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Let Ω ⊂ Rn be the complement of the closure of a bounded domain which is
starlike with respect to the origin and has smooth boundary S. Let L(x,Dx) be
a strongly elliptic operator of order 2l (l ≥ 1) in Ω. In Ω× (0, T ) we consider the
initial boundary value problem

(1)
utt + L(x,Dx)u = 0 ,

u|t=0 = f1(x) , ut|t=0 = f2(x) ,
Bj(x,Dx,Dt)u|S = 0 , j = 1, . . . , l ,

where the boundary operators Bj are such that problem (1) is well posed.
Our purpose is to study asymptotics as t → ∞ of solutions of this problem

for some class of operators L and Bj .
Many authors have studied the behavior as t → ∞ of solutions of exterior

boundary value problems for hyperbolic equations. These questions have been
most completely investigated for the wave equation: qualified decay has been ob-
tained (powerlike in the case of an even number of space variables and exponential
in the case of an odd number). The work in this direction can be divided into two
groups, each with its own approach.

The first approach consists in application of the Laplace transform in the
variable t with subsequent study of the analytic properties of the resolvent and
its behaviour for the large and small values of the spectral parameter. In [14], [19],
[20] this program is realized for various boundary problems for the wave equation
(−L(x,Dx) = ∆n, the Laplace operator in x1, . . . , xn; n = 2, 3) in the exterior of
a bounded convex domain.

The second approach, based on nonstandard energy identities, was applied
by C. Morawetz to the wave equation with the Dirichlet boundary condition

[197]
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in the exterior of a starlike domain. In a number of papers (see [1], [22]–[24])
the method of integral identities was applied to the case of a moving obstactle
(the boundary S depends on t) and also to a hyperbolic equation with variable
coefficients whose leading part coincides with the wave operator outside some ball.
Within this approach, in [2]–[7], [13], [18], [21] qualified decay was obtained for
the first boundary value problem for the wave equation in an exterior domain for
which the starlike property was replaced by a more general one, for the Maxwell
system with the Leontovich boundary condition and for the linear system of
elasticity theory with the Dirichlet condition on the boundary.

Nonstandard energy identities for the wave equation were obtained by
C. Morawetz in [15], [16] by the a, b, c-method, and in [17] by means of the
Kelvin transform.

In this paper, in studying the behaviour of solutions of problem (1) we use a
modification of the second approach. Our method applies not only to hyperbolic
equations (systems) but also to equations describing perturbations propagating
with infinite speed.

In the cylinder Ω × (0, T ) we consider the initial-boundary value problem

(2)

∂2u

∂t2
+ (−1)l

∑
i,j

∂l

∂xi1 . . . ∂xil

(
Ai,j(x)

∂lu

∂xi1 . . . ∂xil

)
= 0 ,

u|t=0 = f1(x) ,
∂u

∂t

∣∣∣∣
t=0

= f2(x) ,

Dαxu|S = 0 , |α| = |(α1, . . . , αn)| ≤ l − 1 ,

where i = (i1, . . . , il), j = (j1, . . . , jl), ip, jq ∈ {1, . . . , n}, u = (u1(x, t), . . .
. . . , um(x, t)), Ai,j(x) are m×m matrices, Ai,j(x) = (Aj,i(x))∗, Ai,j(x) = Ai,j0 +
Ai,j1 (x), Ai,j1 (x) = o(1) as |x| → ∞.

We assume that there exists a constant c > 0 such that∑
i,j

Ai,j(x)ξjξi ≥ c
∑
i

|ξi|2 , x ∈ Ω ,

where ξj = (ξ1j , . . . , ξ
m
j ) are arbitrary complex-valued vectors.

We introduce the following notations:

Au = (−1)l
∑
i,j

∂l

∂xi1 . . . ∂xil

(
Ai,j(x)

∂lu

∂xj1 . . . ∂xjl

)
,

2Φ(u) =
∑
i,j

Ai,j(x)
∂lu

∂xj1 . . . ∂xjl
· ∂lu

∂xi1 . . . ∂xil
,

J0(u(x, t)) =
∣∣∣∣∂u∂t

∣∣∣∣2 + 2Φ(u) , Jk(u(x, t)) = J0

(
∂ku

∂tk

)
, k ≥ 1 .

Assume that fk ∈ C∞(Ω), k = 1, 2; f2(x) ≡ 0 for |x| ≥ R0, |x|pDβxf1 ∈ L2(Ω)
for all p ≥ 0, |β| ≥ 0; Dαx (Asfk)|S = 0 for |α| ≤ l − 1, s = 0, 1, . . .
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We define the local energy of order k of a solution u(x, t) of problem (2) at
time t concentrated in the region ΩR = {x ∈ Ω | |x| < R} by

EkR(t) =
∫
ΩR

Jk(u(x, t)) dx .

The following notion is very useful for the purpose of our work. We call the
quantity

Ek,%(t) =
∫
Ω

1
|x|%

Jk(u(x, t)) dx (% ∈ R1)

the weighted energy of order k of the solution u(x, t) of problem (2).
It is a well-known result that the behaviour as t → ∞ of the local energy

depends on n (the number of space variables) and l (the order of the operator A).
Our first result shows that the behaviour as t → ∞ of the weighted energy

depends neither on n nor on l. Here we make the following assumption on Ai,j(x):∑
i,j

(
∂

∂|x|
Ai,j(x)

)
ξj · ξi ≤ 0 for x ∈ Ω .

Theorem 1. Let u(x, t) be a solution of problem (2) and let q ∈ N. Suppose
that the above assumptions on f1, f2, Ai,j(x) are satisfied and

Ai,j(x) ∈ Cl+q(Ω) , |DβxAi,j(x)| ≤ C

|x||β|+q
for 1 ≤ |β| ≤ l + q .

Then there exist constants C1, C2 > 0 such that for k = 0, 1, . . . , q,
C1

t%
≤
∫
Ω

1
|x|%

Jk(u(x, t)) dx ≤ C2

t%
, t ≥ 1 , −∞ < % ≤ k .

Corollary. The local energy of order k of a solution u(x, t) of problem (2)
satisfies the estimate∫

ΩR

Jk(u(x, t)) dx ≤ C2

tk
, t ≥ 1 , k = 0, 1, . . . , q .

R e m a r k. If the Ai,j(x) satisfy some additional condition the inequalities of
Theorem 1 hold for −∞ < % ≤ k + κ , k ≥ 1 , 0 < κ ≤ 1.

We now consider the initial-boundary value problem with t-periodic right side:

(3)
vtt +Av = eiωtg(x) ,

v|t=0 = f1(x) , vt|t=0 = f2(x) , Dαxv|S = 0 , |α| ≤ l − 1 ,

where ω ∈ R1, g(x) ≡ 0 for |x| ≥ R0, g ∈ C∞(Ω), Dαx (Asg)|S = 0 for |α| ≤ l − 1,
s = 0, 1, . . .

Using Theorem 1 we study the behaviour as t → ∞ of the solutions of prob-
lem (3).

We begin with the principle of limiting absorption.
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Let z be a complex number and Im z < 0. We denote by W (x, z) a solution
in H2l(Ω) of the boundary value problem

(4) AW + (iz)2W = g , DαxW |S = 0 , |α| ≤ l − 1 .

It is not hard to show that this problem has a unique solution in H2l(Ω). On the
other hand, problem (4) has no solution in H2l(Ω) for z such that Im z = 0. In
this case (4) has many solutions in H2l

|x|−3(Ω), a space with the norm

‖u‖ =
( ∑
|β|≤2l

‖ |x|−3/2Dβxu‖2L2(Ω)

)1/2

.

Theorem 2 (The principle of limiting absorption). Suppose ω 6= 0, Imω = 0,
Ai,j(x) ∈ Cl+3(Ω), and

|DβxAi,j(x)| ≤ C

|x||β|+3
for 1 ≤ |β| ≤ l + 3 .

Then the limit

lim
z→∞, Im z<0

W (x, z) = w(x, ω) exists in H2l
|x|−3(Ω) .

Moreover , w(x, ω) is a solution of problem (4) for z = ω and∫
Ω

1
|x|3
|Dβx(W (x, z)− w(x, ω))|2 dx ≤ C(α, β)|z − ω|α , 0 < α < 1 , |β| ≤ 2l .

This solution w(x, ω) plays an important role in the following assertion:

Theorem 3 (The principle of limiting amplitude). Let v(x, t) be a solution of
problem (3), ω 6= 0, q ∈ N, q ≥ 3. Suppose Ai,j(x) ∈ Cl+q(Ω) and

|DβxAi,j(x)| ≤ C

|x||β|+q
for 1 ≤ |β| ≤ l + q .

Then for k = 3, . . . , q,∫
Ω

1
|x|k

Jk(v(x, t)− eiωtw(x, ω)) dx ≤ C(δ)
tk−2−δ , 0 < δ < 1 ,

where w(x, ω) is the function constructed in Theorem 2.

R e m a r k. If ω = 0, then the solution v(x, t) of problem (3) satisfies the
estimate ∫

Ω

1
|x|%

Jk(v(x, t)) dx ≤ C2

t%
, % ≤ k − 1 , 1 ≤ k ≤ q .

R e m a r k. For a generalization of the system (1):

utt +
p∑
l=1

(−1)l
∑
i,j

∂l

∂xi1 . . . ∂xil

(
Ai,j(x)

∂lu

∂xj1 . . . ∂xjl

)
+Q(x)u = 0 ,

our results are valid under some assumptions on Ai,j(x).
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We note that the inequalities of Theorem 1 are sharp estimates of the weighted
energy. We are now going to improve the estimates of the local energy for some
special operators A.

In the cylinder Ω × (0, T ) we consider the initial boundary value problem

(5)
%utt = µ∆nu+ (λ+ µ) grad(div u) ,

u|t=0 = ϕ(x) , ut|t=0 = ψ(x) , u|S = 0 ,

where u = (u1, . . . , un), ui = ui(x, t), and %, l,m are positive constants.
For n = 3, the system in (5) is the classical system of equations for elastic

waves. In this case u is the displacement vector, % is the density of the medium,
and λ and µ are the Lamé constants.

We assume that the supports of the initial data lie in a ball of radius a.

Theorem 4. For any R > a there exists a constant C(a,R) > 0 such that a
solution u(x, t) of problem (5) satisfies the inequality

(6)
∫
ΩR

J0(u(x, t)) dx ≤ C(a,R)
t

∫
Ω

J0(u(x, 0)) dx , t ≥ 1 .

Moreover , there exists a constant Ck(ϕ,ψ,R) > 0 such that for t ≥ 2∫
ΩR

Jk(u(x, t)) dx ≤ Ck(ϕ,ψ,R)
ln t
tk+1

, k = 1, 2, . . .

R e m a r k. The first estimate of Theorem 4 has been obtained by G. Das-
sios [3].

In the case of n odd, the exponential decay of a solution of problem (5) can
be established from (6) and the Huygens principle.

Theorem 5. Let D ⊂ Ω be an arbitrary domain lying in a ball of radius d.
There exist positive constants β(a) and C(a, d) such that∫

D

J0(u(x, t)) dx ≤ Ce−βt
∫
Ω

J0(u(x, 0)) dx , t > (a+ d)
√
%/µ .

Applying these results we can improve the estimates of Theorem 3 for system
(5) with t-periodic right side.

Consider now the Maxwell system. In Ω × (0, T ) (n = 3) we consider the
initial-boundary value problem for the Maxwell system

(7)

 et = curl(µh) ,
ht = − curl(λe) ,
div e = div h = 0 ,

e|t=0 = e0(x) , h|t=0 = h0(x) , [v, e]− α(h− v(h, v))|S = 0 ,

where e and h are three-dimensional vector-valued functions of t, x = (x1, x2, x3),
v is the unit outer normal, [·, ·] and (·, ·) are the vector and inner products,
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µ = µ(x) and λ = λ(x) are scalar functions in Ω and α = α(x) is a continuously
differentiable nonzero function on S with Reα ≥ 0.

Let λ(x) and µ(x) be continuously differentiable functions in Ω satisfying the
conditions

C1 ≤ λ(x) ≤ C2 , C1 ≤ µ(x) ≤ C2 ,

C1 > 0 , |∇λ|, |∇µ| ≤ C3 .

We denote by H the Hilbert space of pairs {u1, u2} of three-component complex-
valued functions uk ∈ L2(Ω) with the inner product

〈{u1, u2}, {v1, v2}〉0 =
∫
Ω

(λ(u1, v1) + µ(u2, v2)) dx .

We denote by H1 the Hilbert space consisting of pairs u = {u1, u2} such that
{u1, u2}, {curlu1, curlu2} ∈ H. We define the inner product in H1 by

〈u, v〉1 =
∫
Ω

[(curlλu1, curlλv1) + (curlµu2, curlµv2) + (c+ λ)(u1, v1)

+(c+ µ)(u2, v2)] dx ,

where the constant c is chosen so that the norm in H1 is equivalent to the norm
defined by the expression( ∫

Ω

[| curlu1|2 + | curlu2|2 + |u1|2 + |u2|2] dx
)1/2

.

Lemma. Suppose α ∈ C1(S). The mapping u→ [v, u1]−α(u2−v(u2, v)) from
C1

c (Ω = {u ∈ C1(Ω) with compact support} into C1(S) extends by continuity
to a continuous linear mapping of H1 → H−1/2(S) which we also denote by
u→ [v, u1]− α(u2 − v(u2, v)) ≡ κ(α, u).

The lemma makes it possible to introduce in H1 the closed subspace
◦
H1(α) =

{u ∈ H1 : κ(α, u) = 0}, which is dense in H.

In H we define the unbounded operator A by D(A) =
◦
H1(α), Au = {curlµu2,

− curlλu1} for u ∈ D(A).

It can be shown that D(A∗) =
◦
H1(−α) and

A∗v = −{curlµu2,− curlλu1} for v = {v1, v2} ∈ D(A∗) .

Let M = {v ∈ D(A∗) : A∗v = 0}, and let M1 be the orthogonal complement
of M in H. We remark that elements {u1, u2} ∈ M1 ∩ D(A) have the following
property: div ui = 0 in the sense of distributions.

We assume that f = {e0, h0} ∈ M1 ∩ D(A3). It is not hard to show that in
this case the solution u = {e, h} belongs to the space H2(Ω), while curl e, curlh,
curl2 e, curl2 h ∈ H1(Ω).
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We introduce the notations:

E0({e, h}(t), R) =
∫
ΩR

(λ|e|2 + µ|h|2) dx ,

En({e, h}(t), R) = E0(An{e, h}(t), R) ,

where {e, h} is a solution of problem (7), and

I(t, R) = E0({e, h}(t), R) + E2({e, h}(t), R) .

The main result of this part of the paper can be stated as follows:

Theorem 6. Suppose {e, h} is a solution of problem (7), the initial data f =
{e0, h0} belongs to M1 ∩ D(A3), f(x) ≡ 0 for |x| ≥ a, λ, µ ∈ C3(Ω), ∂λ/∂|x|,
∂µ/∂|x| ≤ 0, λ(x) ≡ µ(x) ≡ 1 for |x| ≥ b, α ∈ C1(S), Reα ≥ 0, and

min{λ|α|2, µ} − 3 Reα| tan(v, x)|
√
λµ > 0 .

Then for any r > 0 there are constants β = β(a) and C = C(a, r) > 0 such that

I(t, r) ≤ C exp(−βt)I(0, a) .

We finish by studying the problem of diffraction of electromagnetic waves.
Let Bm be a bounded 3-dimensional domain, starlike with respect to the ori-

gin, with smooth boundary Sm. We assume that Bm ⊂ Bm+1 for m = 1, . . . , k−1.
We set Ωm = Bm+1\Bm for m = 1, . . . , k − 1, Ωk = R3\Bk, Ω0 = B1, v is the
unit outer normal on Sm.

We consider the system

(8)
∂E

∂T
= curl(µ(x)H) ,

∂H

∂t
= − curl(λ(x)E) ,

E|t=0 = f1(x) , H|t=0 = f2(x) .

Suppose that λ, µ are smooth functions in Ωm and have discontinuities on Sm.
The conditions on Sm then have the form

(9)
[v, λmEm]|Sm

= [v, λm−1Em−1]|Sm
, m = 1, . . . , k ,

[v, λmHm]|Sm = [v, λm−1Hm−1]|Sm , m = 1, . . . , k ,

where λm, µm, Em, Hm are the restrictions of the corresponding functions on Ωm.
We would like to study the behaviour as t→∞ of the local energy of solution

of problem (8)–(9):

ER(t) =
∫

|x|<R

(λ|E|2 + µ|H|2) dx .

Theorem 7. Suppose the initial data f = {f1, f2} belongs to D(A)∩M1 (where
A is defined in a similar way to Theorem 6) and f(x) ≡ 0 for |x| ≥ b. Assume
that the functions λ and µ satisfy the following conditions:

λj(x) < λj−1(x) , µj(x) < µj−1(x) , x ∈ Sj , j = 1, . . . , k ,
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∂λj

∂|x|
≤ 0 ,

∂µj

∂|x|
≤ 0 , x ∈ Ωj , j = 0, 1, . . . , k ,

λ(x) ≡ µ(x) ≡ 1 for |x| ≥ b .
Then for any r > 0 there are constants β = β(b) > 0 and C = C(b, r) > 0 such
that

Er(t) ≤ C exp(−βt)Eb(0) .
R e m a r k. The behaviour as t→∞ of solutions of the diffraction problem for

acoustic waves has been investigated in [11].
The proofs of Theorems 1–7 can be found in [4]–[11].
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