PARTIAL DIFFERENTIAL EQUATIONS BANACH CENTER PUBLICATIONS, VOLUME 27 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 1992 ## REMOVABLE SINGULARITIES IN THE BOUNDARY CONDITIONS YURI V. EGOROV Department of Mathematics, Moscow State University Moscow V-234, 119899 Russia **1.** Let G be an open set in \mathbb{R}^n and let F be its boundary. Let Γ be some part of F which is a smooth (n-1)-dimensional submanifold. Let A be a closed subset of Γ . Let u be a function harmonic in G satisfying the boundary condition $D_v u = 0$ on $\Gamma \setminus A$, where v is the outer normal to Γ . When can we say that $D_v u = 0$ on Γ , i.e. when the singularity of u on A is removable? It is evident that the answer depends on the structure of A and on the behaviour of u in a neighbourhood of A. For instance, if A is a single point, then the singularity is removable if $|u(x)| = o(r^{2-n})$ as $r \to 0$, where r is the distance from A, and can be non-removable if n > 2 and $|u(x)| = O(r^{2-n})$. Indeed, let $f \in C_0^{\infty}(\Gamma)$. We show that if $|u(x)| = o(r^{2-n})$, then $$\int_{\Gamma} f(x)D_v u(x) dS = 0.$$ Let A be the origin. Let $h \in C_0^{\infty}(\Gamma)$, h(A) = 1. Then $$\int_{\Gamma} f(x)D_{v}u(x) dS = \int_{\Gamma} f(x)D_{v}u(x)h(x/\varepsilon) dS$$ for any $\varepsilon > 0$. We can extend f and h in such a way that they vanish outside some neighbourhood of A and $D_v f = D_v h = 0$ on Γ . By the Green formula we have $$\int_{\Gamma} f(x)D_{v}u(x)h(x/\varepsilon) dS = \int_{G} (f(x)h(x/\varepsilon)\Delta u(x) - u(x)\Delta(f(x)h(x/\varepsilon))) dx$$ and therefore. $$\int_{\Gamma} f(x)D_v u(x) dS = -\lim_{\varepsilon \to 0} \int_{G} u(x)\Delta(f(x)h(x/\varepsilon)) dx.$$ It is clear that $|\Delta(f(x)h(x/\varepsilon))| \leq C\varepsilon^{-2}$. Therefore from the condition $|u(x)| = o(r^{2-n})$ it follows that $\int f(x)D_vu(x) dS = 0$. The same is true if $u \in L_{p,loc}(G)$, where p = n/(n-2), n > 2. This can be seen immediately if we apply Hölder's inequality. On the other hand, if Γ coincides locally with the plane $x_n = 0$, then for the fundamental solution E(x) of the Laplace operator we have $D_n E(x) = \delta(x')$ when $x_n = 0$, where $x' = (x_1, \dots, x_{n-1})$, and we can see that the singularity of the solution is non-removable if n > 2 and $|u(x)| = O(r^{2-n})$. **2.** Now let P(x, D) be a linear differential operator of order m with coefficients smooth in \overline{G} , and suppose that another differential operator B(x, D), which also has smooth coefficients, is defined on Γ . We do not make any assumptions about the type of the operator P. Consider the following problem: when from the conditions: Pu = 0 in G, Bu = 0 on $\Gamma \setminus A$ does it follow that Bu = 0 on Γ ? We state a number of sufficient conditions. All these conditions are sharp, which can be shown by suitable examples. Our results can be easily transferred to boundary-value problems for linear systems of differential equations. The conditions on the smoothness of the coefficients of the operators P and B, and on the smoothness of the manifold Γ can, of course, be made essentially weaker. **3.** Our main assumption is the validity of the Green formula: $$\int_{G} (Pu \cdot v - u \cdot P'v) dx = \int_{\Gamma} \sum_{j=1}^{N} B_{j}(x, D)u \cdot S_{j}(x, D)v dS$$ for smooth functions u and v, if v = 0 in a neighbourhood of $F \setminus \Gamma$. Here P' is the operator transposed to P, B_j and S_j are differential operators with smooth coefficients, and one of the B_j , say B_1 , coincides with the original operator B. Assume also that $$S_1(x,D) = Q(x,D)D_v^k + S_1'(x,D),$$ where D_v is differentiation in the normal direction, Q acts in the directions tangent to Γ , and k is some number, $0 \le k \le m-1$. Suppose that the operators S_1', S_2, \ldots, S_N do not involve the derivative D_v^k (but they can involve D_v^i for i < k and for i > k) and that the equation Qw = g has a solution $w \in C^m(\Gamma)$ for a set M of functions g, which is dense in $C_0^{\infty}(\Gamma)$. **4.** THEOREM 1. Let A be a single point. If $u(x) = o(r^{m-n-k})$, where r is the distance of x from A, then Bu = 0 on Γ . If A is an infinite set, it is convenient to apply the Hausdorff measure for its description. The d-dimensional Hausdorff measure of A, denoted by $H_d(A)$, is defined as $\lim_{\varepsilon \to 0} \inf \sum r_j^d$, where the infimum is taken over all coverings of A by countable collections of balls with radii $r_j \leq \varepsilon$. **5.** THEOREM 2. Let $-\infty < l < m, \ 1 < p < \infty, \ 1/p + 1/q = 1$. If Pu = 0 in G, Bu = 0 on $\Gamma \setminus A$, $u \in W^l_p(G)$ and $H_{n-q(m-k-l)}(A) < \infty$, then Bu = 0 on Γ . If $u \in W^l_\infty(G)$, then the same is true if $H_{n-m+k+l}(A) = 0$. Here $W_p^0(G) = L_p(G)$ and $W_p^l(G)$ for l natural is the space of functions whose derivatives of orders $\leq l$ are in $L_p(G)$. For negative integers l this space consists of distributions of the form $\sum D^i f_i$ for $|i| \leq -l$, $f_i \in L_p(G)$. **6.** THEOREM 3. Let Pu=0 in G, Bu=0 on $\Gamma\setminus A$ and $u\in C^l(G\cup\Gamma)$. Assume that the order of the operator B is greater than l. If $H_{n-m+k+l}(A)=0$, then Bu=0 on Γ . Here the space $C^l(M)$ for l natural consists of functions whose derivatives of orders $\leq l-1$ are continuous and satisfy the Lipschitz condition in M. If l>0 is not an integer, then this is a space of functions whose derivatives of orders $\leq [l]$ satisfy the Hölder condition with exponent l-[l] (here [l] is the integer part of l). Finally, if $l\leq 0$, then $C^l(M)$ consists of distributions of the form $\sum D^i f_i$, where $|i|\leq -[l]$, $f_i\in C^{[l]-l}(M)$. 7. The results for the Neumann problem, stated in the first section, are not sharp in the case n=2. It is well known that in this case the condition on u must have the form $|u(x)| = o(\ln r)$. We state a similar sharp result for a general elliptic boundary-value problem. Let A be a smooth submanifold in Γ of dimension d=n-m. Suppose z_1, \ldots, z_d are local coordinates on A, and y_1, \ldots, y_{n-d} are coordinates in the complementary space, so that the $y_{n-d}=x_n$ axis is transversal to Γ and y_1, \ldots, y_{n-d-1} are the inner coordinates in Γ . Assume that m = 2k and the operators P, B_1, \ldots, B_k define a regular elliptic problem. Assume also that $m_1 < m_2 < \ldots < m_k = m-1$, where m_j is the order of B_j . By the construction of the parametrix of this problem (see [1]), $$u(x) = QPu + \sum_{j=1}^{k} Q_j B_j [u \otimes \delta(x_n)] + Tu,$$ where Q, Q_j, T are pseudo-differential operators of orders $-m, -m_j, -1$, respectively. Let Q_0 be the operator with symbol $1/p_0(x,\xi)$ and $g_j = B_j u - B_j Q_0 u$. Let $x \in \Gamma$. Let r_1, \ldots, r_k be the roots of the equation $p_0(x,\xi',r) = 0$ with positive imaginary parts. Let $R(x, \xi') = B(x, \xi')^{-1}$ where B is the matrix with elements $b_{il}(x, \xi') = b_i(x \cdot \xi', r_l(x, \xi'))$. Then $$u(x) = Q_0 P u$$ $$+ (2\pi)^{-n+1} \int \sum_{j,l=1}^{k} r_{jl}(x,\xi') F[g_l](\xi') \exp(ir_j(x,\xi')x_n + ix'\xi') d\xi' + Tu$$ where F[g] is the Fourier transform of g. Therefore the principal symbol of Q_j is $$\sum_{l} r_{lj}(x,\xi') \exp(ir_j(x,\xi')x_n)$$ and the order of homogeneity of r_{lj} in ξ' is $-m_j$. Let $$r(y, z, \eta, \zeta) = r(x, \xi') = \sum_{j \in I} r_{jl}(x, \xi').$$ The order of this function in ξ' is 1-m. THEOREM 4. Let Pu = 0 in G and $B_j u = 0$ on $\Gamma \setminus A$ for j = 1, ..., k, and $|u(x)| = o(\ln r)$, where r is the distance of x from A. Let $$\int\limits_{|\eta|=1} r(0,z,\eta,0) \, dS_\eta \neq 0 \quad \text{ for } z \in A.$$ Then $B_i u = 0$ on Γ and $u \in C^{\infty}(G \cup \Gamma)$. The proof is based on a construction from [3]. ## References - [1] Yu. V. Egorov, Linear Differential Equations of Principal Type, Plenum, 1986. - [2] —, On the removable singularities in the boundary conditions for differential equations, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1985 (6), 30–36 (in Russian). - [3] R. Harvey and J. Polking, Removable singularities of solutions of linear partial differential equations, Acta Math. 125 (1970), 39–56.