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Let R be a prime ring. The generalized Picard group is defined to be
p(R) = X-inn R/Inn R, the quotient group of X-inner automorphisms of
R modulo the subgroup of inner automorphisms. X-inner automorphisms were
introduced in ring theory in 1975 [Kh75] and about the same time in
C*-algebras. They have had many uses in studying fixed rings and noncom-
mutative Galois theory, ideals in crossed products, and in computing automor-
phism groups of some specific rings. Thus there are a number of papers in the
literature describing X-inner automorphisms.

In this paper we look more specifically at the quotient group p(R). First we
discuss why it is an analog of the classical Picard group (or more precisely the
central Picard group). We then give a number of examples of p(R), which can
be extracted from the known results on X-inner automorphisms. We then
return to p(R) and examine how i1t behaves on the ring M, (R) of n x n matrices
over R. Finally, we include a discussion of the symmetric ring of quotients and
the relationship between X-inner automorphisms and the “partly inner”
automorphisms used in C*-algebras.

The author would like to thank R. M. Guralnick for some helpful
suggestions in § 3, particularly concerning the Proposition and Corollary. She
also acknowledges support from NSF Grant DMS 87-00641.

§ 1. X-inner automorphisms and invertible ideals

We first recall the definition of X-inner automorphisms. Let Q,(R) denote the
left Martindale quotient ring of R; that is, Q,(R) = limHom(I, R), the direct
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limit over the nonzero ideals I of R, where Hom(g/, R) denotes the left
R-module maps from I to R. The ring R imbeds into Q,(R) via r — rg, right
multiplication by r on I = R. If c€ Aut R, then ¢ has a unique extension to
Q,(R). We say o is X-inner if ¢ becomes inner on Q,(R).

In fact the definition of X-inner is left-right symmetric (since ¢ is X-inner if
and only if there exist 0 # a, b, ¢, d€ R such that arb = cr?d, for all re R [MP
841]), and thus one could have used the right Martindale quotient ring Q,(R), or
the symmetric quotient ring Q.(R) = Q,(R) N @,(R), which is what we shall use
here. We will write Q_(R) = Q(R), or just Q when there is no ambiguity about
which ring is involved. The center C of Q is called the extended center of R, and
is known to be a field.

One reference for Q,(R) and X-inner automorphisms is [M80]. @ (R} will
be discussed further in Section 4.

We require a few more facts. If ¢ is X-inner on R, induced by g€ Q, then
qR = Rq, that is, g is R-normalizing. Conversely, if 0# xeQ is an
R-normalizing element, then x is a unit in Q and so determines a unique
X-inner automorphism o,, via xo.(r) = rx, for all reR [MR80, p. 43].

We now consider ideals. An R-ideal of Q is an R-R-subbimodule [ of Q; I is
invertible if there exists an R-ideal J of Q such that IJ = JI = R. The set #(R)
of all invertible R-ideals of Q is a group under multiplication. An R-ideal [ is
principal if there exists x € @ such that I = xR = Rx; if x # 0, then by the above
remark x~ ' e Q and so I is invertible. Let 2(R) denote the subgroup of #(R) of
all nonzero principal ideals. ¥(R) denotes the subgroup of central principal
ideals; that is, Te € (R) if I =cR, some ceC.

Our first lemma is essentially due to K. A. Brown. Although he states it in
the situation when R is Noetherian and Q is the classical quotient ring, the
same proof works [B, Lemma 4.2].

LEMMA 1. For any prime ring R, p(R) = Z(R)/4(R).

Proof. Define ¢: 2(R)— X-innR/InnR = p(R) by ¢(Rx)= o InnR,
where Rx = xR and o, denotes conjugation by x as above. ¢ is well defined, for
if Rx = Ry, then x = uy for some unit u of R, and so ¢, = ¢, (mod Inn R).
Clearly ¢ is onto. Also Ker¢ = ¢(R), for

I =RxeKerp < o,€lnnR
< x = cu, for some ceC and some unit u of R
<] = Rx = Rce¥(R).

The lemma motivates our calling p(R) a generalized Picard group,
although it is actually closer to the central Picard group [R, p. 320], or central
class group [B]. The p also suggests that we are considering principal ideals. As
is true classically, a ring R will be considered good if p(R) is “small”; that is,
p(R) is finite or at least abelian.
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§ 2. Examples

As mentioned in the introduction, many examples of p(R) can be obtained from
known results on X-inner automorphisms. We survey many of those results
here.

A. PI rings and Azumaya algebras

If R is prime PI with center Z, and g € Aut R fixes Z, then g fixes the center
of Q = RZ™! and so is inner on Q by the Skolem-Noether theorem. That is,
g is X-inner. Conversely, any g € X-inn R fixes Z. Thus X-inn R = Aut,R, and
so p(R) = Aut,R/InnR = Qut,R.

If R is in addition an Azumaya algebra of rank n? over Z, then Out,R is
abelian and n-torsion, by work of Rosenberg-Zelinsky and Knus—Ojanguren
(see [KO]). If also R is affine over a field k of characteristic 0, it is known that
Out,R is finite.

For general PI rings, however, Out,R is not necessarily well behaved, and
can even be a simple group. A subgroup of Out,R = p(R) is better behaved: let
LocInn R denote the “locally inner” automorphisms of R: that is, all 6 € Aut,R
such that ¢ becomes inner on every localization of R at a maximal ideal of Z.
Then LoclInn R/InnR is always abelian [C].

B. Free algebras and free products

If R is a free algebra of rank = 2 over a field k, then it is known that
O(R) = R [Kh78]. Consequently X-innR = InnR = (1) and so p(R) = (1).

More generally, free products (or coproducts) have been studied in the
papers [MaM], [LiMa], [Ma]. The best result so far is that if D is a division
ring and R,, R, are von Neumann finite D-rings, then every X-inner
automorphism of R = R, 1l jR, is inner, except for a few special cases [Ma]
(the only exception when D is a field and the R; are domains occurs if
[R,:D] =[R,:D] =2 [MaM]). Thus p(R) = {1} for such rings.

We do not know whether or not Q(R) = R in this situation (excluding the
special cases).

C. Enveloping algebras of Lie algebras and Ore extensions

Let L be a Lie algebra over a field k and R = U(L) its universal enveloping
algebra. An element ge Q(R) is called a semi-invariant for the action of ad L
if there exists 1€ L*, the dual of L, such that ad x(q) = [x, g] = A(x)q, for all
x e L. If g is a semi-invariant, then g is R-normalizing, so determines an X-inner
automorphism ¢ given by ¢(x) = ¢~ 'xq = x+ A(x), for all xe L. Conversely, it
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is shown in [M81] that any X-inner automorphism is of this form. Since U(L)
has no nontrivial units, Inn R = {1}, and thus p(R) = X-inn R can be identified
with an additive subgroup of L*. Therefore p(R) is abelian; if also k has
characteristic 0, p(R) is torsion-free.

For any domain R, let S = R[x; d] be an Ore extension for d a derivation
of R. In [M83], it is proved that p(S) 1s an extension of a subquotient of
C—1{0} by a subgroup of p(R). In particular, p(S) is abelian provided p(R) = 1.
A result is also proved for iterated Ore extensions, giving another proof that
p(R) is abelian for R = U(L), when L is a solvable Lie algebra.

D. Group algebras and crossed products

If R = kG is a prime group algebra over the field k, let Wdenote the set of
X-inners of kG which normalize the group k*G of trivial units. Then [MP82] it
can be proved that W/WnInnR is a periodic abelian group. If G is a right
ordered group, then W= X-inn R and thus p(R) is periodic abelian. If also
A4(G) = 1, where 4 is the f.c. subgroup of G, then p(R) = 1. In particular, this
applies to the case when G is a free group, although the fact that p(R) = 1 for
R = kG, G free, can also be obtained from the free product results [MaM].

The description of W is also of interestt [MP81] proves that
ce We>0 = 0,0,0,, where o,€lnnG, o, fixes a subgroup H of G of finite
index, and g, is X-inner of “scalar type”, that is, there exists a linear character
4. G =k such that o,(g) = A(¢g)g. for all geG. Such an automorphism is
X-inner il and only if there exists mekG such that o 'ga = A(g)g, or
gog ™' = Ag)a, for all g; this says that o 1s a semi-invariant for the action of
Ad G, and is analogous to what happened for U(L).

In a related result, [B] considers group rings RG for R a commutative
Noetherian UFD and G a dihedral-free polycyclic-by-finite group with
A*(G) = 1. He proves that for such group rings,

p(RG) = H'(G/Cg4(4), R* x 4)

where R* denotes the units of R. As a consequence, he obtains a different proof
of a result in [MP83].

X-inners of crossed products R+G are studied in [MP86]. When R and
RxG are prime. results are obtained about the group .#° of X-inners of RxG
which normalize both R and the group of trivial units of RxG; again an
appropriate quotient of 4 1s a torsion abelian group. A major special case
occurs when R = U(L), an enveloping algebra. Here the skew group ring
H = U(L)G is actually a Hopf algebra, provided G acts as automorphisms of L.
As for enveloping algebras and group algebras, the semi-invariants for the
action of ad H on itself give examples of X-inner automorphisms of H.
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E. Generic matrices and their trace rings

Let R=k{X,,..., X,;} be the ring of d generic nxn matrices, where
d, n > 2. It was proved independently in [LvKh] and [M&1] that X-inn R is
trivial; thus p(R) = (1.

More generally, if T is the trace ring of R, then again X-innT is trivial
and so p(T)= (1>, with one exception: the case n=d =2. In this case
X-innT=Z,; the unique nontrivial automorphism is given by
X{=—X,+(trX)I,i=1,2 This result is due to [L] in characteristic 0 and
to [GM] in characteristic p # 0.

F. Finally, p(R) can be arbitrary. In [MP83] it is shown that for any group G,
there exists a subring R of some group algebra such that p(R) = G.

§ 3. p(R), module isomorphisms, and ma'trices

In this section we return to our general consideration of p(R) and its properties.
We first show that #(R) can be viewed as ideals module-isomorphic to R.

LEMMA 2. Assume a€Q such that I = aR is an invertible R-ideal of Q and
such that a is right regular on R. Then aR = Ra, and thus a” ' € Q and I € ?(R).

Proof. Since aeQ, there exists an ideal K of R such that 0 # aK < R.
Moreover, since I is an R-tdeal, R(aK) = (Ra)K < (aR)K = aK, and thus aK is
an ideal of R. Define f: aK — R by f(ak) = k; f 1s well defined since a is right
regular. Clearly f is a right R-map, and thus determines an element fe Q_(R).
Letting a, denote left multiplication by a, both foa, and a; of are the identity
onaK. Thusin Q,, = (d,) !. But @ — a, is just the imbedding of R in Q,. Thus
a 'eQ,.

Now Ra < aR implies a 'R < Ra™?, and thus J = Ra™! is an R-ideal of
Q, with JI = R. But I is invertible in @, and so in Q,; it follows that J = I~ '.
Thus J = Q = @, and in particular a” '€ Q. Finally, R = IJ = aRa™!, and so
aR = Ra.

The lemma raises an interesting question: namely, what happens if I is not
assumed to be invertible? That is, if R is prime and ae Q such that Ra < aR,
when must a be R-normalizing? R. Guralnick has proved that a is normalizing
if R is a finite module over its center. We do not know what happens when R is
an affine PI algebra.

ProrosiTiON. For any Ie #(R), the following are equivalent:

(1) I > R as right R-modules.
(2) I = R as left R-modules.
(3) I'eZ(R).
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Proof. Clearly (3) implies (1) and (2), since if I = Ra = aR for some unit
ae@, I ~ R both as a right and left R-module.

(1)=>(3). Let ¢: R—>1I be a right R-module isomorphism and let
a = ¢(l)el = Q. Since ¢ 1s one-to-one, a is right regular, and since ¢ is onto,
I = aR. Thus by Lemma 2, a~ ' €Q and aR = Ra, proving (3). (2) = (3) uses the
left version of Lemma 2.

We now proceed to matrix rings. For convenience we will write
S = M,(R), the ring of n x n matrices over R. The proof of the next lemma is
straightforward.

LemMma 3. Let S= M, (R), for R a prime ring.

(1) Q(S) = M (Q(R)).

(2) I is an S-ideal of Q(S)<=1 = M_(J), for J un R-ideal of Q.
(3) If I = M_(J), then Ie #(S)<>J e #(R).

For any R-module V, V™ denotes the direct sum of n copies of V.

CoROLLARY. For any Ie #(R), the following are equivalent.

(1) I'™ =~ R™ gs right R-modules.
(2) I'™ =~ R™ gs left R-modules.
(3) M, (e 2(M (R)).

Proof. From the Morita correspondence, I™® =~ R™ as right R-modules if
and only if M, (I) = M_(R) as right M, (R)-modules; similarly on the left. The
corollary now follows from the Proposition.

We may now define .#"(R) to be the set of all I € #(R) which satisfy any of
the equivalent conditions of the corollary. It is easy to see that S(R) is
a subgroup of #(R). Note that #!(R) = Z(R).

THEOREM. p(M (R)) = #™(R)/%(R).

Proof. By Lemma 1, p(M,(R)) = #(M,(R))/¢(M (R)). Since the center of
M ,(Q) is just scalar matrices over C = C(R), M, (I)e €(M,(R)) if and only if
Ie¥(R). The theorem now follows from the corollary and the definition of
F(R).

We note an easy consequence of the theorem: p(M,(R)) will be abelian
whenever #"(R) is abelian. More generally, we are interested in the relationship
between p(R) and p(M,(R)). Since p(R) = #'(R)/%(R), it is clearly a subgroup of
p(M,(R)). This could of course be seen directly; X-inners of R extend to
X-inners of § = M (R) by conjugating by the appropriate “scalar” matrix.
Identifying X-inn R with its image in X-inn S, X-inn RN InnS = InnR. Thus
p(R) = X-inn R/Inn R < X-inn §/Inn S = p(S). One might hope that in general
p(R) would be a normal subgroup of p(M,(R)). However, this is false.

EXAMPLE. Let R have Z-basis {1, x,y,xy|[x*=—1, y*= -5, xy
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= —xy}; thus R is an order in a generalized quaternion (division) algebra D and
R has center Z. Then Out,R is not normal in Out,M,(R).

Proof (sketch). There are several ways to see this. First is a direct
computation, which was done jointly with D. S. Passman. We show first that
AutzR = (6., 06,>, where o,,, denotes conjugation by 1+x and 4, by y.
Thus AutzR = D, the dihedral group of 8 elements. Also InnR = {o,) and
a. = (7,.,)* consequently Out,R = 7, xZ,.

Letting S = M,(R), extend Aut_R to AutS. We then show that the element

2 —1+4+y
A_(1+.v —2)

is S-normalizing, so o ,€Aut,S, and that ¢,0,.,04: = oy, where
B - T+x(—4+y) —2xy
B 2xy L+x(—4—y))

So far the arguments are relatively straightforward. However, to finish the
proof, a much more tedious computation is needed to show that
ap¢ Aut R-Inn S, and so in Out,S, conjugation by the image of o, does not
normalize Out,S.

An alternative to the last computation has been suggested by D. Estes and
R. Guralnick. Since Z is a PID and S is a Z-order, it follows from known
results on orders that for any n,

Out,M (R) = [] OutR,,,

pel

where p denotes a prime in Z and R, the localization at p. One can check that
OutR,, = <{1) if p#2,5, that OutR;, = Z, and that OutR;5, = §;. Thus
Out,S € Z, xS, In fact Out,S = Z, xS§,, since Out, R =Z, xZ, c Out,S
and o,¢ Out,R. Clearly Z, xZ, is not normal in Z, x §,.

§ 4. Quotient rings, inner automorphisms, and C*-algebras

In this section we discuss in more detail the symmetric ring of quotients and
the relationship of X-inner automorphisms to the analogous definition for
C*-algebras. ‘

We first review the multiplier algebra M(A) of an algebra A [H]. M(A) is
defined to be the set of pairs (f, g), where f (respectively g) is a left (right)
A-module map of A4 to itself, satisfying f(a)b = ag(b), for all a,be A. M(A) is an
algebra under composition of maps. Notice that 4 imbeds in M(A) via
a — (ag, a;), where a, (resp. a;) denotes right (left) multiplication by a.

Although the ring Q(R) was defined as Q(R)n Q,(R) in [Kh77], an
equivalent formulation with the flavor of multipliers can be given [P]: let I,
J be nonzero ideals of R, and say f: I = zR and g: J; — Ry. The pair (f, g)is
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called balanced if f(a)b = ag(b), for all ael, be J. Then Q(R) may be defined as
the direct limit of the balanced pairs (f, g) over pairs I, J of ideals of R (in fact,
one may assume [ =J since InJ #0). R imbeds in Q(R) as above, via
r—(rg. rp)

It is this point of view which is close to that used in C*-algebras. If 4 is
a prime C*-algebra, consider the set & of nonzero closed ideals of 4. Then
M>(A) is defined to be the direct limit over I€.% of the multiplier algebras
M(I); this definition is due to G. Pedersen (see [E]). At first glance M™(A)
appears to differ from Q(A) in two major ways: first, only closed ideals are
used, and second, the maps f, g are I-maps [rom [ to I rather than A-maps
from A to I. However, the second difference can be eliminated. For, since any
closed ideal I # 0 is itsell a C*-algebra, I? = I. It is then easy to see that the
two kinds of maps are the same. It follows that the only difference between
M®>(A) and Q(A) is that only closed ideals are used in M *(A); in fact, M *(A)
imbeds into Q(A).

We may now define the C*-analog of X-inner automorphisms. A {con-
tinuous) automorphism ¢ of a (prime) C*-algebra A is called partly inner if
o becomes inner when extended to M*(A). Such automorphism are used in
[Ri] to study prime crossed products, obtaining analogs of the algebraic
results.
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