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1. The equation. Let (M, g) and (N,h) be two compact Riemannian man-
ifolds, and φ : M → N a smooth map. A classical definition asserts that φ is
harmonic iff it is an extremal of the energy functional

E(φ) =
∫
M

e(φ)vg ,

where e(φ) = 1
2 |dφ|

2 is the energy density of φ and vg the Riemannian volume
element. The map φ is harmonic iff it satisfies the Euler–Lagrange system

τ(φ) = div(dφ) = 0 .

In local coordinates

e(φ) =
1
2
gijhαβ(φ)

∂φα

∂xi
∂φβ

∂xj
,

and

τ(φ)α = gij
(
∂2φα

∂xi∂xj
− MΓ kij

∂φα

∂xk
+ NΓαβγ(φ)

∂φβ

∂xi
∂φγ

∂xj

)
where the Γ ’s are the Christoffel symbols of the connections.
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The existence problem for harmonic maps is the following: given two Rieman-
nian manifolds and a homotopy class H of maps from M to N , when is there a
harmonic map in H ?

If M has a boundary, the same problem can be posed for homotopy classes
relative to Dirichlet data.

This problem has been extensively studied, and the answer depends on the
manifolds and the homotopy class (see e.g. [7]). In particular, the dimension of
M plays a critical rôle.

To obtain existence of solutions in all dimensions, without conditions on the
manifolds, we consider another problem of calculus of variations as follows.

Define the exponential-energy of φ as

E(φ) =
∫
M

exp( 1
2 |dφ|

2)vg ,

and say that a smooth extremal of E is an exponentially harmonic map.
Equivalently, we could write

E(φ) =
∫
M

exp( 1
2 trace(g−1.φ∗h)).vg =

∫
M

(det exp(g−1.φ∗h))1/2vg ,

where φ∗h is the pull-back of h by φ.
The Euler–Lagrange equation of this problem can be written

6 τ(φ) = div(exp e(φ).dφ) = exp e(φ).(τ(φ) + dφ.∇e(φ)) = 0 .

It is an elliptic—but not uniformly elliptic—system of partial differential equa-
tions. Even in the case of maps between Euclidean spaces, it is non-linear and the
second order terms are coupled. Indeed, in that case, it reads

m∑
i=1

∂2φα

∂xi∂xi
+

m∑
i,j=1

n∑
β=1

∂φα

∂xi
∂φβ

∂xj
∂2φβ

∂xi∂xj
= 0 ,

for α = 1, . . . , n.
In the case of maps from R2 to R, this system reduces to the equation(
1 +

(
∂φ

∂x1

)2)
∂2φ

∂x1∂x1
+ 2

∂φ

∂x1

∂φ

∂x2

∂2φ

∂x1∂x2
+
(

1 +
(
∂φ

∂x2

)2)
∂2φ

∂x2∂x2
= 0 ,

which is cited in [11, p. 431] as an example of a non-uniformly elliptic equation
which is regularly elliptic.

We note for further use that if e(φ) is constant, then 6 τ(φ) = 0 iff τ(φ) = 0,
so that φ is exponentially harmonic iff it is harmonic.

2. Some related equations. The second group of terms of the equation:
dφ.∇e(φ) has a life of its own. Indeed, in the case of maps from A ⊂ Rm to R,
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the equation dφ.∇e(φ) = 0, which reads
m∑

i,j=1

∂φ

∂xi
∂φ

∂xj
∂2φ

∂xi∂xj
= 0 ,

was studied in detail by G. Aronsson [1], [2], and in particular interpreted by a
limiting process as an Euler–Lagrange equation for the functional

E∞(φ) = sup{|dφ(x)| : x ∈ A} = lim
p→∞

( ∫
A

|dφ|2pvg
)1/(2p)

.

In another direction, we can include the equation of exponentially harmonic
maps in a family of problems as follows.

Define a density % : M × R+ → R+ and the %-energy density of a map φ :
(M, g)→ (N,h) by

e%(φ)(x) =
1
2

|dφ(x)|2∫
0

%(x, ξ) dξ .

The Euler–Lagrange equation of E%(φ) =
∫
M
e%(φ)vg is

τ%(φ) = div(%(x, |dφ|2).dφ) = 0 ,

and exponentially harmonic maps appear as a special case.
For dimN = 1, the problem τ%(φ) = 0 appears in [12] as follows. If φ is a

map from (M, g) to S1, then dφ = w is a 1-form on M , and this establishes a
bijection between the homotopy classes of maps M → S1 and the elements of the
first integral cohomology group of M . The map φ satisfies τ%(φ) = 0 iff the form
satisfies

dw = 0 , d∗(%(x, |w|2)w) = 0 .
In [12], L. and R. Sibner interpret these equations both as a non-linear version
of Hodge theory and as a problem of gas dynamics, w representing the velocity
vector of a gas.

They say that the density % is admissible if there exist A > 0 and k > 0 such
that for all x ∈M and 0 ≤ ξ < A, we have

1/k < %(x, ξ) < k

and 0 < (∂/∂ξ)(ξ.%2(x, ξ)).
This last condition for all ξ is equivalent to ellipticity of the equation.
The supremum of values of A for which these conditions can be realised is the

sonic value of the problem. In particular, when the sonic value is infinite, the
problem is always elliptic and the solution is called subsonic. This is the case for
%(x, ξ) = exp(1

2ξ).
They call the density regular if the sonic value is infinite and there is a K such

that
1
K

<
∂

∂ξ
(ξ.%2(x, ξ)) < K
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for all ξ. This is not realised for exp( 1
2ξ).

In [12], they prove existence of a solution of the Euler–Lagrange equation when
% is regular. This establishes at the same time the existence of the flow of a com-
pressible gas on a manifold, with density %, and the existence in each cohomology
class of a %-harmonic one-form, solution of dw = 0 and d∗(%(x, |w|2)w) = 0.

For an admissible problem with finite sonic value, one cannot expect existence
in all classes: indeed, a flow on M of large prescribed circulation will have to reach
a supersonic speed.

The problem with density %(x, ξ) = exp(1
2ξ) is admissible with infinite sonic

value—but not regular.
Nevertheless, existence of a smooth solution in each class was established by

D. M. Duc and J. Eells [5].

3. The existence problem. We immediately get

Proposition. Let (M, g) and (N,h) be compact Riemannian manifolds, H a
homotopy class (relative to a Dirichlet problem, if M has a boundary). Then H
contains an E-minimising map, which is α-Hölder continuous for all α < 1.

This can be verified using the properties of the Sobolev spaces of maps from
M to N , which are defined as follows.

Choose a finite atlas on M and a Riemannian embedding of (N,h) in some
Euclidean space V (Nash’s theorem). Let Lp1(M,V ) be the Sobolev space of Lp

functions from M to V whose first partial derivatives are also Lp. Then set

Lp1(M,N) = {φ ∈ Lp1(M,V ) : φ(x) ∈ N a.e.} .

Set W =
⋂
p≥1 L

p
1(M,N), and consider in W ∩ H a minimising sequence (φn)

for E. Since

E(φ) =
∫
M

∞∑
k=0

1
k!

(
|dφ|2

2

)k
vg ,

(φn) is bounded in each Lp1(M,N). Using the compactness of various Sobolev
embeddings and a diagonal argument, we deduce that a subsequence converges
weakly in each Lp1, strongly in each Lp, and in Cα for each α < 1 (indeed, for
each such α, choose p with 0 < α < 1 − dimM/p to get a compact embedding
Lp1 ↪→ Cα). In particular, the convergence is uniform and the limit φ belongs to
the homotopy classH. Convexity in P of exp(|P |2/2) insures lower-semicontinuity
of E for that convergence (see e.g. [8], Th. 2.3), so that E(φ) ≤ lim inf E(φn), and
φ is a Cα minimiser.

However, in general, we do not know yet if φ is smooth or if it satisfies the
Euler–Lagrange equation of the problem, even in a weak sense. Indeed, the fact
that E(φ) is finite does not imply a priori that its first variation is finite.

Work on that question is in progress.
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In the case dimN = 1, D. M. Duc and J. Eells have solved the problem in [5]
by proving the existence of a smooth minimum of E for the Dirichlet problem in
the case (M, g)→ R or in all homotopy classes in the case (M, g)→ S1.

In the case dimM = 1, we consider maps from the circle or an interval into
(N,h); the Euler–Lagrange equation reduces to

∇∂/∂t
∂φ

∂t
+
〈
∇∂/∂t

∂φ

∂t
,
∂φ

∂t

〉
∂φ

∂t
= 0 .

Denoting by T and N the tangential and normal components of a vector with
respect to ∂φ/∂t, this equation reads

2
(
∇∂/∂t

∂φ

∂t

)T
+
(
∇∂/∂t

∂φ

∂t

)N
= 0 ,

i.e.

∇∂/∂t
∂φ

∂t
= 0 .

Thus, the C2 exponentially harmonic curves are simply geodesics parametrised
proportionally to arc length, and their existence in each homotopy class is well
known.

The existence of smooth minimisers for E was also established directly by
M. Carpenter as a special case of the following result [4]: if φ : S1 → (N,h) is a
minimiser of a convex , coercive and autonomous variational problem, then φ is
smooth. His approach involves the classical Tonelli theory. In the case of E, as we
noted, it follows that every E-minimising curve is a smooth geodesic.

4. Jensen’s inequality. This last observation also follows from the following
considerations.

Jensen’s inequality for convex functions ([9], p. 21) takes here the form

Proposition. Let φ : (M, g)→ (N,h) be a map in W . Then

exp
(

1
volM

E(φ)
)
≤ 1

volM
E(φ) .

Equality is valid iff e(φ) is constant a.e.

Corollary. Let H be a homotopy class of maps between compact Rieman-
nian manifolds in which the minimum of E is realised by a harmonic map of
constant energy density. Then the same map minimises E, and any E-minimum
has constant energy density a.e.

Indeed, let φ0 be a minimiser of E in H with e(φ0) = K, a constant. For each
φ ∈ H, we have

exp
(

1
volM

E(φ0)
)
≤ exp

(
1

volM
E(φ)

)
≤ 1

volM
E(φ) ,
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so that

exp
(

1
volM

E(φ0)
)
≤ inf
H

1
volM

E .

On the other hand, since e(φ0) = K,

1
volM

E(φ0) = expK = exp
(

1
volM

E(φ0)
)

so that φ0 is E-minimising.
This corollary applies in particular to any homotopy class of curves.

5. Stress-energy tensor. In analogy with [3], we consider the

Definition. Let φ : (M, g) → (N,h) be a C2 map. The exponential stress-
energy tensor of φ is the 2-covariant symmetric tensor on M given by

S(φ) = (exp e(φ)).(g − φ∗h) .

Proposition.
divS(φ) = −〈6 τ(φ), dφ〉 ,

where the divergence of S(φ) is expressed in local coordinates by

(divS(φ))i = gjk∇jSik(φ) .

The proof of this formula is similar to that of the corresponding statement for
the classical harmonic maps: for a vector field X on M , we write

0 =
∫
M

d[i(X)(exp e(φ).vg)] =
∫
M

LX(exp e(φ).vg)

=
∫
M

〈6 τ(φ), dφ.X〉+ div(exp e(φ).(g − φ∗h)) , X > vg

(see [6], §6).
Thus, for any C2 exponentially harmonic map, we get divS(φ) = 0.
However, we doubt that this proposition will have many applications. Indeed,

in the case of harmonic maps, the stress-energy tensor is defined as e(φ).g − φ∗h
and, for instance, vanishes iff dimM = 2 and φ is conformal. In the present case,
the stress-energy tensor vanishes only in the case of isometries. Note in particular
that neither E nor the Euler–Lagrange equations are invariant under a homothetic
transformation of g or h. This is quite unusual in the framework of geometry, but
more natural in comparison with gas dynamics.

6. Second variation of E. Let φs,t be a smooth 2-parameter family of maps
from (M, g) to (N,h), where s, t ∈ (−ε, ε). A computation similar to that of [13]
shows that the Hessian of E at φ = φ0,0 is given by

Hφ(v, w) =
∂2E(φs,t)
∂s∂t

∣∣∣∣
s,t=0

=
∫
M

exp e(φ).[〈∇φv, dφ〉〈∇φw, dφ〉
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+〈∇φv,∇φw〉 − 〈RN (dφ, v)dφ,w〉 − 〈∇φ∂/∂tv,Trace∇(exp e(φ).dφ)〉]vg .

Here, v = ∂φs,t/∂s|s,t=0, w = ∂φs,t/∂t|s,t=0, ∇φ is the pull-back connection and
RN the curvature tensor of N (see [6], §4, for details).

We first note that when the sectional curvature of N is non-positive (RiemN ≤
0), this expression has the same consequences as in the case of harmonic maps.
In particular:

Definition. An exponentially harmonic map φ is E-stable (or stable) if its
index is zero, i.e. its Hessian is positive semi-definite.

Corollary 1. If RiemN ≤ 0, any exponentially harmonic map is stable.

Indeed, in the expression of Hφ(v, v),Trace∇(exp e(φ).dφ) = 0 because φ is
exponentially harmonic and all the other terms are positive or zero by hypothesis.

Corollary 2. Let RiemN ≤ 0 and let φ0, φ1 : M → N be two exponentially
harmonic maps. If ∂M is non-void and φ0 and φ1 are homotopic relatively to a
Dirichlet problem, then φ0 = φ1. If ∂M is empty , RiemN < 0, φ0 and φ1 are
homotopic and φ0 has rank ≥ 2 somewhere, then φ0 = φ1.

The proof follows the technique of R. Schoen [10]: construct a homotopy φt
from φ0 to φ1 such that t 7→ φt(x) is a geodesic for each x. Then in the expression
of d2E(φt)/dt2, the last term vanishes because ∇(∂/∂t)v = 0, and all remaining
terms are non-negative. Therefore d2E(φt)/dt2 ≥ 0 ∀t.

Since φ0 and φ1 are exponentially harmonic, we have also
dE
dt

(φ0) = 0 and
dE
dt

(φ1) = 0 .

These three conditions imply that E(φt) is constant.
In particular, d2E(φt)/dt2 = 0, so that ∇φv = 0 and 〈RN (dφ, v)dφ, v〉 = 0

everywhere.
The first equation implies (d/dt)‖v‖2 = 0, and ‖v‖ = constant. If φ0 and φ1

coincide on ∂M , we get v = 0 and φ0 = φ1 on M .
In the case ∂M = φ, we use the condition on the curvature and the rank to

get v = 0 as well.

Corollary 3. Let RiemN ≤ 0 and let φ0 be an exponentially harmonic map
from M to N . Then φ0 minimizes E in its homotopy class.

Indeed, for any map φ1 in the same homotopy class, we construct a homotopy
φt as above and get (dE/dt)(φ0) = 0 and d2E(φt)/dt2 ≥ 0.

In general, we cannot expect to obtain such results when RiemN is not re-
stricted. Indeed, examples of closed geodesics on spheres or warped product man-
ifolds show that exponentially harmonic maps need not be stable or unique in
their homotopy class.

However, the behaviour of the identity map I : (M, g) → (M, g) is strikingly
different when viewed as an extremal of E or E. In fact, we have the
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Proposition. The identity map I of a compact manifold to itself is always
E-stable, and the only Jacobi fields for E are the Killing fields.

Indeed, since e(I) is constant, we have for φ0 = I

d2E
dt2

(φt)|t=0 = exp e(I).
∫
M

(|div v|2 + |∇Iv|2 − RicciM (v, v))vg .

By [6], (4.14), this reduces to

d2E
dt2

(φt)
∣∣∣∣
t=0

=
1
2

exp e(I).
∫
M

|Lvg|2vg ,

where L is the Lie derivative. The proposition follows immediately.
Note that for E, the identity map is not always stable (see [7], (6.1)–(6.12)).
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