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A corollary of the Lefschetz hyperplane theorem is that every hypersurface in
the complex projective space P" is connected, provided n = 2. Sections
I through 5 are an exposition of some recent work that generalizes this
connectedness result. In Section 6 the connectedness theorems for degeneracy
loci are extended to n-ample vector bundles. In the Appendix (see the next
paper), we show that a symmetric degeneracy locus of odd rank r associated to
a symmetric bundle map u; E ® E — L is connected if its expected dimension 1s
at least rk E—r.

§ 1. Introduction

Let us begin by quoting from a book on topology: “The most intuitively
evident topological invariant of a space is the number of connected pieces into
which it falls.” Thus, if one 15 interested in the topology of an algebraic variety,
a natural first question is whether the variety is connected.

The prototype of such a result is the remarkable theorem of Lefschetz that
the solution set of a single homogeneous polynomial equation in the complex
projective space P" is connected, provided n > 2. In this theorem n of course has
to be at least 2, because a single polynomial on P! defines a finite number of
points, which is in general not a connected set. The purpose of this talk is to
discuss generalizations ol Lefschetz’s theorem to other systems of equations on
varieties possibly other than the projective space. While Sections 1 through
5 are meant to be expository, Section 6 and the Appendix contain previously
unpublished results. In response to a question of Michael Schneider, 1 show in
Section 6 that the connectedness theorems for degeneracy loci can be extended
to n-ample vector bundles. In the Appendix, Joe Harris and 1 present a few
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ideas, which while not solving the odd-rank symmetric case completely, does
prove the connectedness of an odd-rank symmetric degeneracy locus under
a strengthened hypothesis.

As there are many commutative algebraists in the audience, who may not
be so familiar with the geometric way of thinking, I have tried to delimit the
scope of my exposition by selective omission. So the theorems quoted here may
not be in the generality in which they were originally proved.

To fix the terminology, a rariety will mean a reduced quasiprojective
varicty over the complex numbers. The topology is the usual complex
topology, unless Zariski is explicitly mentioned.

§ 2. Three naive attempts to generalize Lefschetz’s theorem

We will look at three simple examples to see what hypotheses would be
reasonable in any generalization of lefschetz's connectedness theorem.

ExampLE 2.1. Can one replace P" by C"? The answer is no, since it is
possible to have parallel lines in C".

A

N

Zero(w(w--h) in €7 15 disconnected

ExaMpPLE 2.2. To replace P" by some other projective variety, recall that
a hypersurface in a complex manifold 1s an analytic subvariety of codimension
1. In P" every hypersurface is the solution set of a single nonzero homogeneous
polynomial and vice versa. So Lefschetz's theorem says precisely that every
hypersurface in P" is connected if n = 2. Is it true that every hypersurface in any
smooth projective variety is connected? The answer is again no, for on any
ruled surface, say P' x P!, there are parallel lines, say L, .. Then LU L’ is
a disconnected hypersurface on P' x P'.

ExampLE 2.3. Can one replace the single equation by more than one
equation? Obviously, the number of equations cannot be arbitrary. because
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not every projective variety is connected. In P?,
L,=2Zero(Z,.Z,) and L,= Zero(Z,.2Z,)

are disjoint lines. Hence, their union L, U L,, which is defined by the four
equations £,2,, 2,24, 2, Z,, Z, Z,, is not connected.

What s an “equation” on an arbitrary vaniety X? lLet ¢ (1) be the
hyperplane bundle on P" and let ¢ (d) be the dth tensor power ¢ (1)®4
A homogeneous polynomial of degree d on P" is a section of the line bundle
(¢ (d) on P", where d is of course a positive integer. Thus, we can think of an
“equation” on a variety X as a section s of a line bundle L over X. The question
inow is whether the zero set Z(s) is connected.

From the three examples above we see that for Z (s) to be connected, the
following hypotheses should be assumed:

(1) The variety X is trreducible and projective (not simply quasiprojec-
tive).

(2) The line bundle L is “positive” in a suitable sense. As will be seen
from the Lcfschetz hyperplane theorem, the trouble with Example 2.2 is that
the line bundle corresponding to the union of the two disjoint rulings is not
positive.

(3) There ought be a dimension hypothesis relating the dimension of
X and the number of equations.

We will find that in every connectedness theorem all three hypotheses play
an essential role.

§ 3. Positivity

A line bundle L on a variety X is said to be very ample if it is isomorphic to the
hyperplane bundle of some embedding X < P?, and L is ample if for some
positive integer m the tensor power L®™ is very ample.

THeoreM (The Lefschetz hyperplane theorem). Let L be an ample line
bundle over an irreducible smooth projective variety X and s a section of L over



238 L W TU

X. Then the natural map
H,(Z(s); Z)> H (X; Z)

is an isomorphism for q < dimc X —1 and a surjection for g = dime X —1. In
particular, if dimc X —1 2> 1, then Z(s) is connected.

A nice proof of this theorem, using Morse theory, may be found in [6].

To explain the notion of ampleness for vector bundles, we first recall
a classic duality between points in a vector space and linear forms on the dual
projective space. Let V' be a complex vector space with coordinates z,, ..., z,
and let V* be the dual vector space of linear forms ) a,z; on V with
coordinates a, ..., a,. Given a point z=(z,,...,z,) in V,z*=) g,z is
a linear form on V'*, hence also a linear form on the projective space P (V*).
Thus, there is a one-to-one correspondence

{points ze V} « {linear forms z* on P(V*)} = I'(P(V*), ¢(1)).

Globalizing this correspondence fiber by fiber to a vector bundle E over X, we
see that a section s of E gives rise to a section s* of (*(1) over P(E*).

DEermuTioN. A vector bundle E — X is ample if and only if the line bundle
Cppv (1) over P(E*) is ample.

Remark. 1f E is a line bundle, then P (E*) = X. Furthermore, Op s (1) =~ E
because for every x in X a linear form on the fiber E¥ is a point in E_. Thus, the

line bundle E is ample as a vector bundle if and only it is ample as a line
bundle.

The following proposition is a useful observation of Sommese that

sometimes allows one to reduce a vector bundle problem to a line bundle
problem ([8, Proof of Prop. 1.16, p. 240]).

ProposiTion 3.1. If E is a rank e vector bundle over X and s is a section of E,
then P(E*)—Z (s*) is an affine-space bundle with fiber C¢~' over X —Z(s).
Consequently. P(E*)—Z (s*) and X —Z(s) have the same cohomology.

’ = 2Zls*)
P(E¥)

‘
" /. ——
\Z[s)v T
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Proof. If x e Z (s), then s(x)* vanishes on the entire fiber E¥, and if x ¢ Z (s),
then s(x)* vanishes on a hyperplane in E¥. So the fiber at x of P(E*}—Z (s¥%)
above X —Z(s) is P(E*) minus a hyperplane, which is 2 C°"!. m

Using this proposition and the usual apparatus of algebraic topology,
namely Lefschetz duality and the long exact sequence of a pair, the following
generalization of the Lefschetz hyperplane theorem follows immediately.

THeoreM 3.2 (Griffiths [4], Sommese [8, Prop. 1.16]). Let E be an ample
vector bundle of rank e over an irreducible smooth projective variety X, and
s a section of E. Then the natural map

H,(Z(s): Z) » H(X; Z)

is an isomorphism for q < dimc X —e and a surjection for ¢ =dimc X —e. In
particular, if dimc¢ X —e = 1, then Z(s) is connected.

§ 4. Degeneracy loci

Then notion of a degeneracy locus generalizes that of the zero set of a section.
Let E and F be complex vector bundles over a variety X, of ranks e and
S respectively, and let u: E — F be a bundle map. For each nonnegative integer
r the degeneracy locus of u of rank r is defined to be

D, (u) = {xe X|rku(x) <r}.

Every section s of the vector bundle F induces a bundle map u: @ - F
from the trivial line bundle ¢ = X xC to F by setting

u(x, 1) = (x, s(x))
and extending by linearity. We then have
Dy(u) = Z(s),

showing that every zero set of a section is a degeneracy locus. Therefore, every
projective variety can be represented as a degeneracy locus in some P! For
suppose a projective variety Y in PV is the zero set of the homogeneous
polynomials f|, ..., f,, where degf; = d;, then (f}, ..., f,) defines a section s of
the vector bundle ¢(d )@ ... ® ¢ (d,) over PY, which in turn defines a bundle
map u: ¢ - Cd)®.. ®CO(d,). Then Y = Z(s) = Dy (u).

Generally speaking the degeneracy loci of interest are those that have the
“expected dimensions”. To explain this, let M (e, f) be the variety of exf
complex matrices and D, (M (e, f)} the subvariety consisting of those of rank at
most r. It is not difficult to show that D (M (e, f)) is an irreducible subvariety of
M (e, f) of codimension (e—r)(f—r) [1, p. 67]. Globalizing this, we see that if
E and F are vector bundles over X as before, inside the vector bundle
Hom(E, F) is the subvariety D,(Hom (E, F)) whose fiber at x consists of all
homomorphisms: E_ — F_ of rank < r. and the codimension of D,{Hom (E, F))
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in Hom(E, F)is (e—r)(f—r). If a bundle map u: E — F is viewed as a section
s of the vector bundle Hom (E, F), then the degeneracy locus D, (u) is the
pullback s~ '(Hom (E, F)), which is clearly isomorphic to the intersection of
s(X) with D, (Hom (E, F)). If the intersection is transversal as is generically the
case, it will have codimension (e—r)(f—r) in X. It i1s in this sense that the
expected dimension of D,(u) is dimc X —(e—r)(f—r). If u is not generic,
however, then the dimension of D,(u) could very well be different from its

expected dimension. As an extreme example, if u is the zero map. then
D,(u) = X.

Examples of degeneracy loci having the expected dimension

ExampLE 4.1 (Complete intersections). I[ F is a vector bundle of rank fover
X and s i1s a section, then the expected dimension of the zero locus Z(s) is
dim¢ X — (1 —0)(f—0) = dim: X —f. Hence, any hypersurface or complete in-
tersection is a degeneracy locus of the expected dimension.

ExampLE 4.2 (Special divisors). For a generic curve C, the locus W, of
spectal divisors in the Jacobian J(C) is a degeneracy locus of the expected
dimension g, which is called the Brill-Noether number of W] (see [1]).

ExaMPLE 4.3 (The Segre variety). The Segre variety S,,., i1s defined to be the
image of the Segre embedding of P x P" into P™*Y"* D=1 given by

([xO’ e xm]’ [.}“0’ tery yn])H[xj)’j]0S1'$m.0$an-

Let z;, O0<i<m, 0<j<n be the homogeneous coordinates on
pet et =1 The matrix z=[z;] defines a bundle map u: "D
= (U“)@(m+l) over le+l)(n+l)~l by

u(z, a)=(z, z-da)

for ae C"* V. Then the Segre variety §,, , is the rank 1 degeneracy locus D, (u).
Its expected dimension 1s (m+ 1){n+1)— 1 —mn = m+ n. Hence the dimension
of S, , is equal to its expected dimension.

ExampLE 4.4 (Determinantal varieties). Instead ol the zero set of a collec-
tion ol polynomials, we can consider the varieties defined by rank conditions
on an fxe matrix [u;(z)] of homogeneous polynomials:

D, (u) = {zeP"|rk [u;(z)] < r}.

Without some restrictions on the degrees d,; of the u;/s, this D (u) is not
well-defined, since for a nonzero complex number £

rk [u;;(42)] = rk [as u;(2)] # rk [u;;(2)].

We will assume that there are two sets of integers: the row degrees d,, ..., d,
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and the column degrees dy, ..., d;, such that d;; =d;+d;> 0. Then
tk [u;;(A2)] = rk (2% u;;(2)] = rk [A% 2% u;;(2)] = 1k [u;;(2)],

and D, (u) is a well-defined subvariety of P". It is called a determinantal variety,
because it is defined by the (r+1)x(r+1) minors of [u;(z)].

Note that if the entries of [u;,(z)] in any given row has the same degree,
then the degree condition is automatically satisfied, by taking all d; zero;
similarly for the columns. In particular, there are no degree restrictions on
a 1xe or an fx1 matrix [u;(z)].

The matrix [u;(z)] defines a bundle map u: O(—d)®...HO(—d,)
= 0d)D... D C(d;) by matrix multiplication:

a, a
, [ : } ) (z, [uy(2)] [ : })-
a, a,

So a determinantal variety defined by the matrix [u;;(z)] is a degeneracy locus
of the bundle map wu.

THEOREM 4.5 (Fulton-Lazarsfeld [2]). Let X be an irreducible variety, E,
F vector bundles of ranks e, f respectively, and u: E - F a bundle map. If
Hom(E, F) is ample and dimc X —(e—r)(f—r) = 1, then D, (u) is connected.

Symmetric degeneracy loci

In practice one sometimes encounters bundle maps satisfying symmetry
conditions. If E is a vector bundle and L a line bundle, then a bundle map u:
E®E— L is symmetric if it is symmetric on each fiber; similarly for
skew-symmetric maps.

ExaMPLE 4.6 (Symmetric determinantal varieties). A symmetric determinan-
tal variety is a determinantal variety defined by a symmetric matrix [u;;(2)],
where of course the row degrees d,, ..., d, coincide with the column degrees.
Such a matrix defines a symmetric bundle map u: E® E — O, where
E=0(—-d)®...® 0(—d,). Therefore, a symmetric determinantal variety of
the matrix [u;;(z)] is a symmetric degeneracy locus of the bundle map wu.

ExampLE 4.7 (Quadrics of rank < r in P*7!). The set of all quadrics in
P¢~! is parametrized by the projective space of all symmetric e x ¢ matrices:

P{[zij:”l < l’] < ¢, Zij = Zji}'

Hence, the space of all quadrics in P°~! is isomorphic to P", where
n={(°%'}—1. Inside this P", the space of all quadrics of rank <r is the
subvariety

Dr = {[Zij]epnlrk [zij] S l‘},

16 — Banach Center (. 26, ¢z 2
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which has dimension n—(°"5"'). We would like to say that D, is connected
whenever dim¢ D, > 1, but this does not follow from the Fulton-Lazarsfeld
theorem, which implies the connectedness of D, only if n—(e—r)* > 1.

Since a symmetric bundle map u: E® E — L over X may also be viewed
as a bundle map: E-E*® L, 1 is a section of Hom(E, E*X®L). By the
Fulton-Lazarsfeld theorem, if dime X —(e—#)* > 1, then D,(u) is connected.
This, however, is not the correct theorem for a symmetric degeneracy locus,
since if u: E@QFE — L is symmetric, then u is never a generic section of
Hom(E, E*® L), so that D (u) will in general not have dimension
dim; X —(e—r)%. Indeed, one can show without much difficulty that the
expected dimension of a symmetric D, (u) is dimc X —(°75*1).

In [3, Remark (2), p. 50] Fulton and Lazarsfeld stated the following
conjectures.

CoNIECTURE 4.8. Let u: EQE — L be a symmetric bundle map over an
irreducible variety X. If (Sym? E¥)® L is ample and dimc X — ("7 571) = 1, then
D _(u) is connected.

CONJECTURE 4.9, Let u: E ®‘E — L be u skew-symmetric bundle map over an
irreducible variety X, and r dn even integer. If (/\2 EY® L is ample and
dim. X —(°3" = 1, then D,(u) is connected.

§ 5. The connectedness of symmetric
degeneracy loci: even ranks

A complete proof of Conjectures 4.8 and 4.9 for r even may be found in [9].
What follows is an outline of the main ideas of the proof for the symmetric case
when r is even, say r = 2p.

For simplicity we assume that X is smooth and L is the trivial line bundle
C, so u is a symmetric bundle map: E® E — C. The first step is to represent the
degeneracy locus D, ,(u) as the image of a zero locus on a Grassmann bundle.
This is a construction of Pragacz [7], and it is based on the foilowing
characterization of the rank of a symmetric bilinear form.

ProposITION 5.1. Let W be a complex vector space of dimension e. A symmetric
bilinear map ¢: W x W — C has rank < 2p if and only if it has an isotropic subspace
of dimension e — p. (An isotropic subspace is a subspace V. such that ¢l ., = 0.)

Let n: G(e—p, E) » X be the Grassmann bundle of (e — p)-dimensional
subspaces of fibres of E. On the Grassmann bundle there is & tautological exact
sequence

0->S—>n*E-Q0-0.

where S and Q are the universal sub- and quotient bundles respectively. The
inclusion S 5 n* E induces naturally a surjection 7* Sym? E* — Sym? $*, which
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may be interpreted as the restriction of a quadratic form on the bundle E to the
subbundle S. We view the symmetric bundle map u: E® E — C as a section of
the vector bundle Sym? E*. It pulls back to a section z* u of n* Sym? E* over
G(e—p. E), and by composition with the restriction we get a section t of
Sym? S*:

I(x’ Ve Ex) = u(x)h/xV'

We therefore have the following diagram:

/

P-ZIt i € P = P{Sym? §)

same T*Sym?2 E* —mSym? §°

¢ohomology v
l { / e e
- A

-

G-Zlt) € G = Gle-p, £} jlu

\ Sym? £° PISym*E) = P D P-Z(u¥)=U
L
\Hu /
v -

(u) € X

e

*

2.5
Prorosimion 5.2. The degenerucy locus D, (u) is the image of the zero locus
Z(t).

Proof. Observe that t(x, V < E ) = u(x)|, ., =0 if and only if V is an
isotropic subspace for u(x). Therefore,

xen(Z(t) iff u(x) has an isotropic subspace of dimension e—p,
iff rku(x) <e—p,
ifft xeD,,(u) by Prop. 5.1. m

Thus, to prove the connectedness of the degeneracy locus D, ,(u) it sulfices
to prove the connectedness of the zero locus Z(t). Since ¢ is a section of
Sym? S*, if Sym? S* were ample, the Lefschetz-type theorem (3.2) for an ample
vector bundle would apply. Unfortunately, Sym? S* is not ample, and so we try

to prove the connectedness -of Z () by checking the following cohomological
criterion.

ProrosiTion 5.3. Let M be a connected compact orientahle manifold of real
dimension n and A a subset of M. Then

(i) A is nonempty if and onlv if H"(M—A; Z) = 0.

(i) A is connected if H"(M —A:Z)=H""'(M—-A4;7Z)=0.

Let G == G(e—p, E). To compute H*(G—Z(1); Z), we apply the duality
construction of Secction 3 and consider Z(:*) in P:= P(Sym?S). Since



244 L W. TU

P (Sym? S)— Z (t*) is an affine space bundle over G —Z (1), by Proposition 3.1
H*(G—Z(1); Z) ~ H* (P (Sym? §)— Z (t*); Z).
It is easily shown that the natural map P(Sym?5)— P(Sym?E) induces a
map h: P(Sym?S)—Z(t*) - P(Sym? E)—Z (u*) and that the fiber of h at
(x, €Sym? E)) is the Grassmannian G(e—p-=1k ¢, e—rk ¢). Since u* is by
definition a section of the ample line bundle @ (1) over P(Sym?E), the
complement P(Sym? E)—Z (u*) is an affine variety; hence, by a standard
theorem its cohomology vanishes above the complex dimension of the variety.
With the map h: P(Sym? S)—Z(t*) - P(Sym? E)— Z (u*), the cohomology of
P (Sym? S)— Z (t*) can then be computed by applying the following cohomology
comparison theorem. Denote by N = {0, 1, 2, 3, ...} the set of natural numbers.

LemMA 54. Let h: M — Y be a surjective proper morphism from any variety
M to an affine variety Y. Suppose there is a strictly increasing function d: N - N
and a sequence of closed subvarieties

o, ,chc...cY =Y
such that for all x in ¥,—-Y, ..,
d(k) = dimc h™ ! (x).
Define
R = max,, ,{dim¢ Y, +2d (k)}.
Then HY(M; Z) =0 for all g > R.

In the present situation R turns out to be

R=dich+(e;1)—l—-p.

A straightforward computation shows that

—2p+1
2dimcG—1 > R« dime X > (e 2‘” )+ L.
Hence,
HY(P(Sym2S)—Z (t*); Z) = H*(G—Z(t); Z) = 0
for ¢ = 2dim¢ G, 2dim. G —1. By the cohomological criterion for connected-
ness, Z (1) is connected. As the continuous image of a connected set, D, ,(u) is
also connected.

§ 6. Extension to n-ample vector bundles

The concept of n-ampleness was introduced by Sommese [8]. It is a useful
generalization of ampleness, for many of the classical cohomology theorems for
ample vector bundles, such as the Lefschetz hyperplane theorem, the hard
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Lefschetz theorem, and the Kodaira—Nakano-Le Potier vanishing theorem, all
have analogues for n-ample vector bundles, usually with the dimension shifted
by n. In this section we prove that the connectedness theorems for degeneracy
loci can be extended to n-ample vector bundles.

DEerFINITION. A line bundle L on a projective variety X is called n-ample if
for some positive integer m, L®™ is spanned by global sections and the
associated map 1, e.: X — PV given by a basis of global sections of L®™ has at
most n-dimensional fibers. A vector bundle E on X is n-ample if the tautological
line bundle Ope. (1) on P(E*) is n-ample.

Remark 6.1. A line bundle L on X is 0-ample if and only if it is ample.

Proof. («=) Clear.

(=) Suppose L is O-ample. By definition 1;e.: X — PV is finite onto its
image for some positive integer m. Let f = 1, gn. Then L®¥™ = f* (@ ron(1). Since
the pullback of an ample bundle under a finite surjective morphism remains
ample ([5, Prop. 1.6, p. 84]), L®™ is ample. Therefore, L is ample. m

DEerFiniTION. We call a divisor D on a projective variety X n-ample if it is
the zero set of a section of an n-ample line bundle on X.

Since every affine variety is the complement of an ample divisor in
a projective variety, the complement of an n-ample divisor generalizes the
notion of an affine variety.

A sheaf % of abelian groups over a variety X is constructible if X is
a disjoint union of locally closed subsets over each of which & is locally
constant. Constructible sheaves arise naturally in the computation of cohomo-
logy groups, because under a morphism of varieties the direct image sheaves of
a constructible sheaf are again constructible. Another property of constructible
sheaves is that the cohomology of a constructible sheaf on an affine variety
vanishes above the complex dimension of the variety (for a proof, see [1, p.
315]). We can generalize this to complements of n-ample divisors.

THEOREM 6.2. Let D be an n-ample divisor on a projective variety X, and
& a constructible sheaf on X —D. Then H (X —D, %) = 0 for ¢ > dim¢ X +n.

Proof (Joe Harris). Suppose D is the zero set of a section s of the n-ample
line bundle L. For some positive integer m the map f= 1,¢.: X — P" has at
most n-dimensional fibers. Since D = Zero(s) = Zero(s®™), D is the inverse
image under f of a hyperplane section H of f(X). Hence, f maps X—D to
f(X)—H with at most n-dimensional fibers. Applying the Leray spectral
sequence to f: X—D - f(X)—H, we see that

H/(f(X)—H, Rif, F)= H*I(X—D, #).

Since the fibers of f are at most n-dimensional, R’ S« & =0 for i > 2n. Since
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S(X)—H is affine and R'f, & is constructible, H/(f(H)—H, R'f, #) =0 for
j>dimcf(X)—H = dimf(X) = dime X —n. Therefore, if i+j > 2n+dimc X
—n =dim¢ X +n, then i > 2n or j > dim¢ X +n, so that H/(f(X)—H, R'f, )
= 0. By Leray’s spectral sequences,

H*Y'(X-D,#)=0 for i+j>dim X +n. m

The cohomology comparison lemma (5.4) can now be generalized to the
complement of an n-ample divisor. Denote by N the set of natural numbers
10,1,2,3,...}).

LEMMA 6.3. Let h: M — Y be a surjective proper morphism where M is any
variety, and Y is the complement of an n-ample divisor in a projective variety.
Suppose there is a strictly increasing function d: N —» N and a sequence of closed
subvarieties

ey, chel c..cY=Y
such that for all x in Y=Y, .,

d(k) = dim¢h™ 1 (x).
Define
R = max,, , {dim¢ ¥, +2d (k)}.
Then
HY'M,#)y=0 for all ¢q> R+n.

Proof. Since the restriction of an n-ample line to a closed subvariety is
again n-ample, all the Y,’s are complements of n-ample divisors. The rest of the
proof is identical to [9, § 4], except one uses Theorem 6.2 instead of the
vanishing theorem of a constructible sheaf on an affine variety; hence, the shift
by n in the conclusion. =

Following the same set-up as in Section 5 we can now prove the following
connectedness theorems.

THEOREM 6.4. Let X be an irreducible variety, E, F vector bundles of rank e,
f respectively, and L a line bundle over X.

(a) Suppose u: E—~F is a bundle map and r a nonnegative integer.
If Bom(E, F) is n-ample and dimo X —(e—r)(f—r)=n+1, then D,(u) is
connecied.

(b)Y Suspose u: E® E — L is « symmetric bundle map and - is even. If
(Sym? E¥) @ L is n-ample and dimc X —(° 5% ") > n+ 1, then D,(u) is connected.

(c) Suppose u. E® E — L is a skew-symmetric bundle map and r is even. If
{(AN*E*)® L is n-ample and dim¢ X —(°,") = n+1, then D,(u) is connected.
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Proof. The proof is exactly the same as for ample vector bundles, but the
use of Lemma 6.3 instead of Lemma 5.4 entails a shift in the dimension by .
We will sketch a proof of Part (a) only. By taking the transpose of u if
necessary, we may assume that f> e. Let n: G(e—r, E) — E be the Grassmann
bundle of (e —r)-dimensional subspaces of the fibers E, of the bundle E, and let
S be the unmiversal subbundie over G:= G(e—r, E). As in Section 5, we have the
following diagram

e — T T T
- — —

P-Z(1* < P = PlHom(x*F,S))

N\ \ 4

\ ) =*HomlE F}~—»Hom(S, T F}
same \ ! e
cohomolegy N\ % )
N N\ H T
6-Z(¢) €6 = Gle-r,E)
- h = -r,
. \\
Hom(E, £ P{Hom(F E)} = P' D P -Z(u*)
7 |
\¢ ’
D ul © X

In this diagram the bundle Hom (F, E) is the dual of Hom(E, F), and the
map from P(Hom (n* F, §)) to P(Hom(F, E)) is the obvious one induced by
the inclusion S & n* E. The fiber of h at (x, ¢ e Hom (F, E,)) is the Grassman-
nian G(e—p—rk ¢, E_/im ¢). Stratify P'—Z (u*) by

Y, =P(D,_,_,(Hom(F, E)))—Z (u*).
If €Y, —Y,,,, then rtk¢ = e—r—k, and d(k) = kr. Since
dim¢ Y, =dimc P —(r+ k) (f—e+r+k),
it is easily checked that
R =dimc X +(f+r)(e—r)—1.

Hence,
2dimcG—1> R+n<edimc X —(e—r)(f—r) = n+1.

By Lemma 6.3, H*(P(Hom(n*F, S))—Z(t*); Z) = H(G—Z(1); Z) =0 for
g = 2dim_ G, 2dimc G —1. As in Section S, it follows that Z (1) and therefore
D, (u) 1s connected. m
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