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Abstract. The Szegö equiconvergence theorem for the Laguerre series is improved. In par-
ticular, a system of exact sufficient conditions is given.

1. Introduction and statement of the results. We shall consider the ex-
pansion of a function f ∈ L1

loc(0,∞) in a Laguerre series: f(y)∼
∑∞
n=0 anLn(y, α),

where the coefficients an are defined by

Γ (α+ 1)
(
n+ α

n

)
an =

∞∫
0

e−xxαf(x)Ln(x, α) dx, α > −1 ,

and Ln(x, α) = (n!)−1exx−α(d/dx)n(e−xxn+α) are the Laguerre polynomials. In
[3] Szegö proves the following equiconvergence theorem:

Theorem S. Let the integrals

(S1)
1∫

0

xα|f(x)| dx,
1∫

0

xα/2−1/4|f(x)| dx

exist. If

(S2)
∞∫
n

e−x/2xα/2−13/12|f(x)| dx = o(n−1/2), n→∞ ,

and if

(1.1) sn(f, x) =
n∑
k=0

akLk(x, α)

[207]
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denotes the n-th partial sum of the Laguerre series of f , then

(1.2) sn(f, y2)− 1
π

y+c∫
y−c

f(x2)
sin
√

4n(x− y)
x− y

dx = o(1), n→∞ ,

for every y > c > 0, locally uniformly with respect to y ∈ (c,∞).
Moreover , (1.2) is valid if (S2) is replaced by

(S′2)
∞∫
1

e−x/2xα/2−3/4|f(x)| dx <∞,
∞∫
n

e−xxα−2|f(x)|2 dx = o(n−3/2) .

The goal of this paper is to improve Theorem S as follows (see Theorems 1
and 2):

Theorem 1. Let h(x) = e−x/2xα/2−1/4f(x), α ≥ −1/2. If

(H1)
1∫

0

|h(x)| dx <∞ ,

(H2)
∞∫
1

x−1/2|h(x)| dx <∞ ,

(H3)
∫
a(λ, x)(1− x/λ)−1/4|h(x)| dx = o(λ1/2), λ→∞ ,

where a(λ, x) is the characteristic function of the interval (λ/2, λ− λ1/3+ε), and

(H4)
∫
b(λ, x)|h(x)| dx = o(λ1/3), λ→∞ ,

where b(λ, x) is the characteristic function of (λ − λ1/3+ε, λ + λ1/3+ε) for some
ε > 0, then the equiconvergence result (1.2) holds.

R e m a r k 1. If α ≥ −1/2, then the conditions (H1) and (S1) coincide and as is
shown in [3], p. 248, they are exact. It is easy to see that (S2) implies (H2)–(H4).
On the other hand, (S′2) implies (H2), (H3) and

(H′4)
∫
b(λ, x)|h(x)| dx = o(λ1/6+ε), λ→∞ ,

which is more restrictive than (H4).

R e m a r k 2. The condition (H4) is also exact. Indeed, it is satisfied by the
function h(x) = x−δ for every δ > 0, but not for δ = 0. On the other hand, the
Laguerre series of the function f(x) = ex/2x−α/2+1/4 is divergent ([3], p. 267).

It turns out that for the functions f(x) which are differentiable (or absolutely
continuous) at infinity, we can improve the conditions (H2) and (H3) in such a
way that they are satisfied by the function f(x) = ex/2x−α/2+1/4−δ for every
δ > 0. Namely, we have
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Theorem 2. Let the function g(x) = e−x
2/2xα+1/2f(x2), α ≥ −1/2, satisfy

(H1)
1∫

0

|g(x)| dx <∞ ,

(H′2)
∞∫
N

x−2|g′(x)| dx <∞ for some large N ,

(H′3)
∫
a(λ, x2)(1− x2/λ)−1/4x−2|g′(x)| dx = o(1), λ→ +∞ ,

(H4)
∫
b(λ, x2)|g(x)| dx = o(λ1/3), λ→ +∞ .

Then the equiconvergence relation (1.2) is valid.

Example 1. The function g(x) = x1−δ, 0 < δ < 2, has the properties (H1),
(H′2), (H′3), (H4). The same is true for the functions {g(x) : g(x) = O(x−1+δ),
x→ 0, δ > 0, g(x) = O(x1−δ), x→∞, g′(x) = O(x1−δ), x→∞}. Therefore we
have the following

Corollary 1. If f ∈ L1
loc(0,∞) and if f(x) = O(x−α/2−3/4+δ), x → 0, and

f(x) = O(ex/2x−α/2+1/4−δ), f ′(x) = O(ex/2x−α/2+1/4−δ), x → ∞, where δ > 0,
α ≥ −1/2, then the equiconvergence result (1.2) holds. (This is a system of exact
sufficient conditions.)

R e m a r k 3. Theorems 1 and 2 are also true for −1 < α < −1/2 if (H1) is
replaced by (S1).

Let us explain briefly the main idea of the proof. We use the formula

(1.3) sn(f, y2) = 2
∞∫
0

e−x
2/2+y2/2(x/y)α+1/2f(x2)e(4n+ 4, x, y) dx

where e(λ, x, y) is the spectral function of the operator

−d2/dx2 + x2 + (α2 − 1/4)x−2 + 2− 2α ,

considered as a self-adjoint operator in L2(0,∞). Namely,

(1.4) e(λ, x, y) = (e−x
2/2−y2/2)

(xy)α+1/2

Γ (α+ 1)

∑ 1(
n+α
n

)Ln(x2, α)Ln(y2, α) .

Here, the sum is taken over all integers n such that 0 ≤ n ≤ (λ−4)/4. Therefore,
it suffices to know the uniform asymptotics of e(λ, x, y) as λ→∞. To find it we
consider the Laplace transform

(1.5) V (p, x, y) =
∞∫
0

e−λp de(λ, x, y), Re p > 0 ,
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and using its explicit expression ([3], p. 101), we derive the formula

(1.6) e(λ, x, y) =
1

2πi

ε+iπ/4∫
ε−iπ/4

eλpV (p, x, y)H(λ, p) dp ,

where the function s → H(s, p) is 4-periodic, H(s, p) = 2e(2−s)p(sinh 2p)−1 if
0 ≤ s ≤ 4. Next we apply the saddle-point method or the method of stationary
phase.

For our purposes it is sufficient to consider the following cases: 1) 0 < a1 ≤ x ≤
2A; 2) 2A ≤ x ≤

√
(1− δ)λ; 3)

√
(1− δ)λ ≤ x ≤

√
(1 + δ)λ; 4) x ≥

√
(1 + δ)λ,

provided that 0 < a2 ≤ y ≤ A.

Theorem 3 (the case 0 < a1 ≤ x ≤ 2A, 0 < a2 ≤ y ≤ A). We have the
uniform asymptotics

(1.7) e(λ, x, y) =
1

2π
sin
√
λ(x− y)
x− y

+
cα
2π

sin
√
λ(x+ y)
x+ y

+O(λ−1/2) ,

λ→∞, for some constant cα.

It will be convenient to consider also the function

E(λ, x, y) = e(λ,
√
λx,
√
λy) .

Theorem 4 (the case 4A2/λ ≤ x2 ≤ 1 − δ, 0 < a2 ≤
√
λy ≤ A). For every

small δ > 0 we have the uniform asymptotics

(1.8) E(λ, x, y) = F (λ, x, y) + cαF (λ, x,−y) ,

(1.9) (1− x2)1/4F (λ, x, y) = λ−1/2
4∑
j=1

bj(λ, x, y) exp(iλψj(x, y))

+x−1O(λ−3/2), λ→ +∞ ,

where |bj | ≤ cx−1, |∂xbj | ≤ cx−2 and

(1.10) |∂xψj(x, y)| ≥ cx, 1 ≤ j ≤ 4 ,

for some constant c > 0.

Corollary 2. If 2A ≤ x ≤ λ/2, 0 < a2 ≤ y ≤ A then the uniform estimate
|e(λ, x, y)| ≤ cx−1 is valid.

Theorem 5 (the case 1− δ ≤ x2 ≤ 1 + δ, 0 < a2 ≤
√
λy ≤ A). There exists a

positive number δ such that we have the uniform asymptotics (1.8) where

F (λ, x, y) = λ−1/3
∑
k≥0

(α0k(λ, x, y)λ−k + α1k(λ, x, y)λ−k−1/3), λ→ +∞ ,

and

(1.11) αjk = (ajkeλA + bjke
λĀ Ai(j)(λ2/3B) ,

(1.12) |ajk|+ |∂xajk| ≤ c, |bjk|+ |∂xbjk| ≤ c, j = 0, 1 .
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Here Ai(s) = (2π)−1
∫

exp(i(st+ t3/3)) dt is the Airy function and

(1.13) A = A(x, y) = 1
2 (ϕ(p+, x, y) + ϕ(p−, x, y)) ,

(1.14) B = B(x, y) = (3
4 (ϕ(p+, x, y)− ϕ(p−, x, y)))2/3 ,

where

(1.15) ϕ(p, x, y) = p− 1
2 (x2 + y2) coth 2p+ xy(sinh 2p)−1

and

(1.16) p± = it±, cos 2t± = −xy ± ((1− x2)(1− y2))1/2,

0 < t± < π/2 if x < 1,
(1.17) p± = ±ε+ it, cosh 2ε = x, ε > 0, cos 2t = −y,

0 < t < π/2 if x > 1 .

R e m a r k 4. The smooth functions A(x, y), B(x, y) satisfy

(1.18) B(x,±y) > 0 if x > 1, B(x,±y) < 0 if x < 1 ,
(1.19) B(x,±y) = −21/3(1− x)(1 +O(1− x)) as x→ 1 ,
(1.20) ReA(x,±y) = 0 .

Corollary 3. If 1 − δ < x2 < 1 − λ−2/3+ε, 0 < a2 ≤
√
λy ≤ A for some

ε > 0, then we have the uniform asymptotics (1.8) where

F (λ, x, y) = λ−1/2(1− x2)−1/4
4∑
j=1

∑
k≥0

akj(λ2/3(1− x2))−3k/2 exp(iλψj) ,

λ→∞, the functions ψj satisfy (1.10) and

|akj(λ, x, y)|+ |∂xakj(λ, x, y)| ≤ c .

Theorem 6 (the case x2 ≥ 1 + δ, 0 < a2 ≤
√
λy ≤ A). For every small δ > 0

the uniform estimate |E(λ, x, y)| ≤ cλ−1/2 exp(− 1
2λδ
√
x2 − 1) holds.

Theorems 5 and 6 imply the following

Corollary 4. If x2 ≥ λ + λ1/3+ε, ε > 0, and 0 < a2 ≤ y ≤ A then we have
the uniform estimate

|e(λ, x, y)| ≤ cλ−1/3 exp(−cλ1/3(x2/λ− 1)1/2) .

2. Proof of the equiconvergence theorems

P r o o f o f T h e o r e m 1. Let g(x) = e−x
2/2xα+1/2f(x2). As in the proof of

Theorem S ([3], p. 264), it suffices to establish a uniform estimate of the kind

(2.1) Rn(f, y2) = O(1)
( 1∫

0

|g(x)| dx+
∞∫
1

x−1|g(x)| dx
)

+ o(1) ,
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n→∞, where 0 < c < a2 ≤ y ≤ A and

(2.2) Rn(f, y2) = sn(f, y2)− 1
π

y+c∫
y−c

f(x2)
sin
√

4n(x− y)
x− y

dx .

Using (1.3), (1.7) and the Riemann–Lebesgue lemma, we have

(2.3) Rn(f, y2) =
( a1∫

0

+
∞∫

2A

)
g(x)e(4n+ 4, x, y) dx+ o(1) ,

n→∞, where 0 < a2 ≤ y ≤ A and a1 = a2 − c. Since

(2.4)
a1∫
0

|g(x)e(4n+ 4, x, y)| dx = O(1)
1∫

0

|g(x)| dx if α ≥ −1/2

(see [3], p. 264), it remains to estimate the integrals

(2.5) Kj(λ, y) =
∫
aj(λ, x2)g(x)e(λ, x, y) dx , 1 ≤ j ≤ 4 ,

uniformly with respect to y ∈ [a2, A], a2 > 0, where x → aj(λ, x) is the char-
acteristic function of the interval Ij , 1 ≤ j ≤ 4, and I1 = (4A2, λ/2), I2 =
(λ/2, λ−λ1/3+ε), I3 =(λ−λ1/3+ε, λ+λ1/3+ε), I4 =(λ+λ1/3+ε,∞). To estimate
the integral K1 we apply Corollary 2 to get

(2.6) K1(λ, y) = O(1)
∞∫
1

x−1|g(x)| dx .

Further, Theorem 4 and Corollary 3 imply the estimate |e(λ, x, y)a2(λ, x2)| ≤
c−1/2(1− x2/λ)−1/4, hence (H3) gives

(2.7) K2(λ, y) = o(1), λ→∞ .

Theorem 5 and (H4) show that

(2.8) K3(λ, y) = o(1), λ→∞ .

Corollary 4 yields

(2.9) |K4(λ, y)| ≤ c
(
λ3e−cλ

ε/2 ∫
b1(λ, x2)|g(x)|x−3 dx

+λ−1/3
∫
b2(λ, x2)|g(x)| exp(−cx1/2) dx

)
,

where x→ b1(λ, x) is the characteristic function of (λ+λ1/3+ε, λ2) and b1 + b2 =
a4. Therefore (2.9) and (H2) give

(2.10) K4(λ, y) = o(1), λ→∞ .

Evidently, (2.1) follows from (2.3)–(2.10). Theorem 1 is proved.

P r o o f o f T h e o r e m 2. We use again (2.2)–(2.4). Note first that (H′3) and
(H4) imply

(2.11) g(x) = O(x5/3), x→∞ .
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Indeed, let xn →∞ and x2
n = λn +λ

1/3
n . Then λn−λ1/3

n < x2
n−x

2/3
n for large n.

Using (H4) and the mean-value theorem, we find yn such that x2
n−x

2/3
n < y2

n < x2
n

and g(yn) = O(x5/3
n ), n→∞. Further, choose λn so that x2

n = λn − λ1/3
n . Since

g(xn)− g(yn) =
∫ xn

yn
g′(x) dx and

|g(xn)− g(yn)| ≤ x2
n

xn∫
yn

(1− x2/λn)1/4−1/4x−2|g′(x)| dx ,

1− x2/λn < 1− y2
n/λn < 2λ−2/3

n < 2x−1/3
n if xn > yn ,

we get from (H′3) the estimate |g(xn)− g(yn)| ≤ cx5/3
n . Thus, (2.11) follows.

Now as in the proof of Theorem 1 it is sufficient to see that

(2.12) Rn(f, y2) = O(1)
( 1∫

0

|g(x)| dx+
∞∫
1

x−3|g(x)| dx

+
∞∫
N

x−2|g′(x)| dx
)

+ o(1) , n→∞ ,

uniformly in [a2, A], a2 > 0. To this end we shall estimate the integrals Kj ,
1 ≤ j ≤ 4, from (2.5). It is clear that (2.8)–(2.10) remain valid. To estimate K1

and K2 we consider the formulas

Bj(λ, y) = Kj(λ,
√
λy)(2.13)

=
√
λ
∫
aj(λ, λx2)g(

√
λx)E(λ, x, y) dx, j = 1, 2 .

Using an appropriate partition of unity in the integral (1.3), we can suppose that
g(2A) = 0. In the integral B1, integration by parts with the help of Theorem 4
gives

(2.14) K1(λ, y) = O(1)
( ∞∫

1

x−3|g(x)| dx+
∞∫
N

x−2|g′(x)| dx
)
.

In the integral B2 we integrate by parts, using Theorem 4 (if 1/2 < x2 < 1 − δ)
and Corollary 2 (if 1− δ < x2 < 1−λ−2/3+ε). Taking into account (2.11), we get

(2.15) B2(λ, y) = O(1)
( ∞∫

1

x−3|g(x)| dx+
∞∫
N

x−2|g′(x)| dx

+λ−ε/4 +B(λ, y)
)

for small ε > 0, where

B(λ, y) = C(λ, y) + cαC(λ,−y) ,(2.16)

C(λ, y) = λ−1
4∑
j=1

M∑
k=0

∫
a2(λ, λx2)eiλψj

∂

∂x
q(λ, x) dx ,(2.17)
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q(λ, x) = g(
√
λx)akj(λ, x)(1− x2)−1/4(∂xψj)−1(λ2/3(1− x2))−3k/2(2.18)

and M = M(ε) is large enough. Since the functions akj(λ, x), (∂xψj)−1 and their
derivatives with respect to x are bounded when 1/2 < x2 < 1, it is sufficient to
estimate the integrals

C1(λ, y) = λ−1
∫
a2(λ, λx2)(1− x2)−5/4|g(

√
λx)| dx ,(2.19)

C2(λ, y) = λ−1/2
∫
a2(λ, λx2)(1− x2)−1/4|g′(

√
λx)| dx .(2.20)

By virtue of (2.11), we have

(2.21) C1(λ, y) ≤ c
∫

x2<1

(1− x2)−1+δ dxλ−ε/8 if δ =
3ε

8(2− 3ε)

where ε > 0 is small enough. On the other hand,

(2.22) C2(λ, y) ≤ c
∫
a2(λ, x2)(1− x2/λ)−1/4x−2|g′(x)| dx .

It is not hard to see that (2.13), (2.15)–(2.22) and (H′3) yield the estimate

(2.23) K2(λ, y) = O(1)
( ∞∫

1

x−3|g(x)| dx+
∞∫
N

x−2|g′(x)| dx
)

+ o(1) ,

λ → ∞. Consequently, (2.12) follows from (2.3), (2.4), (2.8)–(2.10) and (2.14),
(2.23). Theorem 2 is proved.

3. Proof of the asymptotics for the spectral function

P r o o f o f T h e o r e m 3. First we prove the formula (1.6). According to
Theorem 5.1 of [3], we can write

V (p, x, y) =
1
2

(xy)1/2e2p(α−1)(sinh 2p)−1e(1/2)(x2+y2) coth 2pi−αJα

(
ixy

sinh 2p

)
if Re p > 0. Notice that

(3.1) V (p+ ikπ/2, x, y) = V (p, x, y) .

From (1.4), (1.5) it follows that

(3.2) V (p, x, y) = p
∞∫
0

e−λpe(λ, x, y) dλ, Re p > 0 .

We want to apply the inverse Laplace formula. Since the function λ→ e(λ, x, y)
is only right-continuous, it is convenient to consider the Steklov average:

eh(λ, x, y) =
1
h

h∫
0

e(λ+ µ, x, y) dµ, h > 0 .
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Evidently eh(λ, x, y)→ e(λ, x, y) as h→ +0 for every fixed (λ, x, y) and (3.2) can
be rewritten as follows:

∞∫
0

e−λpeh(λ, x, y) dλ =
ehp − 1
h2

· V (p, x, y)
p2

, h > 0, Re p > 0 .

Hence the inverse Laplace formula gives

eh(λ, x, y) =
1

2πi

ε+i∞∫
ε−i∞

eλp
ehp − 1
h2

· V (p, x, y)
p2

dp, ε > 0 .

Now the periodicity relation (3.1) and the Weierstrass theorem show that

(3.3) eh(λ, x, y) =
1

2πi

ε+iπ/4∫
ε−iπ/4

eλpV (p, x, y)
g(h, p)− g(0, p)

h
dp

where g(s, p) = epsf(λ+s, p) and f(s, p) =
∑
eiskπ/2(p+ ikπ/2)−2. The function

s→ f(s, p) is continuous, 4-periodic and

f(s, p) = 4e(2−s)p(coth 2p+ s/2− 1)(sinh 2p)−1

for 0 ≤ s < 4, Re p > 0. In particular, limh→+0 h
−1(g(h, p) − g(0, p)) = H(λ, p)

and using the Lebesgue theorem we get (1.6) from (3.3). Notice also that

(3.4) p→ eλpV (p, x, y)H(λ, p) is iπ/2-periodic .

This allows us to write

e(λ, x, y) =
1

2πi

( ε+iπ/4∫
ε−iπ/4

eλpV (p, x, y)H(λ, p)χ1(p) dp

+
ε+iπ/2∫
ε+i0

eλpV (p, x, y)H(λ, p)χ2(p) dp
)

where χ1(p) +χ2(p) = 1 on the interval {p = ε+ it : |t| ≤ π/4} and suppχ1(p) ⊂
{p = ε+ it : |t| ≤ γ < π/4}, χ1(ε+ it) = 1 if |t| ≤ γ/2 and the function χ2(p) is
iπ/2-periodic. Thus

(3.5) e(λ, x, y) =
1

2πi

∫
S

eλpV (p, x, y)H(λ, p)χ(p) dp

where S = (ε− iπ/2, ε+ iπ/2) and χ ∈ C∞0 (S), χ(ε+ it) = 1 if |t| ≤ π/8.
We shall now find an appropriate form of V (p, x, y), separating the oscillating

part. Using the formulas (1), p. 74, (6), p. 75 and (3), (4), p. 168 of [4], we can
write

Jα(z) = z−1/2(eizc+αf(−z) + e−izc−α f(z)) if α ≥ −1/2



216 G. E. KARADZHOV

where

(3.6) f(z) =

{
1
2

(
2
π

)1/2 1
Γ (α+1/2)

∫∞
0
e−uuα−1/2

(
1− iu

2z

)−1/2
du if α > −1/2,

1
2

(
2
π

)1/2 if α = −1/2,

is a holomorphic function for Re z 6= 0. Here c−α = ei(π/2)(α+1/2). Therefore

(3.7) V (p, x, y) = (sinh 2p)−1/2e−(1/2)(x2+y2) coth 2p(exy/ sinh 2pa(p, xy)
+e−xy/ sinh 2pcαa(p,−xy))

where cα = e−i(π/2)(α+1/2)c+α and

(3.8) a(p, xy) = 1
2e

2p(α−1)f(ixy/ sinh 2p) .

Since − 1
2 (x2 +y2) coth 2p+xy/ sinh 2p = −(x−y)2/(4p)+s(p, x, y) and s(0, x, y)

= 0, we have the representation

V (p, x, y) = p−1/2(e−(x−y)2/(4p)b(p, x, y) + e−(x+y)2/(4p)cαb(p, x,−y))

where b(0, x,±y) = 1/(4
√
π). Further, we have the equality

1
2
√
πp
e−(x−y)2/(4p) =

1
2πi(x− y)

∫
2ξpe−ξ

2p+i(x−y)ξ dξ, Re p > 0 ,

therefore

(3.9) V (p, x, y) = W (p, x, y) + cαW (p, x,−y)

where

W (p, x, y) =
p

x− y
a(p, x, y)

∫
ξe−ξ

2p+i(x−y)ξ dξ, Re p > 0 ,(3.10)

a(0, x,±y) = 1/(2πi) .(3.11)

Now (3.5), (3.9) and (3.10) show that

(3.12) E(λ, x, y) = F (λ, x, y) + cαF (λ, x,−y)

where

(3.13) F (λ, x, y) =

√
λ

x− y
∫
eiλψ(t,ξ,x,y)q(t, ξ, λ, x, y) dt dξ

is an oscillating integral with respect to ξ, and

q(t, ξ, λ, x, y) =
ξ

2π
a(it,

√
λx,
√
λy)H(λ, it)itχ(it) ,(3.14)

ψ(t, ξ, x, y) = (1− ξ2)t+ (x− y)ξ .(3.15)

Notice that a1 ≤
√
λx ≤ 2A, a2 ≤

√
λy ≤ A and from (3.14) and (3.6)–(3.10) it

follows that

(3.16) |∂kt q| ≤ Ck|ξ| .
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Since |∂tψ| ≥ cξ2 if ξ2 is large enough, we can integrate by parts in the integral
(3.13) to get

(3.17) F (λ, x, y) ∼
√
λ

x− y
∫
eiλψ(t,ξ,x,y)κ(ξ)q(t, ξ, λ, x, y) dt dξ

where κ ∈ C∞0 (R) is an even cut-off function and the equivalence relation
“A(λ, x, y) ∼ B(λ, x, y)” here means that A(λ, x, y)−B(λ, x, y) = O(λ−∞), uni-
formly with respect to x, y. Applying the method of stationary phase to the
integral (3.17), we derive the uniform asymptotics

F (λ, x, y) = λ−1/2(2π(x− y))−1 sinλ(x− y) +O(λ−1/2), λ→∞ .

Together with (3.12), (3.13), this gives (1.7). Theorem 3 is proved.

P r o o f o f T h e o r e m 4. We start from the formulas (3.5) and (3.7). Now
we use the equality∫

e−ξ
2(sinh 2p)/2+i(x−y)ξξ dξ =

√
2πi(x− y)(sinh 2p)−3/2g(p) ,

Re p > 0, where

g(p) = exp
(
x2 + y2

2
tanh p− x2 + y2

2
coth 2p+

xy

sinh 2p

)
.

Therefore we have again the representation (3.9), where

W (p, x, y) = (x− y)−1(sinh 2p)a(p, x, y)
∫
ξ exp(ψ(p, ξ)) dξ ,

ψ(p, ξ) = −ξ2(sinh 2p)/2 + i(x− y)ξ − (x2 + y2)(tanh p)/2 ,

a(p, x, y) = (exp(2p(α− 1)− iπ(α+ 1/2)/2))/(2i
√

2π)f(ixy/ sinh 2p) .

Analogously to (3.12)–(3.17) we obtain again (3.12), (3.17), where the phase func-
tion ψ now has the form

(3.18) ψ(t, ξ, x, y) = t− ξ2

2
sin 2t− x2 + y2

2
tan t+ (x− y)ξ

and

q(t, ξ, λ, x, y) = (ξ/(2π))a(it,
√
λx,
√
λy)H(λ, it)i(sin 2t)χ(it) ,

so the estimate (3.16) is valid.
Applying the method of stationary phase, we see that the function (3.18)

has four nondegenerate critical points: (t±, ξ±) and (−t±,−ξ±), where cos 2t± =
xy±ω, ω = ((1−x2)(1− y2))1/2, ξ± sin 2t± = x− y. In addition, for the Hessian
ψ′′ we have detψ′′(t±, ξ±) = ±4ω. Thus the method of stationary phase yields
the asymptotics (1.9), where ψ1(x, y) = ψ(t+, ξ+, x, y), ψ2(x, y) = (t−, ξ−, x, y),
ψ3 = −ψ1, ψ4 = −ψ2 and bk(λ, x, y) = (x − y)−1ak(λ, x, y), |∂xak| ≤ cx−1,
1 ≤ k ≤ 4. Theorem 4 is proved.



218 G. E. KARADZHOV

P r o o f o f T h e o r e m 5. Starting from the formula (1.6), we use the peri-
odicity property (3.4) and obtain the representation

e(λ, x, y) =
1

4πi

∫
S

eλpV (p, x, y)H(λ, p) dp, Re p > 0 ,

where S = (ε− iπ/2, ε+ iπ/2). Further, (3.7), (3.8) show that

(3.19) E(λ, x, y) = F (λ, x, y) + cαF (λ, x,−y)

where

(3.20) F (λ, x, y) =
∫
S

eλϕ(p,x,y)q(p, λ, x, y) dp ,

ϕ is given by (1.15) and

(3.21) q(p, λ, x, y) =
e2p(α−1)

8πi
(sinh 2p)−1/2f(λixy/ sinh 2p)H(λ, p) .

To find the uniform asymptotics of the integral (3.20) as λ→∞, we shall apply
the saddle-point method. Since a2 ≤

√
λy ≤ A the phase function p→ ϕ(p, x, y)

has critical points p± and p±, where p± are given by (1.16), (1.17). If x = 1, then
p± = p0 = it0 where cos 2t0 = y and 0 < t0 < π/2. Hence, the critical points
p0 and p0 are degenerate and (∂3ϕ/∂p3)(p, x, y) = 8, (∂2ϕ/∂p∂x)(p, x, y) = −2 if
p = p0 or p = p0. Since |x2−1| < δ, we can choose δ > 0 so that 0 < |Im p| < π/2
for all the critical points. Consequently, the integrand in (3.20) is holomorphic
near the critical points. On the other hand, according to Lemma 2.3 of [1, p. 343],
we can find a holomorphic change of variables p = p(z, x, y) in a neighborhood of
the points z = 0, x = 1 such that

(3.22) ϕ(p(z, x, y), x, y) = A(x, y)−B(x, y)z + z3/3, p(0, 1, y) = p0 .

Note also that (3.22) and (1.15) imply

ϕ(p(z, x, y), x, y) = A(x, y)−B(x, y)z + z3/3 ,(3.23)
p(0, 1, y) = p0 ,

and

p(±
√
B, x, y) =

{
p± if x > 1,
p∓ if x < 1.

To use the holomorphic change of variables (3.22), (3.23) in the integral (3.20),
we shall prove first that

(3.24) F (λ, x, y) ∼
∫
γ

eλϕ(p,x,y)q(p, λ, x, y) , γ = γ1 ∪ γ2 ,

where γ1 is the segment (ε + i(t0 − 2ε), ε + i(t0 + 2ε)) and γ2 the segment (ε −
i(t0 + 2ε), ε + i(−t0 + 2ε)) for ε > 0 small enough. The equivalence relation
“a(λ, x, y) ∼ b(λ, x, y)” here means that a(λ, x, y) − b(λ, x, y) = O(e−cλ), c > 0.
To prove (3.24), it is sufficient to use the estimate Reϕ(p, x, y) ≤ −c < 0 for



EQUICONVERGENCE THEOREMS 219

p ∈ S \ γ, which follows from the definition (1.15) for ε > 0 small enough. Now
(3.20) and (3.22)–(3.24) yield

F (λ, x, y) ∼
2∑
j=1

eλAj

∫
γ∗j

eλ(−Bz+z3/3)qj(z, λ) dz ,

where A1 = A, A2 = A and

q1(z, λ) = q(p(z, x, y), λ, x, y)
∂

∂z
p(z, x, y) ,

q2(z, λ) = q(p(z, x, y), λ, x, y)
∂

∂z
p(z, x, y) ,

γ∗j being the image of the segment γj . Notice that γ∗j ⊂ {z : Re z > 0} and that
the end points αj , βj of γ∗j satisfy argαj ∈ (−π/2,−π/6), arg βj ∈ (π/6, π/2).
Further, we use the Weierstrass preparation theorem [2]:

qj(z, λ) = rj + r̃jz + (z2 −B)q̃j(z, λ)

and the following representation of the Airy function:

Ai(s) =
1

2πi

∫
Γ

e−sz+z
3/3 dz, Γ = Γ1 ∪ Γ2, where

Γ1 = {z = % exp(iϕ1) : % ∈ (∞, 0), ϕ1 ∈ (−π/2,−π/6)} ,

Γ2 = {z = % exp(iϕ2) : % ∈ (0,∞), ϕ2 ∈ (π/6, π/2)} .

Thus we obtain the uniform asymptotics

(3.25) F (λ, x, y) = λ−1/3
∑
k≥0

(α0k(λ, x, y)λ−k + α1k(λ, x, y)λ−k−1/3) ,

λ → ∞, where the coefficients αjk are given by (1.11). The remainder in the
asymptotics (3.25) is estimated as in [1], p. 348.

To verify (1.12), it is sufficient to prove that

(3.26) |q(p, λ, x, y)|+ |∂xq(p, λ, x, y)|+ |∂pq(p, λ, x, y)| ≤ c

if |Re p| ≤ ε, ε0 ≤ |Im p| ≤ π/2 − ε0, λxy ≥ 1, x ≥ ε0 where ε0 > 0. Since
|Re z| ≥ c > 0 where z = iλxy/ sinh 2p, we can apply the asymptotics of the
function f(z) from (3.6), which yields the estimate |f (k)(z)| ≤ Ck|z|−k. Now
(3.26) follows from the definition (3.21). Theorem 5 is proved.

P r o o f o f T h e o r e m 6. We shall use the formulas (3.19) and (3.20), where
ε = 1

2 arcoshx, x2 ≥ 1 + δ. The phase function ϕ has critical points p(x, y) and
p(x, y), where p(x, y) = ε + it, cos 2t = y, 0 < t < π/2. They are nondegenerate
and Reϕ(p, x, y) < Reϕ(p(x, y), x, y) if 0 ≤ Im p ≤ π/2, p 6= p(x, y), p ∈ S,
and Reϕ(p, x, y) < Reϕ(p(x, y), x, y) if −π/2 ≤ Im p ≤ 0, p 6= p(x, y), p ∈ S.
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Applying the saddle-point method [1], we get the asymptotics

(3.27) F (λ, x, y) =
∑
k≥0

ak(λ, x, y)λ−1/2−k, λ→∞ ,

where

(3.28) |ak(λ, x, y)| ≤ ckeλReϕ(p(x,y),x,y)(x2 − 1)−1/4 .

Since Reϕ(p(x, y), x, y) = 1
2 (arcoshx− x

√
x2 − 1) and

(3.29) x
√
x2 − 1− arcoshx ≥ δ

√
x2 − 1 if x2 − 1 > δ, 0 < δ < 1 ,

we obtain from (3.27)–(3.29) the estimate

(3.30) |F (λ, x, y)| ≤ cλ−1/2 exp(− 1
2λδ
√
x2 − 1)(x2 − 1)−1/4 .

Now, Theorem 6 follows from (3.30) and (3.19).

To prove Corollary 3, it is sufficient to obtain the estimate

(3.31) |F (λ, x, y)| ≤ cλ−1/3 exp(−cλ1/3(x2 − 1)1/2)

if x2 > 1 + λ−2/3+ε, ε > 0, a2 ≤
√
λy ≤ A .

If x2 > 1 + δ, (3.31) follows from (3.30). Let now λ−2/3+ε < x2 − 1 < δ, ε > 0.
Then we can apply Theorem 5. Using the asymptotics of the Airy function and
the properties (1.13)–(1.15), (1.17), (1.18), we obtain the asymptotics (3.27) with
(3.28). Hence we have again (3.30) with δ = λ−2/3+ε, and (3.31) follows.
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