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1. The statement of the problem

Let I be a subgroup of GL,(Z). What can be said about the normal structure
of I'? A large family of normal subgroups in I' of finite index is formed by the
so-called congruence subgroups I'(m) = {ge I'|g = e¢,(mod m)}. This family is
large indeed since (), I'(m) = (e,), so the following question which is usually
called the congruence subgroup problem looks quite natural:

Does any normal subgroup in I' of finite index contain a congruence
subgroup I'(m)?

This question is of interest not only for the theory of linear groups but also for
other areas of mathematics. Indeed, the first counterexample to the congruence
subgroup problem was constructed in 1880 by F. Klein who worked at that
time in the theory of modular functions. He showed that there are subgroups of
I' = SL,(Z) of finite index that contain no congruence subgroup. But the
attempts to investigate the congruence subgroup problem for I' = SL;(Z) have
been of no success for a long time. Only in 1965 did Bass—Lazard—Serre [3] and
Mennicke [12] give a positive solution of this problem for SL,(Z) (n = 3).
Further investigations in this direction were held mainly for arithmetic
subgroups of algebraic groups, and we are now going to give the necessary
definitions.

Let G « GL, be a linear algebraic group defined over an algebraic number
field K, and let S be a finite subset of the set VX of all valuations of K, which
contains the set VX of archimedian valuations. Denote by O(S) the ring of
S-integers in K and by G, the group of S-units of G. To any nonzero ideal
a < O(S) there corresponds the congruence subgroup

Gos)(a) = {g€Goy5)lg = e,(mod a)}.
This paper is in final form and no version of it will be submitted lor publication elsewhere.
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One can easily see that G (a) is a normal subgroup in G, of finite index,

and (), Gos (@) = (e,). In this situation the congruence subgroup problem can
be stated in a similar way:

(1)  Does any normal subgroup in G, of finite index contain a congruence
subgroup Gys,(a)?

A more precise statement of the problem is: for which S and G the answer to
the question (1) 1s “yes”. In this case we have a complete description of all
normal subgroups of finite index in G, In the course of investigations it
turned out that besides the statement of the problem in the form (1) one should
also keep in mind its restatement in the form which is now called modern. This
restatement is based on the concept of congruence kernel that we are going to
define.

One can introduce two Hausdorff topologies 1, and 7, on the group G, of
K-rational points that are called the (S-) arithmetic topology and S-congruence
topology, respectively. The complete system of neighbourhoods of unity for 1,
(resp. for t.) consists of all normal subgroups of finite index (resp. of all
congruence subgroups) in G,. It is not hard to show that 7, and 7 satisfy all
the properties that ensure the existence of the corresponding S-arithmetic and
S-congruence completions G, and Gy (see [8]). Since 1, dominates t_, the
‘identity map (G, t,) — (G, t.) is continuous, and therefore it can be extended
to a continuous homomorphism n: G, — G, of the completions. By definition
Kern = C¥(G) is the congruence kernel.

ProrosITION 1.1. The projection n is surjective and C3(G) is a profinite
group. C5(G) is trivial iff the congruence subgroup problem in the form (1) has an
affirmative answer for G, .

Thus the congruence kernel C3(G) measures the deviation from the
positive solution of the congruence subgroup problem. That is why by modern
statement of the problem we mean the problem of determination of C5(G). As
the following proposition shows, the essential part of the congruence subgroup
problem is the calculation of C5(G) for semisimple groups.

ProposiTioN 1.2 (Platonov [16], Platonov—Sharomet [18]). Let G be an
algebraic K-group, and let F be a maximal semisimple subgroup of G. Then
C5(G) = CS(F). In particular, if G is soluble then C5(G) = 1.

So in what follows the group G can and will be supposed to be semisimple.
If the group Gg = [],.s G, (Where K, is the completion of K with respect to v)
is compact then Gy, is finite and the congruence subgroup problem for
G trivially has a positive solution. More generally, if G = [[7= G' is a decom-
position of G into an almost direct product of K-simple components and Gf is
compact for i < m, and noncompact for i > m, then C5(G) = C5(H) where
H =[];> .G Thus we obtain the reduction to the main case of a semisimple
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group G that has no K-simple component G’ with G5 compact. Furthermore, it
turns out that one can hope to obtain a positive solution of the congruence
subgroup problem only [or simply connected groups.

ProrosiTioN 1.3 (Serre [29]). Suppose that a semisimple K-group G is not
simply connected and contains no K-simple component G* with G. compact. Then
the congruence kernel C5(G) is infinite.

Finally. since any semisimple simply connected group G is the direct
preduct of its K-simple components, the latter being obtained by the ground
field restriction construction from absolutely simple groups, we arrive at the
reduction of the congruence subgroup problem to the case of absolutely simple
simply connected groups.

As we have already remarked. the first positive result on the congruence
subgroup problem [or such groups is due to Bass—Lazard-Serre [3] and
Mennicke [12] who studied the case of SL,(Z) (n = 3). Then Bass—Milnor-Serre
[4] completed the consideration of SL, (n = 3)and Sp,,(n = 2) over an arbitrary
algebraic number field K. It turned out that the congruence kernel C® (G) (where
G =SL, (n > 3) or Sp,, (n = 2)) can be described as [ollows:

1 if 3veS such that K, # C,

S —
2 Co)= {E(K) otherwise,

where E (K) is the group of all roots of unity in K. This result shows that one
should distinguish at least three possibilities for C5(G) (C®(G) is trivial, finite or
infinite) but not two (C3(G) is trivial or not). It is worth mentioning here that as
proved by Mel'nikov [11] the congruence kernel for SL,(Z) is a very large
infinite group, namely, a free profinite group of countable rank. The second thing
is that there is no purely algebraic solution of the congruence subgroup problem.
Indeed, if C5(G) were always trivial one could hope to apply the structure theory
of Dedekind rings etc. to prove it but it is not.

Developing further the methods of [4], Matsumoto [10] obtained the
description of C%(G) in the form (2) for all universal Chevalley groups different
from SL,. In the case of G = SL, Mennicke [13] first gave a positive solution of
the congruence subgroup problem for SL, (Z [1/p]) and then Serre [30] studied
the general situation and showed that if Card § > 1 then the answer is of the form
(2). Analysing the obtained results Serre [30] stated the following congruence
subgroup conjecture:

Let G be a simple simply connected algebraic K-group. If rangsG =
Y esrang, G > 2 and rangg, G = 1 for veS\VE then C5(G) is finite.

Raghunathan [22], [23] proved this conjecture for K-isotropic groups. But
until recently there was practically no progress for anisotropic groups. The aim
of my report is to present the results on the congruence subgroup problem for
anisotropic groups that were obtained in the last few years.

26 — Banach Center t. 26, cz. 2
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2. Congruence subgroup problem and metaplectic problem

In this section we show that to determinc C = C5(G) one should actually solve
two problems, namely, prove that C is central (i.e. contained in the centre of
G,) and calculate the so-called metaplectic kernel M(G. S). This scheme of
solution of the congruence subgroup problem is classical and goes back to [4],
[30].

Let us start with the exact sequence
(1) 15C->G—> G 1

to which there corresponds the exact Hochschild—Serre cohomological sequen-
ce

H' (G % H' (G - H (CO)F* % H2(Gy)

where H' () denotes the ith group of continuous cohomologies with coefficients
in R/Z. One can easily see that

Coker ¢ =[Gy, G¢l/[Gk, Gkl

where the bar denotes closure in G, with respect to the S-arithmetic topology.
According to the strong approximation theorem (see Platonov [15]), G can be
identified with the group G, of S-adeles. Then using the fact that the
sequence (1) splits over G and is the “universal” sequence with this property
one can show that Imy = M(G,S) where M(G, S)= Ker(H? (G 45
— H?*(Gy)) is the so-called metaplectic kernel (the group G is endowed with the
discrete topology). Thus we have the following exact sequence:

1 > Coker ¢ — H' (C)%% - M (G, S) - 1.

Unfortunately, the term H'(C)®* in general carries information only on
a portion of C. One can reconstruct the whole of C from H! (C)°% only if C is
central, ie. contained in the centre of G, because in this case
HY(C)%* = H'(C) is the Pontryagin dual C* for C.

THEOREM 2.1. If C is central then it is finite. If, moreover, Coker ¢ = 1 then
C* =~ M(G, S).

Indeed, the metaplectic kernel M (G, S) is always finite (see [22], [20]). On
the other hand, [G, G] has finite index in G (see [19]), in particular Coker ¢
is finite. It should be noted that the finiteness of C is actually equivalent to its
centrality. More precisely, if C is finite and Gy is projectively simple, i.e. the
factor group G, /Z(Gy) 1s an abstract simple group, then C is central. (For the
discussion of the problem when G, is really projectively simple see below.)

Having thus described the qualitative aspect of the problem of deter-
mination of C, one can hardly stand the temptation of trying to obtain the
description of C similar to (2) of § 1 in the general case. The first step towards
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this is to find out whether Coker¢ = 1 or not. At present we may claim that
Coker ¢ is really trivial in most cases. Indeed, if G is K-isotropic then the
Kneser-Tits conjecture is true for Gy (with a possible exception of E),
therefore any normal subgroup of G either is contained in Z(G) or coincides
with G. In particular, G; =[Gy, G¢]. Recently it turned out that for most
K-anisotropic groups G, has no noncentral normal subgroup either.

THEOREM 2.2 (Borovoi [5], Chernousov {6], [7]). Let G be a simple simply
connected K-anisotropic group of one of the following types: B, (n = 2), C,
(nz=2),D,n=4), E,, Eg, F,, G,, or let G be a special unitary group SU,,
associated to some quadratic extension L/K. Then Gy has no noncentral normal
subgroup.

The case of groups of type A, is more complicated and here G, is in
general not projectively simple. Platonov [15a] conjectured that the problem
of projective simplicity of G, for any simple simply connected group G,
including type 4,, can be solved in the following form:

(2) Gy is projectively simple iff G is projectively simple for all ve V¥\ V.
There is also a refined version of conjecture (2) due to Margulis:

(3) If T={veVE\VI|Gy is compact} then for any noncentral normal
subgroup N < G, there 1s an open normal subgroup W < G,
= [],er Gk, such that N = GynW.

It should be remarked that if (3) is true for N = [G, Gx] then under the
assumptions of the congruence subgroup conjecture we have Coker ¢ = 1 since
in this case SNnT=0.

If G is an anisotropic group of type 'A4, then Gy = SL(1, D) where D is
a finite-dimensional skew field over K. In this case the set T in (3) coincides
with the set of all nonarchimedian v for which D ® , K, is a skew field. As the
next theorem shows, (3) is really true for N =[Gy, G].

THEOREM 2.3 (Platonov—Rapinchuk [17], Raghunathan [24]). Let G be an
algebraic K-group associated to SL(1, D), and set T = {ve VEAVEID ® K, is
a skew field}. Then '

[Ck, Gkl = Gxn n [Gk,» Gk -

veT

Thus, the triviality of Coker ¢ is not yet established only for some forms of
types 24, and E,. So in most cases the calculation of C (if it is central) is
reduced to calculation of M (G, S).

The pioneer works of Moore [14] and Matsumoto [10] contain the
determination of M (G, S) for Chevalley groups in the form (2) of § 1. The case
of quasi-split groups was considered by Deodhar. Prasad and Raghunathan
[207], [21] (for classical groups see also Bak and Rehmann [1], [2]) managed to
determine M (G, S) for all K-isotropic groups.
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THEOREM 2.4. Let G be K-isotropic. Then

1 if S#Vxs,
< E(K) otherwise,

M(G,S)={

where E(K) is the group of all roots of unity in K.

o The author [25] [27] calculated M (G, S) for a large series of
K-anisotropic groups. These results look as follows:

Inner forms of type A,. Here G is associated to SL(1, D). Let n be the index
of Dand S, = {ve VK\S|D ® K, ~ M, (F,)} where F,is a skew field over K,
s, = [S,] (the number s, is finite if » > 2 and infinite if n = 2).

THEOREM 2.5. Suppose that S contains a nonarchimedian v, such that
D®¢K, ~M,(K,) Then M(G, S) is a finite subgroup of B(D, S} = (Z/2Z)".
In the general case M (G, S) is isomorphic to a finite subgroup of an extension of
B(D, S) by the group E(K) of all roots of unity in K,

CoroLLARY. If S, =, in particular if n is odd, then

| if dvgeS such that K, # Cand D @K, =M (K, ),
< E(K) otherwise.

M(G,S)={

In fact, the last statement is very similar to the classical result (2) of § 1.

Outer forms of type A,. These are the algebraic groups associated to
special unitary groups SU, (D, f) where D is a finite-dimensional central
division algebra over L endowed with an involution ¢ such that L° = K and
[L:K] =2 (involution of the second kind), and / is a nondegenerate
m-dimensional hermitian form with respect to o.

THEOREM 2.6. Let m = 3. If S contains a nonarchimedian valuation then
M (G, S) has exponent < 2. In the general case M (G, S) is a finite group which is
an extension of a group of exponent <2 by a subgroup of E(K).

Other classical types. Using Theorem 2.5 and the geometric representation
of groups of classical types we obtained the following.

THEOREM 2.7. Let G be a simple simply connected K-group of one of the
Jollowing types: B, (n=22), C, (n=2), D, (n=5). Suppose that S contains
a nonarchimedian valuation vy and the following conditions are satisfied:

1) If G is of type B, then either n = 3, or n=2 and G splits over K.
2) If G is of type C, then G splits over K.

Then M (G, S) has exponent < 2. In the general case M (G, S) is a finite group
which is an extension of a group of exponent <2 by a subgroup of E(K).
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Exceptional types.

THEOREM 2.8. Let G be a simple K-group of one of the following types:
Eg, F,, G,. Then M (G, S) is trivial if S contains a nonarchimedian valuation and
is a subgroup of E(K) otherwise.

For groups of type E, we obtained a result similar to Theorem 2.7. Thus
it remains to study the metaplectic kernel for some groups of types *A4,, D,
and E,.

3. Centrality of the congruence kernel for classical groups

The results of the previous section reduce the problem of determination of the
congruence kernel to the problem whether it is central or not. In this section
and the following one we are going to describe the results on centrality of
C3(G).

First of all, the centrality of the congruence kernel can be established
by manipulating with unipotent elements in the group Gy (if there are any).
This idea goes back to the fundamental works of Bass—Milnor-Serre [4],
Mennicke [12], [13], Matsumoto [10] and Serre [30]. The final result 1s
due to Raghunathan [22], [23] who proved that the existence of unipotent
elements in G together with the condition rangg G = 2 in fact guarantees
the centrality of C%(G). For his methods the existence of unipotent elements
1s essential so they cannot be extended to the case of anisotropic groups.
Until recently the only result on centrality of C*®(G) which allows also
anisotropic groups was Kneser's theorem [9] for the spinor groups of
quadratic forms. It turned out, however, that Kneser’s argument is of
general nature and can be modified so as to work for other groups with
nice geometric representation. First Raghunathan and Tomanov considered
the case of groups of type C, and then the author proved the following
general

THEOREM 3.1. Let G be a simple simply connected K-group of one of the
Sollowing types: B, (n=12), C, (n=4), D, (n=15), G, or let G be a special
unitary group SU,, (m =4) of type *A,_, associated to some quadratic
extension L/K. Then if ranggG > 2 then C3(G) is central.

The proof of Theorem 3.1 was actually independent of the type of
G and its scheme for G of type G, was published in [28]. It is based on the
following

Prorosimion 3.1. C3(G) is central if the group G is projectively simple
and if there is a K-defined subgroup H — G with the following properties:
1) The natural map C°(H) - C3(G) is surjective.

2) For some nontrivial K-defined automorphism o€ AutG the restriction
alH is trivial.
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If it is already known that Gy, is projectively simple the main difficulty that
arises in application of Proposition 3.1 is how to check condition 1). In all
known cases this was carried out by means of the following

ProrosiTION 3.2. Let G act K-rationally on some affine K-variety X, and let
x€ X x. Suppose that for any normal subgroup N < G, of finite index the orbit
Nx is open in Gy x in the (induced) S-congruence topology. Then for the
stabilizer G (x) of x the natural map C*(G (x)) = C5(G) is surjective. (Here by the
S-congruence topology we mean the topology of the space of S-adeles X ,gq)).

Propositions 3.1 and 3.2 have not been published explicitly but in fact they
are not new. If we apply them to I' = SL_(Z) (n = 3) we get the proof of the
centrality of the corresponding congruence kernel which is very close to the
classical one (see [8]). Let us show this.

Put G =SL, and take for H the subgroup

0
. ‘
0
0...01

which is isomorphic to SL, _,. Then condition (2) of Proposition 3.1 holds for
the automorphism ¢ = Intg where g = diag(1, ..., 1, —1). Thus, it remains to
check (1). Fix a basis ey, ..., e, of the n-dimensional space. Denote by F the
stabilizer of e, with respect to the natural action of G. 1t is easily seen that H is
a maximal semisimple subgroup in F. Consequently, C(F) = C(H) by Proposi-
tion 1.2 and it suffices to prove that the map C(F) — C(G) is surjective. For this
we use Proposition 3.2 Any normal subgroup N < I' of finite index contains
the subgroup E (m) for some m where E (m) 1s generated as a normal subgroup
of I' by all elementary matrices contained in the congruence subgroup I"(m).
Hence it is sufficient to prove that E(m)e, is open in I'e, for all m. It is well
known that the orbit I'e, consists of all vectors a=(a,,...,a,) whose
coordinates are relatively prime. So the desired fact follows from

Lemma 3.1, If ged. (ay,...,a,)=1 and (a,,...,a,)=(0,...,0,1)
(mod m?) then a=(a,,...,a,)eE(m)e,.
) (In fact, E(m)e, consists precisely of those a = (a,, ..., a,)€ I'e, for which

a=(0,...,0, 1) (modm), but this 1s a bit more difficult to prove, see [&]).
In the situation described in Theorem 3.1 the openness of Nx in Gy x
can be established using the following fact.

LEmMA 3.2. Under the assumptions of Proposition 3.2, let x, ye X and
suppose there is ue N with

(1) G (4 (x))ogs) X N G (X)os ¥ # D.
Then yeNx.
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To end this section, let us give a sketch of proof of Theorem 3.1. For
a group G of any type indicated in Theorem 3.1 one can take its natural
geometric realization as the automorphism group of a quadratic, hermitian or
shew-hermitian form f defined on a vector space W over a division algebra (for
G, one should take the natural 7-dimensional representation). Fix a vector
x € W nonisotropic with respect to f'and consider the “sphere” passing through
x: X = {ye W|f(y) = f(x)}. Then for an arbitrary normal subgroup N < G,
of finite index we find an open subset U c X, such that for any
yeUn Gy x there is ue N satisfying (1). This part of the proof is the most
complicated. In fact we look for ue N such that local analogs of (1) are satisfied
and then use local-global arguments based on the Hasse principle, strong
approximation theorem for algebraic groups and new results on the strong
approximation property for algebraic varieties (see [28]). It remains to note
that the group G(x) is stable under some nontrivial K-automorphism of
G which is of order 2 for groups of classical types and of order 3 for G,.

4. Centrality of the congruence kernel for exceptional groups

The geometric method yielding Theorem 3.1 seems inapplicable to most
exceptional groups. The reason is the absense of convenient geometric
realizations for these groups. Here the solution of the congruence subgroup
problem was obtained by a new approach using the inner structure of the group.

THEOREM 4.1. Let G be a simple simply connected K-anisotropic group of
one of the following types: E,, Eg, F,. If ranggG > 2 then C%(G) is central.

The groups of type E¢ are omitted in the theorem due to the fact that they
do not split in general over a quadratic extension of K, unlike the groups of the
indicated types.

ProrosiTioN 4.1. Let G be a simple K-group of one of the following types:
B,,C,, E;, Eg, Fy, G,. Then there is a maximal K-torus T < G which splits
over a quadratic extension L/K.

(It should be remarked here that the proof of Proposition 4.1 makes use of
the Hasse principle for simply connected groups, which was known to be true
for all groups except possibly for type E4. But recently Chernousov showed
that it does hold for the groups of type Eg as well.)

Let now G be a group as in Theorem 4.1. Choose a maximal K-torus
T < G satisfying the assertion of Proposition 4.1. f R = R(T, G) denotes the
corresponding root system then for every a e R we have a(«) = —a where ¢ is
a nonidentical automorphism of L/K. Thus the group G, generated by
one-dimensional unipotent subgroups U, and U _, is defined over K. The role
that the groups G, play in our situation is similar to the role that the ordinary
root subgroups play for Chevalley groups. We shall try to explain the main
idea of our proof of Theorem 4.1 using this analogy. More precisely, we shall
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show that if G is a universal Chevalley group over K of rank > 3 and if it 1s
already known that C5(H) = 1 for any universal Chevalley group H over K of
rank 2 then C3(G)=1.

Let T be a maximal K-split torus with root system R = R{(T, G). For any
a € R denote by G, the corresponding root subgroup. As above we may identify
the S-arithmetic completions G, and G, with the S-adelic groups G, and
G, a5 1t is not hard to show that the groups G_,, for simple roots x (the
system of which will be denoted by IT) generate the group G ,,. Thus we have
a surjective homomorphism

P2 ¥ Gy — Gy
aell

where * denotes the free product. For any a € R consider the closure C, of G,
in G,. Since G, can always be imedded into a subgroup H'< G which is
a universal Chevalley group of rank 2 and by our assumption C%(H) = 1, the
restriction n|C, of the projection m: G, — Gy induces an isomorphism 6,
C, = G5 If we take the inverse maps 0, ! and form their free product, we get
a homomorphism 0: *,.,G, s — G for which the diagram

- T -
Gy » Gy

N

*
aen-GaAtS)

is commutative.

If two roots a, BeIT are connected in the Dynkin diagram of R then the
group G,, generated by G, and G, is a universal Chevalley group of rank 2.
Qur assumption implies that the restriction of n to the closure C,; of G, in
G induces an isomorphism 0,;: C 5 = G,g 4, [n particular, for v # w (v, w¢ S)
the groups 0g' (G,px,) and 04" (Gyux ) commute. Since 044'|G, 45 = 07 ' and
0sp" |Gpasy = 05 ' the groups 0, '(G.4,) = 0(G,g,) and 05 ' (Gyg ) = 0(Gyi )
also commute. The last fact is still true for orthogonal roots « and f. Indeed, if
a1 f then there is no root of the form ia+jp (i, je Z\(0)), whence the groups
G,k and G, commute (see commutator relations in Chevalley groups, [31],
§ 6). Therefore the groups C, = 0(G, 4s) and C; = 0(G,4s) also commute, and
the desired fact is obvious.

Thus we have the following factorization for 0:

(1) a:" Gaasy = D — Gy

where D denotes the image of the natural homomorphism x_, G, ,q,
— [ loes (*2em Gox,)- Then we use the following fundamental fact: for any field
F the group G, as an abstract group is generated by the groups G, (x€ IT) and
can be defined by relations that exist between elements of the groups G,, and
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Gy for all pairs «, fe /1. In other words, the homomorphism 8: *,.; G,r — Gy
is surjective and its kernel is generated as a normal subgroup by all the groups
N, = Ker(G,p* Ggp — G,4p). Let us show that for any v¢S, o, fell the
relations between the elements of 0(G,, ) and 0(Gyy, ) are the same as those
between the elements of G, and G,y . If the roots o, B are not orthogonal
then in the above notation we have the isomorphism 6,,: C,;, >~ G5,
Consequently, Ker (0(G ) *0(Gye) = C,p) and Ker (G * Gy, = Gpi ) are
naturally isomorphic. In the case of orthogonal roots «, § all relations between
the elements of G, and Gy are consequences of the commutativity relations:
gh = hg for ge G, , he Gy , these relations being satisfied by the elements of
0(Ggk,) and 0(Ggy ).

The above argument together with the quoted fact from the theory of
Chevalley groups shows that the sequence (1) can be expanded as follows:

zell

where H is the image of the natural homomorphism

¥ Guas = [[(* Gug) =[] G,

acll vgs aell véS
It is easy to see that in fact H coincides with the group G, and ¢ provides
a cross-section of n. Thus Imy » C3(G) = 1. The final step of the proof that we
omit here is to establish that Imy n C5(G) is dense in C5(G).

The proof of Theorem 4.1 uses a similar argument but is much more
complicated. It is based on the fact that in the described situation any two
groups G,, G; can be imbedded into a K-defined subgroup H = G which
belongs to one of the classical types and satisfies the condition rangg H > 2.
Then C%(H) is central by Theorem 3.1 and one can argue as above substituting
H for G,5. The details will be published elsewhere.
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