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Abstract. Let there be given a differential operator on Rn of the form D =
∑n
i,j=1 aij ·

xj∂/∂xi+µ, where A=(aij) is a real matrix and µ is a complex number. We study the following
question: To what extent the mapping D : S′(Rn) → S′(Rn) is surjective? We shall give some
conditions on A and µ which assure the surjectivity of D.

1. Introduction. Let T be a space of functions or distributions on Rn. A
differential operatorD on Rn is called globally solvable in T if the equationDu = f
has a solution u ∈ T for any f ∈ T . By the classical theorems of Malgrange,
Ehrenpreis and Hörmander a differential operator D with constant coefficients
is globally solvable in the spaces C∞(Rn), D′(Rn) and S ′(Rn). However, if D
has non-constant coefficients, then in general D is not globally solvable in any of
these spaces. In general, D is not even locally solvable. Here D is called locally
solvable at a point p ∈ Rn if there exists a neighborhood U(p) of p such that for
any f ∈ C∞c (U) the equation Du = f is solved on U by a distribution u ∈ D′(U).
For example, Lewy’s operator is not locally solvable at any point p ∈ Rn.

In the present lecture, I shall study solvability questions for differential oper-
ators of the form

D = DA
µ :=

n∑
i,j=1

aijxj
∂

∂xi
+ µ

with A = (aij) ∈ M(n,R) and µ ∈ C. Clearly, the principal symbol of D is
degenerate at the point x = 0. Therefore, all the difficulties which can arise
manifest themselves at x = 0 (or at least at those points x where

∑n
j=1 aijxj = 0

for all i = 1, . . . , n). At other points, D can be locally transformed to an operator
with constant coefficients by the Picard–Lindelöf theorem and all local solvability
problems disappear.

[147]
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Clearly, we cannot expect that the equation Du = f always has a C∞-solution
u for any C∞-function f ; in fact, for µ = 0 the left hand side is 0 at the origin
whenever u is a C∞-function. Therefore, in general we have to look for a distri-
bution solution.

Our intention is to obtain results on global solvability in the space S ′ of tem-
pered distributions. This problem can be compared with the division problem for
distributions. Hörmander’s famous division theorem ([4]) says that the multipli-
cation operator T 7→ P · T , T ∈ S ′, where P is a polynomial, is surjective in
S ′. As a consequence, by taking the Fourier transform, we get the surjectivity
of any differential operator with constant coefficients in S ′. Now, the operator
D = DA

µ is an operator with “polynomial” coefficients and seems to be a kind of
combination of a multiplication operator and a differential operator with constant
coefficients. And now we ask if it can be “divided” by D, so to speak. Of course,
in view of Lewy’s example we cannot expect that any differential operator with
polynomial coefficients is surjective in S ′.

There are good reasons to investigate our problem in the space S ′ rather than
in the space of D′ of all distributions. First, the space S ′ seems to have a better
behavior towards our problem ([1], Ex. 2). Furthermore, the space S of Schwartz
functions is a Fréchet space and therefore by functional analysis principles ([7],
Ch. IV, §7) D : S ′ → S ′ is surjective if and only if the transpose operator
Dt : S → S is injective and has closed range.

It is easily verified that Dt is of the form DA
µ again; in fact, we have (DA

µ )t =
D−Aµ−tr(A) where tr(A) denotes the trace of A. Therefore we have to study, for
D = DA

µ , under which conditions on A and µ

(a) D : S → S is injective, and
(b) DS ⊂ S is closed.

We shall get the following

Theorem. D = DA
µ is globally solvable in S ′(Rn) whenever one of the follow-

ing conditions holds:

(i) A has an eigenvalue λ with Reλ 6= 0;
(ii) Reµ 6= 0;
(iii) A is nilpotent with A 6= 0.

In a recent paper ([6]), D. Müller and F. Ricci have studied solvability ques-
tions for homogeneous left-invariant differential operators of second order on the
Heisenberg group Hn. In particular, they have given necessary and sufficient con-
ditions for local solvability of operators of the form

n∑
i,j=1

aijYjXi + µZ ,

where X1, . . . , Xn, Y1, . . . , Yn, Z is the standard basis of the Lie algebra of Hn.
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But these operators are transformed to the operators iDA
µ by the Schrödinger

representation. Now the conditions (i), (ii) and (iii) of the Theorem are contained
in the sufficient conditions of Müller and Ricci. Thus it can be conjectured that
it is possible to find a close relation between the Theorem and the Müller–Ricci
result, using the Schrödinger representation.

2. Injectivity of D. First, let us give a different description of D = DA
µ . It

is immediately verified that

(2.1) Dϕ(x) =
d

dt
eµtϕ(etAx)

∣∣∣∣
t=0

, ϕ ∈ C1(Rn) .

Thus, apart from the factor eµt, our operator D is the infinitesimal generator of
the flow

(2.2) (t, x) 7→ etAx .

Therefore, a C1-function ϕ is annihilated by D if and only if ϕ is relatively
invariant under this flow, i.e.

(2.3) eµtϕ(etAx) = ϕ(x)

for all x ∈ Rn and t ∈ R. From this observation, we get the following

Proposition 2.1. Let Ck∞ be the space of all Ck-functions vanishing at ∞.
The mapping D : C1

∞ → C0 is injective whenever one of the following conditions
holds:

(i) Reµ 6= 0;
(ii) A is not similar to a skew-symmetric matrix.

P r o o f. Let ϕ ∈ C1
∞ be given with Dϕ = 0. If Reµ 6= 0, the equation (2.3)

gives ϕ(x) = 0.
Now let Reµ=0. By assumption, A is not similar to a skew-symmetric matrix.

Therefore {etAx | t ∈ R} is unbounded for all x in a dense subset M of Rn. Since
ϕ vanishes at∞ we conclude from (2.3) that ϕ(x) = 0 for all x ∈M . Thus ϕ = 0.

R e m a r k 2.2. We cannot expect that D is injective for any A and µ. Namely,
if n = 2,

(2.4) A =
(

0 −β
β 0

)
and µ/β ∈ iZ, then (2.3) can be satisfied by some test function ϕ 6= 0, for example
by

(2.5) ϕ(z) := (z/|z|)kε(|z|) , z ∈ C ∼= R2 ,

where k = iµ/β and ε is a non-vanishing test function on R whose support does
not contain the origin.
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3. Closedness of DS. The aim of this chapter is to give conditions on A and
µ under which DS is closed in S. First we look for an inversion formula for the
equation Dϕ = f .

Lemma 3.1 Let ϕ, f ∈ S satisfy

(3.1) Dϕ = f .

For a given point x ∈ Rn, assume that one of the following conditions holds:

(i) Reµ > 0;
(ii) Reµ = 0 and the set {esAx | s ≤ 0} is unbounded ;
(iii) Reµ < 0 and there are c, γ > 0 such that |esAx| ≥ ce−γs for all s ≤ 0.

Then

(3.2) ϕ(x) =
0∫

−∞

eµsf(esAx) ds

where the integral converges absolutely.

P r o o f. By (2.1) we derive from (3.1) the equation

(3.3) eµsf(esAx) =
d

dt
eµ(s+t)ϕ(e(s+t)Ax) =

d

ds
eµsϕ(esAx) .

Using the Jordan canonical form of A we observe that by the conditions (i), (ii)
or (iii) the integral in (3.2) converges absolutely and that

(3.4) lim
s→−∞

eµsϕ(esAx) = 0 .

Therefore we get

(3.5)
0∫

−∞

eµsf(esAx) ds = eµsϕ(esAx)|s=0
s=−∞ = ϕ(x) ,

as was to be shown.

Now we observe, again by using the Jordan canonical form of A, that each of
the conditions (i)–(iii) of Lemma 3.1 holds for all x in a Zariski open set if it holds
for one x. In this case we get an almost everywhere defined function by setting

(3.6) SAµ f(x) =
0∫

−∞

eµsf(esAx) ds

for f ∈ S.
In some situations it is useful to have an alternate formula defining SAµ f(x).

We regard the transpose operator Dt as an operator in S ′. Then we observe that
the closure DS of DS in S is just the orthogonal complement of the kernel of Dt.

Lemma 3.2. For a given point x ∈ Rn, assume that one of the following
conditions holds:
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(i) Reµ > 0 and there are c, γ > 0 such that |esAx| ≥ ceγs for all s ≥ 0;
(ii) Reµ = 0 and the sets {esAx | s ≤ 0} and {esAx | s ≥ 0} are unbounded ;
(iii) Reµ < 0 and there are c, γ > 0 such that |esAx| ≥ ce−γs for all s ≤ 0.

Then

(3.7) u 7→
∫
R

eµsu(esAx) ds , u ∈ S ,

is a tempered distribution which belongs to kerDt, and for f ∈ DS we have

(3.8) SAµ f(x) = −
∞∫
0

eµsf(esAx) ds .

P r o o f. By Lemma 3.1 it is clear that (3.7) defines a tempered distribution.
To see that it belongs to kerDt we have to show that

(3.9)
∫
eµsDϕ(esAx) ds = 0

for all ϕ ∈ S. This can be derived from (3.3). Now (3.8) follows from DS =
(kerDt)⊥, and our lemma is proved.

Our method for proving closedness of DS is to prove

(3.10) SAµ f ∈ S

for f ∈ DS. For this we use the Sobolev embedding theorem ([3]). Given m ∈ N
we consider the Sobolev space Hm of all functions u on Rn such that for all
multi-indices α = (α1, . . . , αn) satisfying |α| ≤ m the derivatives ∂αu (in the
sense of distributions) belong to L2(Rn). The norm in Hm is given by

(3.11) ‖u‖Hm =
( ∑
|α|≤m

‖∂αu‖2L2

)1/2

.

Clearly, we have S  
⋂
m∈N H

m. Therefore we want to modify Hm. For b,m ∈ N
we consider the space Hm

b of all functions u such that xβ∂αu(x) belongs to L2

for all multi-indices α, β satisfying |α| ≤ m, |β| ≤ b. The norm in Hm
b is defined

by

(3.12) ‖u‖m,b :=
( ∑
|α|≤m
|β|≤b

‖xβ∂αu‖2L2

)1/2

.

Now Sobolev’s embedding theorem gives

(3.13)
⋂

m,b∈N
Hm
b = S .

Given f ∈ S and s ∈ R, we define a distribution T sf on Rn by

(3.14) 〈T sf , u〉 :=
∫
f(esAx)u(x) dx .



152 R. FELIX

Denoting by aij(s) the matrix coefficients of esA we have

(3.15)
∂

∂xj
T sf =

n∑
i=1

aij(s)T s∂f/∂xi
.

Denoting by ãij(s) the matrix coefficients of e−sA we have

(3.16) xjT
s
f =

n∑
i=1

ãji(s)T sxif .

Generalizing (3.6), for a measurable weight function w : ]−∞, 0] → C we define
the distribution

(3.17) SAwf :=
0∫

−∞

w(s)T sf ds

provided that this integral converges in the space of tempered distributions. In
this case SAwf is called well-defined .

The following lemma is obvious:

Lemma 3.3. Assume that there are c, γ > 0 such that

(3.18) |w(s)| ≤ ceγs .

If γ is sufficiently large, then for any f ∈ S the distributions SAwf , SAwaij
(∂f/∂xi)

and SAwãji
(xif) are well-defined and

∂

∂xj
(SAwf) =

n∑
i=1

SAwaij

(
∂f

∂xi

)
(3.19)

xj(SAwf) =
n∑
i=1

SAwãji
(xif) .(3.20)

Lemma 3.4. For given b,m ∈ N there exists γ > 0 with the following property :
If (3.18) holds for some c > 0, then for any f ∈ S the distribution SAwf belongs
to Hm

b and SAw defines a continuous operator from S to Hm
b .

P r o o f. By iterating Lemma 3.3, we only need to show that for sufficiently
large γ

(3.21) ‖SAwa(xβ∂αf)‖2L2 < ε

for all f in a 0-neighborhood U in S, where a is a product of functions aij and
ãji. Writing for a small δ > 0

(3.22) w(s)a(s) = eδs/2(w(s)e−δs/2a(s))

and using the Cauchy–Schwarz inequality, we can estimate the expression in (3.21)
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by

(3.23)
∫

Rn

0∫
−∞

eδs ds
0∫

−∞

|w(s)|2e−δs|a(s)|2|esAx|2|β||∂αf(esAx)|2 ds dx .

Using the change of variables formula, obviously it is enough to show that

(3.24)
0∫

−∞

|w(s)|2e−δs|a(s)|2e−s tr(A)
∫

Rn

|x|2|β||∂αf(x)|2 dx ds < ε

for all f ∈ U . Of course, this holds provided that γ is sufficiently large, and the
proof is complete.

R e m a r k 3.5. Let σ(A) denote the spectrum of A. If σ(A) ⊆ iR, then SAw
defines a continuous operator from S to Hm

b whenever (3.18) is satisfied at least
for one γ > 0. This follows immediately from the proof of Lemma 3.4 keeping in
mind that aij(s) and ãij(s) are bounded by a polynomial in this case. By (3.13)
we conclude that ϕ := SAµ f ∈ S for any f ∈ S whenever Reµ > 0. The techniques
of Lemma 3.1 give DA

µϕ = f . Therefore, replacing A and µ by −A and −µ in
case of need we get

Proposition 3.6. If σ(A) ⊆ iR and Reµ 6= 0, the mapping DA
µ : S → S is

bijective.

Let λ be an eigenvalue of A. Then, of course, λ is also an eigenvalue of the
transpose matrix At. We can view At as an endomorphism of the dual space (Rn)′

of Rn. Take an eigenvector l : Rn → C of At for the eigenvalue λ. We may assume
that l is real-valued if λ ∈ R. Obviously, we have

(3.25) l(Ax) = λl(x) ,

and therefore

l(etAx) = eλtl(x) ,(3.26)
DA
µ (lϕ) = lDA

µ+λϕ .(3.27)

By Hörmander’s division theorem the mapping T 7→ lT , T ∈ S ′, is surjective.
Therefore the mapping ϕ 7→ lϕ, ϕ ∈ S, is a topological homomorphism, and we
can derive the equation

(3.28) DA
µ (lS) = lDA

µ+λS .
Now, for any r ∈ N we define the function space

(3.29) Er := DA
µ (lrS) = lrDA

µ+rλS .

Let zλ = xλ + iyλ ∈ Cn be an eigenvector for λ. If λ∈R we take yλ = 0. Now
we define a differential operator d by

(3.30) dϕ(x) :=
1
2
· d
dt

[ϕ(x+ txλ) + iϕ(x+ tyλ)]
∣∣∣∣
t=0

, ϕ ∈ C∞(Rn) .
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It is easily seen that

(3.31) d(ϕ ◦ etA) = eλt(dϕ) ◦ etA .

By differentiation with respect to t at t = 0 we get

(3.32) dDA
µϕ = DA

µ+λdϕ .

Consequently, we have

(3.33) dDA
µ S = DA

µ+λdS .

Now we select xl ∈ Rn such that l(xl) = 1. If λ 6∈ R we select yl ∈ Rn such that
l(yl) = i. If λ ∈ R we put yl := 0. Let zl := xl + iyl and z̃ := Azl − λzl =: x̃+ iỹ
with x̃, ỹ ∈ Rn. It is easily seen that x̃, ỹ ∈ V . Putting

∂ϕ(x) :=
1
2
· d
dt

[ϕ(x+ txl) + iϕ(x+ tyl)]
∣∣∣∣
t=0

,(3.34)

∂̃ϕ(x) :=
1
2
· d
dt

[ϕ(x+ tx̃) + iϕ(x+ tỹ)]
∣∣∣∣
t=0

(3.35)

for ϕ ∈ C∞(Rn) we calculate

(3.36) ∂DA
0 = DA

0 ∂ + λ∂ + ∂̃ .

We conclude

(3.37) ∂DA
µ = DA

µ+λ̄∂ + ∂̃

and thus

(3.38) ∂
k
DA
µ = DA

µ+kλ̄∂
k

+ k∂
k−1

∂̃

for k = 0, 1, 2, . . .
Because of (3.25) the kernel V of l is A-invariant, and thus we can define a

differential operator D0
µ on V by

(3.39) D0
µϕ

0(x0) =
d

dt
eµtϕ0(etAx0)

∣∣∣∣
t=0

, ϕ0 ∈ C∞(V ) .

Lemma 3.7. Assume that (D0
µ+kλ+k′λ̄

)t is globally solvable in S ′(V ) for k, k′ =

0, 1, 2, . . . Let r ∈ N be given. Then for each f ∈ DA
µ S(Rn) there exists ψ ∈ S(Rn)

such that

(3.40) f −DA
µψ ∈ Er .

P r o o f. Having proved the assertion for r = 1, we can get it for all r by
iteration.

Thus, let f ∈ DA
µ S be given. Let ϕ 7→ ϕ0 be the restriction map from S(Rn)

onto S(V ). Then f0 belongs to D0
µS(V ). Since S(V ) is a Fréchet space, by as-

sumption D0
µ is a topological isomorphism from S(V ) onto its (closed) range in
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S(V ), and therefore

(3.41) f0 = D0
µψ

0

for some ψ0 ∈ S(V ). If ψ ∈ S(Rn) is an extension of ψ0, the function f −DA
µψ

vanishes on V . Now, in case of real λ the subspace V has codimension one and
thus

(3.42) f −DA
µψ = lf1

for some f1 ∈ S(Rn) (see [8], Chap. V, §5).
In case of non-real λ it is harder to get equation (3.42). Let f = limν→∞DA

µϕν
with ϕν ∈ S(Rn), ν ∈ N. First we shall prove by induction on k that the sequence
(∂kϕν)0 converges in S(V ) for each k. For k = 0, the assertion follows from the
equation

(3.43) f0 = lim
ν→∞

D0
µϕ

0
ν

keeping in mind that D0
µ is a topological isomorphism from S(V ) onto its range.

Now assume by induction hypothesis that

(3.44) lim
ν→∞

(∂k−1ϕν)0 = ψ0
k−1

and let ψk−1 ∈ S(Rn) be an extension of ψ0
k−1. By (3.38) we have

(∂kf)0 = lim
ν→∞

(DA
µ+kλ̄∂

kϕν + k∂k−1∂̃ϕν)0(3.45)

= lim
ν→∞

D0
µ+kλ̄(∂kϕν)0 + k(∂̃ψk−1)0 .

Since D0
µ+kλ̄

is a topological isomorphism, it follows that

(3.46) lim
ν→∞

(∂kϕν)0 =: ψ0
k .

Now a suitable version of Borel’s theorem ([5]) gives ψ ∈ S(Rn) such that

(3.47) (∂kψ)0 = ψ0
k .

Using (3.38) again we conclude that for each k

(3.48) (∂k(f −DA
µψ))0 = lim

ν→∞
(DA

µ+kλ̄∂
k(ϕν − ψ) + k∂k−1∂̃(ϕν − ψ))0

= lim
ν→∞

(D0
µ+kλ̄((∂kϕν)0 − ψ0

k) + k∂̃((∂k−1ϕν)0 − ψ0
k−1)) = 0

From [2], Lemma 2.7, we get f −DA
µψ = lf1 for some f1 ∈ S(Rn), and (3.42) is

proved for non-real λ, too.
The proof is complete when we show that

(3.49) f1 ∈ DA
µ+λS .

Because DA
µ S is the orthogonal complement of ker(DA

µ )t and lf1 ∈ DA
µ S, it is

enough to verify that

(3.50) ker(DA
µ+λ)t ⊆ l ker(DA

µ )t .
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So let S ∈ ker(DA
µ+λ)t be given. By division of distributions, take T ∈ S ′ such

that

(3.51) lT = S .

By (3.27) we get

(3.52) l(DA
µ )tT = (DA

µ+λ)tS = 0 .

If λ is real, then (DA
µ )tT is the trivial extension R0 of a distribution R ∈ S ′(V ).

(The mapping R 7→ R0 from S ′(V ) to S ′(Rn) is just the transpose of the re-
striction map ϕ 7→ ϕ0.) By assumption there is a distribution W ∈ S ′(V ) such
that

(3.53) R = (D0
µ)tW .

We conclude

(3.54) (DA
µ )tW 0 = R0 = (DA

µ )tT

and thus

(3.55) T −W 0 ∈ ker(DA
µ )t .

Clearly, we have

(3.56) l(T −W 0) = lT = S ,

and (3.50) is proved in case of real λ.
If λ is non-real, then by [2], Bemerkung 2.6, we have

(3.57) (DA
µ )tT =

m∑
k=0

∂kR0
k

for some distributions Rk ∈ S ′(V ). Using the assumption and formula (3.37), it
is easily seen by induction on k that for any R ∈ S ′(V ) the distribution ∂k R0

can be written in the form

(3.58) ∂kR0 = (DA
µ+νλ̄)t

( k∑
j=0

∂jW̃ 0
j

)
for any ν = 0, 1, 2, . . . , where W̃j ∈ S ′(V ). Therefore we can derive from (3.57)
that there are distributions Wj ∈ S ′(V ) such that

(3.59) (DA
µ )tT = (DA

µ )t
( m∑
j=0

∂jW 0
j

)
.

Thus

(3.60) T −
m∑
j=0

∂jW 0
j ∈ ker(DA

µ )t .
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Furthermore, we have

(3.61) l
(
T −

m∑
j=0

∂jW 0
j

)
= lT = S

since

(3.62) l(∂jW 0
j ) = ∂j(lW 0

j ) = 0

for each j. In (3.62) the relation ∂l = 0 has been used. Now (3.50) is proved also
for non-real λ, and the proof of our lemma is complete.

Proposition 3.8. If A has an eigenvalue λ with Reλ 6= 0, then DA
µ S ⊆ S is

closed for all µ ∈ C.

P r o o f. Replacing A and µ by −A and −µ in case of need, we may assume
that Reλ > 0.

We proceed by induction on the dimension n. Take l : Rn → C according
to (3.25) and put V := ker l. First assume that the restriction A0 of A to V
has an eigenvalue with non-vanishing real part or that Re(µ + kλ) 6= 0 for all
k = 0, 1, 2, . . . In this case, the assumption of Lemma 3.7 is satisfied by induction
hypothesis and Prop. 3.6, respectively, as well as by Prop. 2.1.

Now let f ∈ DA
µ S be given. We have to prove that there exists ϕ ∈ S such

that f = DA
µϕ. By Lemma 3.7, there exist ψr ∈ S and fr ∈ DA

µ+rλS such that

(3.63) f = DA
µψr + lrfr ,

r = 0, 1, 2, . . . If we can show for some r that fr = DA
µ+rλϕr for some ϕr ∈ S,

then by (3.27) we have

(3.64) f = DA
µ (ψr + lrϕr)

and the proof is done. Thus, for a given M > 0, we may assume that Reµ > M .
By Lemma 3.4 we conclude that ϕ := SAµ f belongs to C1

∞ and then, by the
techniques of Lemma 3.1, that DA

µϕ = f . Furthermore, by Prop. 2.1 we get

(3.65) ϕ = ψr + lrϕr

for all r = 0, 1, 2, . . . , where ϕr := SAµ+rλfr. Since ϕr is arbitrarily smooth for
sufficiently large r by Lemma 3.4, we conclude that ϕ ∈ C∞.

However, we have to prove that ϕ ∈ S. For this it is enough to show that
ϕ ∈ Hm

b for each b,m ∈ N, i.e.

(3.66) ‖xβ∂αϕ‖2L2 <∞

for all multi-indices α, β satisfying |α| ≤ m, |β| ≤ b. First, we take r such that
ϕr = SAµ+rλfr ∈ Hm

b . Then we take a constant c(p) > 0 such that

(3.67) |x||β||∂αfr(x)| ≤ c(p)
(1 + |x|2)n/2(1 + |l(x)|2)p/2
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for all |α| ≤ m, |β| ≤ b. In the course of the proof we shall determine p ≥ r
sufficiently large for our need.

We have to show that ∫
{l(x)≤1}

|xβ∂α(lrSAµ+rλfr)|2 <∞ ,(3.68) ∫
{l(x)>1}

|xβ∂α(lrSAµ+rλfr)|2 <∞ .(3.69)

Clearly, (3.68) holds because SAµ+rλfr ∈ Hm
b . For (3.69) we use (3.8). Estimating

in a similar way to the proof of Lemma 3.4 we have to show that

(3.70)
∞∫
0

e2sRe(µ+rλ)|a(s)|2
∫

{l(x)>1}

|l(x)|2q|esAx|2|β||(∂αfr)(esAx)|2 dx ds <∞

for |α| ≤ m, |β| ≤ b, q ≤ r. Using (3.67), we can estimate this expression by

(3.71)
∞∫
0

e2sRe(µ+rλ)|a(s)|2

×
∫

{l(x)>1}

|l(x)|2q

(1 + |e2λs||l(x)|2)p
· c(p)2

(1 + |esAx|2)n
dx ds

≤
∞∫
0

e2sRe(µ+rλ−pλ)|a(s)|2e−s trA
∫

Rn

c(p)2

(1 + |x|2)n
dx ds .

Obviously, the last expression is finite provided that p is taken sufficiently large.
This proves f ∈ DA

µ S.
It remains to prove our proposition for σ(A0) ⊆ iR and Re(µ + kλ) = 0 for

some k. Given f ∈ DA
µ S, by (3.33) we have

(3.72) dk+1f ∈ DA
µ+(k+1)λd

k+1S .

By the proof just given, the space DA
µ+(k+1)λS is closed, and therefore in view of

Prop. 2.1

(3.73) DA
µ+(k+1)λ : S → DA

µ+(k+1)λS

is a topological isomorphism. Since the set dk+1S ⊆ S is closed, so is
DA
µ+(k+1)λd

k+1S. Therefore we have

(3.74) dk+1f = DA
µ+(k+1)λd

k+1ϕ = dk+1DA
µϕ

for some ϕ ∈ S. It follows that f = DA
µϕ, and the proof is complete.

Now we shall discuss the case σ(A) ⊆ iR and Reµ = 0. We assume that A is
not similar to a skew-symmetric matrix. Then, by linear algebra, there is at least
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one eigenvalue λ such that

(3.75) Atk − λk = l

for some linear mapping k : Rn → C. We conclude

(3.76) k(esAx) = eλs(k(x) + sl(x)) , x ∈ Rn .
Whenever s and Re k(x)l(x) have the same sign, it follows that

(3.77) |k(esAx)|2 ≥ |k(x)|2 + s2|l(x)|2 .

Lemma 3.9. For all b,m ∈ N there exists r ∈ N such that SAµ f belongs to Hm
b

for each f ∈ Er. Moreover , SAµ defines a continuous operator from Er to Hm
b .

P r o o f. We have to show that there is r ∈ N, a 0-neighborhood U in DA
µ+rλS

and a constant c such that for any fr ∈ U and for any multiindices α, β satisfying
|α| ≤ m, |β| ≤ b

(3.78)
∫

Rn

|xβ∂αSAµ (lrfr)(x)|2 dx < c .

We shall only integrate over {Re(k(x)l(x)) < 0} in the proof of (3.78), because
the estimation for {Re(k(x)l(x)) > 0} works in the same way by using (3.8). Then
we can use (3.77). Taking notice of (3.19) and (3.20) we have to prove that for
fr ∈ U and r −m ≤ q ≤ r

(3.79)
∫

{Re(k(x)l(x))<0}

|SAw (xβlq∂αfr)(x)|2 dx < c′

where w(s) is a polynomially bounded weight function depending on m and b.
We take U in such a manner that each fr ∈ U satisfies

(3.80) |xβ∂αfr(x)| ≤ (1 + |x|2)−n/2(1 + |k(x)|2)−p/2(1 + |l(x)|2)−r/2

where p is to be determined in the course of the proof. After putting w̃(s) :=
(1 + s2)w(s) and using the Cauchy–Schwarz inequality as well as (3.77) we have
to estimate the expression

(3.81)
∫ 0∫
−∞

|w̃(s)|2 |l(x)|2q

(1 + |esAx|2)n(1 + s2|l(x)|2)p(1 + |l(x)|2)r
ds dx .

Since σ(A) ⊂ iR there is a polynomial P (s) ≥ 1 such that

(3.82) |e−sAx| ≤ P (s)|x|
and therefore

(3.83) |esAx| ≥ |x|/P (s) .

Then we have

(3.84) (1 + |esAx|2)−n ≤ P (s)2n(1 + |x|2)−n .
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Now, for |l(x)| ≤ 1, the integrand in (3.81) can be estimated by

(3.85)
|l(x)|2(q−p)

(1 + |x|2)n
· |w̃(s)|2P (s)2n

(1 + s2)p

and, for |l(x)| > 1, by

(3.86)
|w̃(s)|2P (s)2n

(1 + |x|2)n(1 + s2)p
· |l(x)|2q

(1 + |l(x)|2)r
.

To get the conclusion of our lemma we only have to take p sufficiently large in
dependence on the growth of |w̃(s)|2P (s)2n and to take r ≥ m+ p.

Proposition 3.10. Let σ(A) ⊂ iR, let A be not similar to a skew-symmetric
matrix and let Reµ = 0. Assume that (D0

µ+kλ)t is globally solvable in S ′(V ) for
each k ∈ Z. Then DA

µ S ⊂ S is closed.

P r o o f. Let f ∈ DA
µ S be given. We only have to show that ϕ := SAµ f belongs

to Hm
b for all b,m ∈ N.

For b,m ∈ N we take r ∈ N according to Lemma 3.9. By Lemma 3.7 there
exist ψ ∈ S(Rn) and fr ∈ Er such that

(3.87) f = DA
µψ + fr .

By Lemma 3.9 we have SAµ fr∈Hm
b and thus SAµ f = ψ+SAµ fr ∈ Hm

b . This proves
our proposition.

Corollary 3.11. Let A be nilpotent , A 6= 0. Then DA
µ is globally solvable in

S ′ for every µ ∈ C.

P r o o f. If Reµ 6=0, the assertion is given by Prop. 3.6. If Reµ=0, we proceed
by induction on n using Prop. 3.10: If µ 6= 0, the assertion can be proved for any
nilpotent A, also for A = 0; in fact, it is true for n = 1 and the conclusion follows
by induction. If µ = 0, we only have to prove closedness of DA

µ S for nilpotent
matrices A of rank 1.

Let f ∈ DA
µ S be given. Clearly, there is a vector v ∈ kerA and a linear form

l on Rn such that

(3.88) Ax = l(x)v , x ∈ Rn .

If x ∈ ker l = kerA, the Dirac measure δx belongs to ker(DA
µ )t and thus f(x) =

〈δx, f〉 = 0. Therefore, f can be written as

(3.89) f = lf1

with some f1 ∈ S. If x 6∈ kerA, by Lemma 3.2 we have

(3.90)
∫
R

f1(x+ sl(x)v) ds = 0 .
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We conclude that there is ϕ ∈ S such that

(3.91) f1(x) =
d

dt
ϕ(x+ tv) |t=0 .

(See [8], Chap. II, §5.) Then DA
µϕ = lf1 = f , and the proof is complete.
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