). Since N, is a linear operator, we have
N,(g) = N,(f). Hence, (4.10) yields

(4.11) (17 ~qu| < (C(Nw)~ 1 d (N, 1),

where C(f) = D3 (Ifll o + 1) Do (I f 1o+ 1, 0)~". Since (4.11) holds for any geF,
such that ||g—f|| <1 and N,,(g) N, (f), the proof of (b) is completed. m

We now use Theorem 4.2. It states that a lower bound on the error of an
arbitrary algorithm ¢ can be obtained as a lower bound on d, (N,, /). We now
estimate d,(N,, f) from below.

LemMa 4.4, Let r 20 and feF,. There exists a positive constant D (f)
such that, for any information N, given by (2.3),

4.12) diN,NzD,(In™", n=1,2,..
Proof. Choose a nonnegative function he C"([0, T]) such that
(@) [hl <1

(b) N, (h) =0, where the numbers i} and ] (j=1, 2,..., n) in (2.3) are
computed for the function f;

j h()dt = Kn™", n=1,2,..., where K is a positive constant
mdependent of n. See [4], Lemma 32 which allows to construct a function
k with these properties.

Let g = f+h. Then geF,, and we have by Lemma 42

(VN
(4.13) litg =t 2 Dy (1S +D|f [ RO, (0) A0 de].
TT

Assume without loss of generality that ¢ > 0 in (2.2). From Lemma A2, we have
up(x) =2 u,(T) >0 for xe[0, T]. Since h is nonnegative, (4.13) yields

01
(4.14) Ity =51l = D3(If o+ Dt (T) [ [ h(0) dOdr.
rT

Finally, note that

He— 0

t
[h(0)dOdr = jth(r dt=1T j ht
T

T/2
Using this in (4.14), we get (4.12) from conditions (a)—(c). m
We are ready to prove the main result of this section.

Proof of Theorem 4.1. First assume that for all f N, (f) < N, (),
n=1,2,.... From Lemma 4.4, we find that B < A, where the set A is dcfined
in Theorem 4.2, and has empty interior. Hence, B has empty interior. Now
assume that information N is of general form (2.3). Let ¢ be any algorithm
using N and let {3,} be any positive sequence converging to zero. As in the
proof of Theorem 4.2 from [4], it is possible to construct information N* such
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that N¥(f) <« N¥. (f) for all f(n=1, 2...), an algorithm ¢* using N*, and
a sequence 0¥}, 6% =07, for which B(¢, N, {3,}) = B(¢*, N*, {5¥}). This
inclusion and the first part of this proof yield that B(¢$, N, {3,}) has empty
interior, which completes the prool of Theorem 4.1. =

Appendix

For completeness, we state in this section standard results concerning (2.2)
which have been used in the paper.

Lemma Al. Let f, ge C([0, T]). Denote by y, = y;(x, s) a solution of the
problem y'(x) = f(x)y(x), y(T) =35,y (T)=0, »€[0, T], seR. Then

AL  y(x, )=y (x, 8= [[g®(y,0, 5)—y,(8, 5)dO dt
TT

1@ -1 ©)y,0, 5 dbdt+s—5,
TT

where xe[0, T].

(A.2) There exists in [0, T]xR a continuous derivative m,(x, )
= 0y,(x, 8)/8s satisfying m7(x, s)= f(x)m;(x,s), m (T, s5) =1, m}(T, s)
The function m is independent of s, m,(x, s) = m;(x), and m,(x) = 1 (xe[O, T])
for nonnegative functions f. Furthermore, y (0, s) = m,(0)s.

(A.3) If the solutions u; and u, of (2.2) exist (ie., m;(Q)ym, (0) £ 0), then

u qu) —uf(o))df)dHf[h(@)uf'(e)dadz
TT

] C— O

!

where h=g—[ and sf =u,(T). m

!
[ h(6)u,(6)d0 dr),
T

3 ey ©

§9(0)(,(8, s3)—u, (0)d0dt+
T

LeMMa A2. Let f e C ([0, T]) be a nonnegative function and let ¢ > 0. Then
the solution u, of (2.2) satisfies

0<u(T<upx)<e, Jor xel0, T]
(For ¢ <0 we have ¢ <u,;(x) < u (T)<0). u
The following lemma is a version of Gronwall’s lemma.

LeMMA A3. Let e = e(x) be a continuous nonnegative function in [a, b]
such that
xf

e(x) < Lffe®)dBdi+}A(x—a)*+B(x—a)+K, xe[a,b],

aa
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where L, A, B, K> 0. Then we have for xe[a, b]

e(x) < %(—g+%+ K) exp(\/]j(x—a))

(The case L =0 is meant as L—0%). =
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