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THE LITTLEWOOD-RICHARDSON RULE —
THE CORNERSTONE FOR COMPUTING GROUP PROPERTIES

B. G. WYBOURNE

Physics Department, University of Canterbury, Christchurch, New Zealand

The role of the Littlewood-Richardson rule in the computation of the properties
of Lie groups is outlined. It is shown that the modern personal computer can lead
to an efficient interactive evaluation of many group properties.

Introduction

The applications of group theory and combinatorics in physics continue its
unabated growth. The diversity of applications is little short of amazing, we
mention but a partial list.

(a) Atomic Physics. The group chain

U," 2 80,5 2 SU, x [Sp;, 2 SU, x[8O, > G, > SO,4]]

has found extensive application in the analysis of rare earth spectroscopy
[1-3]. The conformal group SO (4, 2) has been used as the dynamical group of
the hydrogen atom [3, 4] while the group SO (2, 1) ~ SU(1, 1) has been used
in the analysis of Coulomb radial integrals [35, 6].

(b) Quantum Optics and Interferometry. The groups SU(1, 1) and SU(2)
enter in the description of multiple interferometers [7] while the noncompact
group Sp (4, R) enters in quantum optics [8].

(c) Jahn-Teller Effect. Under appropriate interaction parameters some
Jahn-Teller Hamiltonians exhibit SO symmetry [9] while in other cases
supersymmetry has been exploited as a tool for making calculations [10].

(d) Nuclear Models. The interacting boson model (IBM) of nuclet has
introduced the group chain U, > SO, » SU, o SO, [11] and many variants
while supersymmetry studies have centred around the supergroups U (m/n) and
OSp(m/n) [12, 13]. The noncompact group Sp(2n, R) and its maximal
compact subgroup is important in certain nuclear models [14].
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(e) Particle Physics. The particle physicists tend to be prodiguous users of
group structures and their extensions. Thus in the heterotic string we {ind
groups E,x Eg and SO,, feature prominently as well as their various
subgroups [15]. Particle physicists are not adverse to making daring excur-
sions into such topics as the Monster Group, infinite dimensional Lie algebras
and Kac-Moody algebras.

The above few examples should give encouragement to mathematicians
— their work 1s greatly valued by the physicists!

At the most mundane level physicists need to be able to readily obtain
information on (1) the properties of irreps, such as dimensions and Casimir
eigenvalues. (2) the resolution of Kronecker products and (3) the decomposition
multiplicities for group-subgroup combinations. Over the years we have tried
to formulate algorithms to make possible the interactive evaluation of group
properties on personal computers.

Labelling representations

The irreps of the compact semisimple Lie groups may all be uniquely labelled
by ordered partitions of integers or half-integers. Thus for the classical Lie
groups we have {16]:

SuU, (A} p<n—1

SO,%.. [l p<k (4. 2] p<k

SO, [4] p<k (4]. p=k [4:2]. p<k
Spay Ay p<k

where p is the number of parts of (2) and the + distinguish pairs of irreps
whose highest weights are distinguished by their kth part being + or —.

The irreps of the exceptional Lie groups may be given a natural labelling
in terms of the corresponding labels attributed to a chosen maximal classical
Lie subgroup [16-19]). Thus G, >SU,, F,>S80,, E,>SU,xSU,,
E, > SUg and Eg o SU, or Eg > SO 4. In each case we are led to a unique
labelling scheme based on constrained partitions, as tabulated mn [16].
A one-to-one correspondence between partition labels and the corresponding
Dynkin labels exists [16]. Similar labelling schemes may be developed for the
ordinary and spin irreps of the symmetric S, and alternating A, finite groups
[20-24].

Finally we note that the infinite dimensional irreps of the positive discrete
series D™ and the harmonic series unitary irrep of the noncompact groups
U(p, q), Sp(2n, R) and SO* (2n) may likewise be labelled in terms of partitions
of integers based on the corresponding labelling adopted for their maximal
compact subgroup [25,26]. Thus for Sp(2n, R) the discrete series irrep
becomes labelled ({4} and those of the harmonic series by {}k(4)) where k is
an integer.
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S-Function series

Professor King has outlined the role of special S-function series in giving
a concise one symbol universal characterisation of the Kronecker products and
branching rules for the classical Lic groups. Thus the Kronecker products of
the tensor irreps of Sp,, may be concisely writlen as

(1) Ay Gy =3 L i)
which involve simply the evaluation of the S-function skews and outer
S-function products using the Litilewood-Richardson rule with the summation
being over all compatible S-functions {. Similar results may be readily
developed for other products [i6], [27].

Branching rules may be developed in a similar fashion [16], [287. [29].
Thus the U, ! O, decomposition for the covariant irreps {4] of U, may be
concisely wrilten as

) 141 L[4/D]

where D is the S-function series characterised by partitions whose parts are all
even.

The use of particular S-function series leads to a process of symbolic
manipulation ¢f S-functions that is well adapted to computer implementation.
Indeed most of the reievant series can be generated by a single piece of PASCAL
code. We note that the branching rules for the alorementioned noncompact
groups can also be described concisely in terms of S-function series. Thus for
Sp(2n. R)| U(n) we have for the positive discrete irreps [26], [31]

(3) A LIALD

Note that in (2) the D series appears as a skew whereas in (3) it appears as an
outer product. Equations (2) and (3) show clearly the significance of the
Littlewood--Richardson rule in computing group properties.

Modification rules

The evaluation of Kronecker products and branching rules may lead to the
appearance of non-standard characters which must be modified to produce
either a null result or a signed standard character. A complete set of
modification rules for the exceptional and classical Lie groups is given in [16].

Modification rules are symptomatic of a measure of overcounting.
S-function procedures produce universal results and the modification rules
only arise when specialisation is made to specific cases involving low rank
groups. In practice modification rules are extremely simple to programme and
a string of standard and non-standard characters can be reduced to a string of
standard characters with negligible time or memory penalty.
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Kronecker products for exceptional groups

King [19] has shown that if a group G has a maximal classical Lie subgroup
H and if the decomposition

(4) He = Y. G vy

is known then the Kronecker product (4 x u); where 4 is an arbitrary irrep of
G and can be evaluated by what amounts to essentially doing the Kronecker
products (4 xv)y, in the subgroup H standardizing the result in H and then
modifying in G. Explicit details have been given in [16]. Again the Little-
wood-Richardson rule plays the key role.

By way of example we note that the fundamental irrep (217) of E; is of
dimension 248 and the Kronecker seventh power of (217), which is of course of
degree (248)7 can be evaluated in ~ 4 minutes using an XT IBM clone
operating at 8 MHz. In this case the sum of the multiplicities exceeds 260,000.
The key to such speed is a highly efficient implementation of the Little-
wood-Richardson rule coupled with an efficient opportunistic sort strategy.

Computing S-function operations

Our implementation of the Littlewood—Richardson rule is such that an XT
clone at 8 MHz will determine as a sorted list the 930 terms in {4321}.{4321}
in 4.7 seconds. On a SUN 360/4 workstation the result appears almost
instantly. It is this high speed that permits the computer to be used as an
interactive device for computing group properties.

Inner products are computer making use of the reduced notation [23],
[32] for S, where the partition (4) = (n—m, p) with p= 4, 4,... 4, of weight
m is written in reduced notation as {u). Explicit details are given in [32].

S-function plethysms {i} ® {} are evaluated using an extension of
a result due to Butler and King [33]. The computation of S-function plethysms
is a complex problem and a truly efficient method remains to be discovered. It
seems almost inevitable that each method proposed necessarily involves
overcounting which becomes excessive as the size of the problem increases.

Computing with Schur 4.1

Over the years we have been trying to refine the algorithms for calculating
group properties and the Littlewood—Richardson rule forms the cornerstone of
the package SCHUR 4.1 [34]. This package consists of ~ 174 K of compiled
PASCAL code and runs on any IBM compatible personal computer (XT, AT
or 286) with 512 K or greater usable RAM. It is designed to carry out the
following operations. -
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(a) Kronecker products for all compact Lie groups including direct
product groups and the ordinary irreps of the symmetric group. Products
may be evaluated for lists or strings of irreps.

(b) Branching rules such as

U -0, U, —Sp,, SO, —S0,*0, SU,, —U,*SU_*SU,
SO, - U, *U,, U,,—»U,*U,, U,-S0,, SU,, —U,*SU,*SU,
OSPon = On*SP,, Uprwpeq— Uy *SU,*SU

U = Upp "Unggs

G,->SU,, F,—-80, E,—SU,*SU,, E,—U,*S0,,, E,—SU,,

njg*

mn+ pg/mp + nq

E, >SU,, E;—>SU,*E,, E;—SO,, S0,-G,, G,—SO,.

Other branching rules may be built up using SCHUR 4.1 interactively.

(¢c) The Schur function operations QOuter, Inner, Skew and Plethysm are
available along with commands generating the infinite Schur function series
up to a user defined cutoff. The Young tableaux or frames of these opera-
tions may be displayed directly on the screen.

(d) Modification procedures for standardising non-standard represen-
tations are automatically invoked as required.

(e) Properties such as dimensions, Casimir eigenvalues and conversion
between partition labels and the Dynkin notation are available.

(D Sequences of instructions may be set as functions allowing the user to
implement user defined rules.

(g) Helpfiles can be brought to the screen at any time giving a complete
description of the over 100 commands available.

Examples

Consider the S-function content up to terms of weight < 8 of the generating
function

(5) H(l'_xi) Hl(l_xzxj)-

i

We first recognise that (5) is the product of two simpler series [31] L and C.
The terms of the L and C series up to weight 8 are evaluated by the
commands

trwt8 L and trwt 8, C

We then need to determine the outer S-function product and then bring to
the screen terms of weight < 8 of the resultant to give:
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SFN >
weight8, outer, trwt8, L, trwt8, C

— {521} + {511} — {44} + {43} — {422} + {42} — {41} — {3311} + {331} — {33}
+{32111} — {3211} + {321} - {32} + {3} — {211 1111} + {211 111} - {21111}
+ {2111} = {211} + {21} + {11110t} — {11112} 4+ {11111} — {11111}

+ {1111} = {111} + {11} - {1} + {0}

As a second example consider the branching rule for O, |S, where in
reduced notation [23]

(6) [111<0> +<1)

Following Luan Dehuai and Wybourne [23] we may write the decomposition
rule for an arbitrary tensor irrep of Oy as

(7 1> ®@{4/MC} =<1) ® {4/G}

where we note that MC = G. The reduced notation plethysm is evaluated in
SCHUR by the command plinner. Thus for the decomposition of the irrep
[321] of O, the command sequence

plinner skew 321, G

would yield the irreps of Sy in reduced notation. To obtain the results for
a specific value of N it is necessary to prefix each partition in the reduced
notation with a part sufficient to make the partition up to weight N and then to
standardise any non-standard irreps of S,. This is accomplished by the
command sequence, for say Oy|S,,

mkweight 9, plinner, skew 321, G

In practice it is more generally useful to make a user defined function
such as:

group O,

enter svl

dim[convert svl]

group S,

[convert mkweight9, plinner, skew, svl, G]

dim last

last

stop

The first statement sets the group as O(9) and then the succeeding statement
asks the user to enter a partition (sv1). The third statement converts (sv1) into
a standard irrep of Oy and computes its dimension. The set group is now
changed to S(9) and the sequence of S-function operators computed and then
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converted into standard labelled irreps of S(9). The dimension of the result is
computed so that we can check that it agrees with that calculated for O(9).
Finally, the S(9) content of the decomposition is displayed.

The function is invoked by a single command fnl to produce the output
given below: ‘

1

Group 1s O(9)
enter svl

321

Dimension = 9009
Group is S(9)
Dimension = 9009

2{81} +6 {72} +6 {711} +6 {63} + 15 {621} +6 {6111} +2 {54} +9 {531)
+7{522} +9 {5211} +2 {51111} + {441} + 3 {432} +3 {4311} + 3 {4221}
+ {42111} + {3321}

The above two examples give some indication of how the computer can assist
in evaluating the properties of Lie groups and of the symmetric groups [34].

Concluding remarks

I hope we have demonstrated the manner in which the Littlewood—Richardson
rule can form the cornerstone for computing many properties of Lie groups.
I must take the opportunity of thanking the organisers of this Seminar at the
Stefan Banach International Mathematical Center for a stimulating week of
great interest and true international spirit.

References

[1] B. G. Wybourne, Spectroscopic Properties of Rare Earths, J. Wiley & Sons, New York 1966.

[2] —, Symmetry Principles in Atomic Spectroscopy, ibid. 1970.

[3] —, Classical Groups for Physicists, ibid. 1974.

[4] A. O. Barut, Dynamical Groups and Generalized Symmetries in Quantum Theory, University
of Canterbury Press, Christchurch, New Zealand 1972.

[5] L. L. Armstrong Jr., Phys. Rev. A(3), 1546 (1970).

[6] M. J. Cunningham, J. Math. Phys. 13, 33 (1972).

[7] B. Yurke, S. L. McCall and J. R. Skauder, Phys. Rev. A(33), 4033 (1986).

[8] G. J. Milburn, J. Phys. A 17, 737 (1984).

[9] B. R. Judd, Canad. J. Phys. 52, 999 (1974).

[10] P. D. Jarvis and G. E. Stedman, J. Phys. A 17, 757 (1984).

[11] A. Arima and Iachello, The Interacting Boson Model I, Cambridge University Press,
Cambridge 1988.

[12] A. B. Balantekin and 1. Bars, J. Math. Phys. 22, 1810 (1981).

[13] P. D. Jarvis, M. Yang and B. G. Wybourne, ibid. 28, 1192 (1987).

[14] D. J. Rowe, Rep. Progr. Phys, 48, 1419 (1985).

31 — Banach Center t 26, = 2



482 B. G. WYBOURNE

[i5] M. B. Green, J. Schwartz and E. Witten, Superstring Theory, Vols. 1 & 2. Cambridge
University Press, Cambridge, 1987.

[16] G. R. E. Black, R. C. King and B. G. Wybourne, J. Phys. A 16, 1555 (1983).

[17] B. G. Wybourne and M. J. Bowick, Austral. J. Phys. 30, 259 (1977).

[18] R. C. King and A. H. A. Al-Qubanchi, J. Phys. A 14, 15 (1981); 14, 51 (1981).

[19] R. C. King, ibid. 14, 77 (1981).

[20] G. Frobenius, S. B. Preuss. Akad, Wiss. Lit. Mainz. Abh. Math.-Naturwiss. KI. p. 303
(1901).

[21] L Schur, J. Reine Angew. Math. 139, 155 (1911).

[22] A. O. Morris, Proc. London Math. Soc. (3) 12, 55 {1962).

[23] Luan Dehuai and B. G. Wybourne, J. Phys. A 14, 327 (1981).

[24] —, —, ibid. 14, 1835 (198i).

f25] D. J. Rowe, B. G. Wybourne and P. H. Butler, ibid. 18, 939 (1985).

[26] R. C. King and B. G. Wybourne, ibid. 18, 3113 (1985).

[27]1 G. R. E. Black and B. G. Wybourne, ibid. 16, 2405 (1983).

[28] R. C. King, ibid. 8. 429 (1975).

[29] M. Yang and B. G. Wybourne, ibid. 19, 2003 (1986).

[30] R. C. King and B. G. Wybourne, ibid. 15, 1137 (1982).

[31] M. Yang and B. G. Wybourne, ibid. 19, 3513 (1986).

[32] P. H. Butier and R. C. King, J. Math. Phys. 14, 1176 (1973).

[33] —, —, ibid. 14, 741 (1973).

[34] SCHUR 4.1 is distributed by SCHUR Software Associates, School Road, Yaldhurst, No. 6 R.
D., Christchurch, New Zealand.



