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Consider the equation

(1) u—Adu=0 (x,f)in Dx(0,1)
with boundary condition
(2) u=0 ondD

where D is a domain in R" with a sufficiently smooth boundary 4D. The
problem is to find a solution u(x, t) of (1)+2) subject to the “terminal” condition

(3) u(x, 1) = g(x).

By a solution of the problem (1)-(3), henceforth called BPP, we mean
a continuous mapping
t—u(r)

from [0, 1] to L, (D), which is an H} n H%(D)-valued C'-map on (0, 1), satisfies
(1) in the strong sense, and assumes value g at t =1, ie,

(4) u(l) =yg.

Now, it is immediately seen that the problem does not have a solution for
arbitrary g in L, (D), because u(,[) has certain well-known regularity properties
that are not shared by arbitrary functions in L, (D). Furthermore, as will be
scen later, even on the set of the ¢'s for which the problem does have a solution,
the latter does not vary continuously with g. In other words, the problem is
ill-posed. The ill-posedness of the problem is linked to the fact that heat
conduction is an irreversible phenomenon in time. The problem, in such
setting, is intractable numerically. Indeed; ¢ is usually a result of experimental

{*) Lecture delivered at Semester on Numerical Analysis and Mathematical Modelling,
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measurements (hence subject to errors), and the slightest error in the measure-
ment may lead to a new g for which the problem either has no solution, or else,
for which the solution departs considerably from the exact solution. We are
facing the task of regularizing the problem, i.e., finding a solution v,(t; g), f > 0,
to (1)-(2), stable with respect to variations in g, that satisfies

() ve(l,g)>g B0,
(6) vs(0,u())>u(0) B0,

for any solution u(t) of (1)<(2) (we write u(t) for the function u(t)x = u(x,t)).

The one-parameter family v,(t,g), B > 0, is called a quasi-solution of the
BPP. The second question that arises is how to pick the right 8. We shall
return to this matter. For now, we simply note that the problem has been
considered for the past three decades, with such pioneering papers as e.g. the
work of F. John in 1960 [7]. But it is during the past two decades that the area
of research has been particularly active, with the work of Lattés—Lions on the
method of quasi-reversibility (see [6], [8]), with the applications of Tikhonov’s
theory of regularization [4], with the work of K. Miller [8] on stabilized
quasi-reversibility, and with the method of integral equations (see [1a], [1b] for
instance).

From the point of view of our exposition, it seems easiest to start with the
method of integral equations. In fact, this method will form the central point of
our discussion (Section 1). Other methods will be sketched in Section 2. The
advantages and drawbacks of each method will be discussed (Section 3). The
paper concludes with an open problem together with some clues to its solution.

1. The method of integral equations

Let S(t),t=0, be the semigroup generated by 4 on L,(D)
(domd = H§ n H3(D)). For any v in L,(D), put

(7) u(t) = S(tjv.

Then u(t) is the solution of (1)~(2) with initial value v. Thus the BPP is
converted into the problem of solving the integral equation

(8) Kv=g, K=S8().
The operator K has the following properties
9) K is one to one,

(10) K is self-adjoint and strictly positive.

From (10), we infer that range(K) is dense in L,(D), and since it is a proper
subspace of L, (D), we see that K™' is not continuous. We have thus proved
that our BPP is ill-posed. Observe that the density of range(K) is of
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independent interest, and is of particular relevance when we consider our BPP
as a problem of control.
Consider (8) with g, the experimentally measured value of u(1). Suppose

(11) lu(l)—gl <&

where |/| denotes the L,-norm. Suppose it is known, eg. by a physical
reasoning, that

(12) |4(0)] < E.

For f = ¢/E, define

(13) v = (B+K) g

where we have written f for I (for regularization of integral operators, see
Tikhonov and Arsenin [11]). Put

(14) ug(t,g) = S(tyv;, t20.
Then u,(t, ) satisfies (1)~(2) and, furthermore
(15) lug(t,g)—u(t)] < 2o'e’E*
where

(16) a=(1+p"L

The inequality (15) was derived using the logarithmic convexity of the L,-norm
of any solution of (1}+2). For a computation of v,, we can use successive
approximation. In fact, (13) can be rewritten as

y I—K+ g

P71+ 148

Since |/ — K| < 1, it is seen that the right-hand side of (17) delines a contrac-
tion on L,(D) of coefficient < (1+p)"' < 1. Thus (17) can be solved by

successive approximation, using the contraction principle. For more details, the
reader is referred to [1b].

(17)

2. The method of quasireversibilty and other methods

The method of quasireversibility (QR) due to Laités—Lions [7] consists in
perturbing the original equation (1) into one for which the problem is
well-posed. More precisely, it consists in solving the (well-posed) problem in

w(1):
(18) ow, [0t —Aw,—ed*w, =0, >0,

(19) w,=0=dw, on dD,
(20) w(l) =g,
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and then putting
2n 0,(t,9) = S()w,(0).

Here S(1) is the semigroup defined in Section 1. Then, v.(t,g) depends
continuously on ¢ and

(22) v(l,9)—>g, €—0.

The stability of the solution v,(t,g) for 0 <t <1 is not studied in [7].
Gajewski and Zaccharias [6] studied, instead of (18), the equation

{23) ow ot —Aw,—e(Ow,/ot) =0, €e>0
with

(24) w,=0, on 8D,

(25) w,(1) =g,

and then they put (as in Lattes-Lions)

(26) v,(t;9) = S()w,(0).

Restricting themselves to bounded domains, the authors in [6] proved that
v,(1;9)—¢ for -0, with an estimated rate of convergence in the case where
g Is in H)(D). But, again, the stability of v (t;g) for 0 <t < 1 is not studied in
[6]. Ewing [4] studied the same equation (23), and, for the regularized solution,
he took just w,(f,g), not bothering to go backward and forward as in
Lattés—Lions. He found the error estimate

(27) w, (£;9)—u(t)] < 4(1 -~ E/(*log(E/e)) + E' "¢,

where E and ¢ are as in Section 1.
K. Miller [9] considered the solution w () of the equation
d .
(28) w4y, =0,
defined on a suitable Hilbert space H, A being a symmetric positive operator
on H satisfying w,(1) =g, and then he put

(29) Uf(t;g) = S(t)wf(0)~

He found necessary and sufficient conditions on the function f for the inequality
(30) oyt g)—u(@)l < 26'E'

As we can see, Miller's method is a variant of the QR method. No better
stabilized QR method is known to us.

Franklin [5], using Tikhonov’s regularization method, under the con-
dition that «(0) lies in H*(D), D =(0,1), s a positive integer, and with zero
Neumann condition, obtained a regularized solution u,(t,g) with the error
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estimate
(31) |u,(0,9)—u(0)| < c(logE/e) ™,

where ¢ > 0 is some (unspecified) constant.

K. Miller (loc. cit.), using the method of truncated eigenfunction expansion
and under the sole condition that u(0) lies in L,(D), obtained a stabilized
approximate solution with an error estimate similar to (30). For a bounded
domain, under the condition that u(0) satisfies an inequality of the form

A\

[s ¢]
(32) Y A|u(0),0,))* < E*, 520, (,)=L,-inner product

1
where (¢,) are the eigenfunctions (orthonormalized) of — A4 in H§nH?*(D) and
(4,) are the corresponding eigenvalues, the authors in [2] “constructed” by
truncated eigenfunction expansion a stabilized approximate solution u,(t,g)
with a sharper estimate of the error. In fact, they put

N(&)
(33a) u,(t;9) = Y. (g, ¢,) @, exp(4,(1—1)

1
where

N(e) = max {n: A, < log((E/e)log E/e)~*/*}

(f A, > log((E/e)log E/e)™*, u,(t;g) is understood to be the null function).
Then, the following error estimate holds (for small & > 0 if s > 0, and for any
e>01if s =0)

(33 b) lut,g)—ut) < (1+29Y2 E' "' (log Efe) 31 ~1/2

Note that for s = 0, the foregoing estimates reduce to that of Miller’s (loc. cit.).

3. Discussion and an open problem

We shall point to some ol the advantages and drawbacks of each of the
methods outlined above. The method of truncated eigenfunctions, as used in K.
Miller (loc. cit.) and in Ang-Hai [2], is certainly a most valuable tool as long as
the domain D is such that the eigenfunctions and eigenvalues of —4 on D are
available (this is the case of such simple geometries as the rectangle, the disc
and their n-dimensional analogues). In general, however, they are out of reach.
The problem of eigenfunction and eigenvalue perturbations is usually a most
delicate problem.

The method of integral equalions, as presented in Section 1, provides an
efficient constructive tool for calculating a regularized solution, with an
advantageous error estimate. It is true that for the method to work, one need to
know the Green’s function; however, there are standard methods for ap-
proximating it.

EX] Banach Center 1. 24
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Tikhonov’s method of smoothing functionals, as used in Franklin [5], is
a powerful general method, which can be applied to more general problems,
not necessarily linear.

The original QR method of Lattés—Lions and its stabilized version due to
K. Miller are of considerable theoretical interest. Because of their generality,
they can probably be successfully applied to semilinear equations of the form

(34) u,—Au = h(Vu,u),

with a QR perturbation of type

(35) du /ot — Au,—eA*u, = h(Vu,,u,)
or A

(36) Ouyfot—f(—4) = h(Vu,,u,)

where f has the stabilizing effect in K. Miller’s original approach.
We conclude with an open problem and a clue to its solution. We still
consider equation (1)

(37 u—Adu=0 (x,¢f) in Dx(0,1)
with boundary condition
(38) udu/on=0, u=0, Odu/dnz20 on dD

where J/0n is the derivative along the outer normal at the boundary. The
problem is to find a solution satisfying

(39) u(l) = g.

The problem was raised in Payne [10]. A rather natural way to look at it
would consist in converting it into a problem involving a nonlinear field
equation with zero Neumann condition. In fact, let v = 4% Then, v satisfies

(40) v,—dv = =|Fv|*/2v
with boundary condition

(41) ovfon=0 on oD
and terminal condition

(42) v(l) =g.

To regularize problem (40)-(42), one might try the QR method with a regular-
ized equation given in (35) or (36). Alternatively, one could formulate (40)-(41)
as an integral equation (nonlinear), and then use Tikhonov’s method.
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