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Introduction. Initial and initial-boundary value problems play an important
role in mathematical physics. For instance one can write the wave equation, the
plate equation or the system of linear elasticity in the form

utt +Au = 0 with u(0) = u0 and ut(0) = u1 .

Here A is a linear differential operator in a domain G ⊂ R
3. Next,

ut + iAu = 0 with u(0) = u0

represents the Schrödinger equation, the system of Maxwell’s equations or the
system of linear acoustics, and by

ut +Au = 0 with u(0) = u0

heat conduction phenomena like initial-boundary value problems in linear ther-
moelasticity are described. Except for the last example A is a selfadjoint operator.

To solve such problems one has to give a solution concept first. Afterwards
one tries to get more specific knowledge of the solutions obtained. For instance
one inquires about their regularity, or about their asymptotic behaviour for large
times and proves the existence of wave and scattering operators. Problems of
inverse scattering theory are of great mathematical and practical interest (data
like initial values, boundary or medium shall be recovered from the reflected
signals). To treat such problems one has to know, for instance, how the scattering
operator is determined by the boundary and to invert this mapping. In the high
frequency limiting case one obtains relatively simple formulae. In the following,
however, I shall not touch on such questions. Rather, in the first part of the lecture
I shall only briefly treat linear boundary value problems for exterior domains,
and also with the restriction that the underlying medium is homogeneous outside
a sufficiently large ball. Of course boundary value problems for domains with
unbounded boundaries are also of great importance.
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Meanwhile linear problems are fairly well understood whereas many nonlinear
problems are still open. So the second part of the lecture will be concerned with
nonlinear problems, primarily with the existence of global small smooth solutions.
Much progress has been made in this field in recent years. So I shall first report
on some results given by F. John, S. Klainerman and others and afterwards treat
elastic media with cubic symmetry in R

2.

1.Linear problems. In the linear case the underlying theory is known and in
principle well understood now. Let me shortly report on the development guided
by a simple wave equation. The underlying operator is selfadjoint in this case so
that the spectral theorem is at our disposal. Similar results can be obtained for
other equations of mathematical physics.

So let G be a domain in R
3, and let aik = aki (i, k = 1, 2, 3) be real-valued,

bounded C1(G)-functions with

∃p0 > 0 ∀x ∈ G ∀ξ ∈ R
3 ξiaikξk ≥ p0|ξ|2 .

Let the medium be homogeneous and isotropic sufficiently far outside in case of
an exterior domain; thus a number ra > 0 exists with

∀x ∈ Ga := {x ∈ G | |x| > ra} aik = δik .

Since we want to confine ourselves to the Dirichlet boundary value problem let
A : D(A) ⊂ L2(G) → L2(G) with

D(A) := {u ∈ H
◦

1(G) | ∂iaik∂ku ∈ L2(G)} and Au := −∂iaik∂ku .

Then we are looking for a u : R
+
0 ×G→ R with

utt +Au = 0, u(0) = u0 and ut(0) = u1 .

Several solution concepts exist for this initial value problem (e.g. there are
distribution, weak, or classical solutions). In the following we shall choose the
concept of solutions with finite energy which is suggested by physics, namely

E(t) := ‖ut(t)‖2 + ‖A1/2u(t)‖2 <∞ ,

that is, with finite sum of kinetic and potential energy (A1/2 corresponds to ∇).
For that purpose we have to assume u0 ∈ D(A1/2) of course; ‖ · ‖ denotes the
L2(G)-norm.

In the following let H := L2(G), let C
◦

(G) be the set of continuous functions

with compact support in G, and V := C
◦

(R,D(A)) ∩ C2(R,H). Furthermore, let
u0, u1 ∈ H. Then u ∈ C(R+

0 ,H) is called a weak solution of the wave equation if

∀ϕ ∈ V 0 =
∫

R
+×G

u(ϕtt +Aϕ) + (u0, ϕt(0, ·)) − (u1, ϕ(0, ·)) .

This definition goes back to M. Vishik and O. A. Ladyzhenskaya [1956]. If u0 ∈
D(A1/2) then u is called a solution with finite energy when u ∈ C(R+

0 ,D(A1/2))∩
C1(R

+
0 ,H).
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The initial-boundary value problem just defined is uniquely solvable. This fol-
lows relatively easily from spectral or semigroup theory. In our case A is selfadjoint
and by

u(t) := cos(A1/2t)u0 +A−1/2 sin(A1/2t)u1

=
∞∫

0

{
cos(

√
λt) dP (λ)u0 +

sin(
√
λt)√
λ

dP (λ)u1

}

we can obtain a solution of the problem. The energy is constant.

Thus we can prove existence and uniqueness of a solution. For special equa-
tions many questions, however, remain unanswered, for instance the question of
regularity of the solution of Maxwell’s equations in the neighbourhood of edges
and corners. If one wants to know further particulars about the solution one needs
better knowledge of the spectrum of A. For G bounded the expansion of A with
respect to eigenfunctions and the expansion of u with respect to standing waves
follow using spectral theory for compact operators. Namely from Rellich’s selec-
tion theorem and Poincaré’s estimate one easily obtains A−1 ∈ K(H). But we
shall leave it at that.

Rather, in the following we want to be concerned with questions about the
time-asymptotic behaviour of the solutions and with scattering problems in un-
bounded domains. We choose a simple case and assume G to be an exterior
domain. So G is the complement of a bounded domain and has bounded bound-
ary.

To describe the asymptotic behaviour of the solutions in exterior domains for
large t one starts by treating the “free space” problem, i.e. the case G = R

3 with
aik = δik. This case can explicitly be gone through using Fourier transformation
and thus it is possible to get the asymptotic behaviour of its solutions. It serves for
comparison with the solutions of more general exterior boundary value problems
afterwards.

To simplify the representation we use complex notation. Let A0 be the un-
derlying operator in the free space case and u0

0, u
1
0 the real initial values with

u1
0 ∈ D(A

−1/2
0 ). Let v0

0 := u0
0 + iA

−1/2
0 u1

0 and v0(t) := exp(−iA
−1/2
0 t)v0

0 . Then
u0(t) := Re v0(t) is the solution of the problem. v0 is called the free solution. The
existence of incoming and outgoing waves

v±0 (t, x) = G±(|x| ± t, x0)/|x|
with

lim
t→∞

‖v0(t, ·) − v±0 (t, ·)‖ = lim
t→∞

‖v∓0 (t, ·)‖ = 0

follows.

To get on in case of more general exterior boundary value problems we have
to know more about the spectrum of A. We have

σ(A) = σc(A) = σac(A) = R
+
0 .
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To prove this, three results are used. First, from Poincaré’s estimate
∥∥∥∥
ϕ

| · |

∥∥∥∥ ≤ 2‖∇ϕ‖ for all ϕ ∈ C
◦

1(G) ,

N (A) = 0 follows, and Rellich’s estimate [1943]

∃p > 0 ∃r1 > ra ∀r > r1
∫

ra<|x|<r

|u(x)|2 dx ≥ pr

implies σp(A) = ∅ for aik = δik. For variable coefficients σp(A) = ∅ then follows
from C. Müller’s [1954] principle of unique continuation of the solutions of elliptic
equations.

Next one again looks at the time harmonic case (expansion of solutions with
respect to standing waves) and solves the Dirichlet problem for the Helmholtz
equation ∂iaik∂ku+ λu = 0 for λ ∈ R

+. Since λ does belong to the spectrum of
A this is not a standard boundary value problem. Rather, one speaks of “exterior
boundary value problems” and looks for solutions in a space which is larger than
H. The asymptotic behaviour for large |x| of such solutions is prescribed then. In
fact, one makes an incoming or outgoing Sommerfeld radiation condition (x0∇∓
i
√
λ)u ∈ L2(G).
For aik = δik uniqueness of the solution of the exterior Dirichlet problem was

shown by V. D. Kupradze [1934], H. Freudenthal [1939] and F. Rellich [1943].
Existence was proved by I. N. Vekua [1943], comp. [1967], H. Weyl [1952], and C.
Müller [1952] using the integral equation method. Variable coefficients were dealt
with using Hilbert space methods afterwards.

The solvability of exterior boundary value problems has led to the definition
of generalized eigenfunctions and to expansions with respect to them. This has
been used repeatedly, especially the analogue of the Fourier transform in R

n for
exterior domains has been given. This development goes back to T. Ikebe [1960],
compare also C. H. Wilcox [1975].

Finally, let us point out that D. M. È̆ıdus [1962] proved the “principle of
limiting absorption”. This means that for f ∈ L2f (G) (L2-functions with finite
support) one obtains the outgoing or incoming solution u± of −∂iaik∂ku−λu = f
by taking the limit

u = lim
ε↓0

(A− (λ± iε)−1)f .

This limit exists in a weighted H
◦

1(G)-norm. Since L2f (G) is dense in H, it follows
from Stone’s formula that the spectrum of A is absolutely continuous and thus,
since σp(A) = ∅ [comp. T. Kato 1976, p. 518],

H = Hac := {x ∈ H | (P (λ)x, x) is absolutely continuous} .
With that we have put together the necessary results from the theory of the

Helmholtz equation and we continue treating the wave equation. The “principle
of local energy decay” immediately follows from the absolute continuity of the
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spectrum and the Riemann–Lebesgue lemma, so ∀K ⊂ G, K ⋐ R
3,

lim
t→∞

{‖A1/2u(t)‖L2(K) + ‖ut(t)‖L2(K)} = 0 .

Therefore one expects that for t sufficiently large u(t) behaves like a free
solution. To be more precise, let JG : H → H0, H0 := L2(R3), with (JGu)(x) :=
u(x) for x ∈ G, null otherwise. Then one looks for v+

0 and v−0 ∈ H0 with

lim
t→±∞

‖JGe−iA1/2tv0 − e−iA
1/2

0
tv±0 ‖ = lim

t→±∞
‖eiA

1/2

0
tJGe−iA1/2tv0 − v±0 ‖ = 0 .

From the absolute continuity of the spectrum of A the existence of unitary
wave operators W± : H → H0 with

W± := s-lim
t→±∞

eiA
1/2

0
tJGe−iA1/2t

follows. Therefore v±0 := W±v0 exist. Then S := W+(W−)∗ is the scattering

operator and we have v+
0 = Sv−0 .

There are different methods to prove the existence of wave operators. P. Lax
and R. S. Phillips [1967] use semigroup theory, C. H. Wilcox [1975] the expansion
with respect to generalized eigenfunctions, and T. Kato [comp. 1976], A. L. Be-
lopol’sk̆ı and M. Sh. Birman [1968], and D. B. Pearson [1978] as well make use
of results from perturbation theory. For that purpose one has to show that the
general case can be interpreted as a nuclear perturbation of the free case. More
results from scattering theory and especially from quantum scattering theory can
be found in the four-volume book of M. Reed and B. Simon [1972–1979].

So far we have indicated how solutions of initial-boundary value problems can
be approximated by free space solutions for large times. As was already said there
are other limiting cases where approximation by simpler solutions is possible. The
limiting case of high frequencies belongs to this, as does the limit to geometrical
optics. These investigations are important in inverse scattering theory.

Dealing with nonlinear problems it became important during the last years to
prove good decay estimates for the solutions of linear equations and large time.
So-called Lp-Lq estimates have been proved. By that we mean estimates of the
form

‖Du(t)‖Lq ≤ cq(1 + t)−1+2/q‖u0‖Lp
,Np
, D := (∂t,∇) ,

with q ≥ 2, 1/p + 1/q = 1, 1 ≤ p ≤ 2 and 0 < Np. In the next chapter we shall
go into this more closely.

2. Nonlinear problems

2.1. Conservation laws. A typical example in R
1 is given by

ut + f(u)x = 0 .

Choosing

f(u) = 1
2
u2
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we obtain the Burgers equation. The traffic equation, also, is of this type. In R
1

one can obtain solutions by solving their characteristic equations. It is important
that, generally speaking, one encounters shock waves. The Rankine–Hugoniot
condition together with an entropy condition provide, however, unique solvability
in the weak sense. We do not intend to go into details here but again immediately
switch to the wave equation.

2.2. Wave equations. To start with let us think of the vibrating string or
vibrating membrane. An example is provided by

ytt −
(

yx√
1 + y2

x

)

x

= 0 .

With g(x) :=
√

1 + x2 − 1 = x2/2 − x4/8 + . . . ,

u := Dy =

(
yt

yx

)
and A := −

(
0 div

grad 0

)

we get

y = −yxx + g′(yx)x = − 3
2 (yx)2yxx + . . . =: f(u,∇u)

or

ut −
(
g′(u2)
u1

)

x

= 0 ,

respectively

ut +Au =

(
f(u,∇u)

0

)
=: F (u,∇u)

with |F (u,∇u)| ≤ c(|u| + |∇u|)3 for small u. The energy

E(t) =
∫

(1
2
u2

1 + g(u2))(t)

is conserved in this case.
In R

1 solutions of nonlinear wave equations always develop singularities as was
shown by F. John [1974] and [1976]. For large data the same generally holds in R

n.
The “life-span” of such solutions was defined and estimated by F. John [1981]. On
the other hand, already K. Jörgens [1961] proved global existence for large data,
y = f(y), and special f = f(y) with cubic growth in R

3, and another example
even for an f with quadratic growth but small data was given by L. Nirenberg,
namely

y = y2
t − (∇y)2 ,

with y(0) = 0 and y′(0) = g. On setting z := ey this reads

z = 0, z(0) = 1, z′(0) = g .

Choosing ‖∇g‖L1 + ‖g‖L∞ sufficiently small one obtains 0 < z(t) < ∞ from
Kirchhoff’s representation formula, and y(t) thus exists for all t.

S. Klainerman [1980] and [1982] proved global existence of smooth solutions
for a large class of right-hand sides and small data. He used a quite complicated
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iteration scheme together with the Nash–Moser technique (comp. J. Moser [1961]
and L. Hörmander [1976]).

In a joint paper with G. Ponce [1983] he then first uses a local existence
theorem going back to J. Schauder [1935] and T. Kato [1975a, b]. As was already
mentioned such solutions will explode after some time and their life-span depends
on the size of the initial data. Next they procure good decay estimates of the
solutions of the linearized equation.

The idea then is to choose the initial data so small that the life-span is long
enough until the linear influence of spreading dominates and prevents the solution
from exploding.

Thus one can avoid the iteration scheme and give an elegant existence proof.
Let us indicate the essential steps in R

3. We assume

(2.1) |F (u,∇u)| ≤ c(|u| + |∇u|)3

for small |u| + |∇u|.
Let v(t) = e−Atv0 be the solution of the linear equation. From energy conser-

vation and Kirchhoff’s formula it follows that

(2.2) ‖v(t)‖L2 = ‖v0‖L2 and ‖v(t)‖L∞ ≤ c∞(1 + t)−1‖v0‖L1
,3
.

Derivatives up to the third order appear on the right-hand side. Using interpola-
tion methods, or a result by Pecher [1976], an “Lp-Lq estimate” follows, namely

(2.3) ‖v(t)‖Lq ≤ cq(1 + t)−1+2/q‖v0‖Lp
,Np

with q ≥ 2, 1/p + 1/q = 1, 1 ≤ p ≤ 2 and 3(2 − p)/p ≤ Np < 3(2 − p)/p+ 1.

Let us briefly indicate a proof of the L∞-estimate. Simplifying we choose

y(0) = 0 and yt(0) = g .

From Kirchhoff’s formula we then know

y(t, x) =
t

4π

∫

S2

g(x + tω) dω =:
t

4π
Q(t) ,

where v = Dy. We want to estimate Q. This will be done in two steps.

t l a r g e : For t ≥ 1 we have

Q(t) =
∫

S2

ω · ωg(· + tω) dω =
1

t3

∫

|y|<t

div{yg(· + y)} dy

and therefore

‖Q(t)‖L∞ ≤ 1

t2
‖g‖L1

,1
.

t s m a l l : For t ≤ 1 we have

|Q(t)| ≤
∫

S2

|g(· + tω)| dω .
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Fubini’s theorem yields

‖Q(t)‖L1 ≤ 4π‖g‖L1

and also the corresponding estimates of the derivatives. Since L1
,3 →֒ L∞ we get

‖Q(t)‖L∞ ≤ c‖g‖L1
,3
.

The local existence theorem is used next to obtain a solution

u ∈ C([0, T ],Hs) ∩ C1([0, T ],Hs−1)

of our equation in [0, T ] with T > 1. We get

(2.4) ∀t ∈ [0, T ] ‖u(t)‖L∞ + ‖∇u(t)‖L∞ < 1

assuming ‖u0‖s to be small. (‖ · ‖s denotes the L2-norm of all derivatives up to
order s, s ≥ 3.)

“Energy estimates” are then proved in the third step by elementary but tricky
partial integration and by using Gronwall’s lemma, namely

(2.5) ‖u(t)‖s ≤ cs‖u0‖s exp
{
cs

t∫

0

(‖u(r)‖2
L∞ + ‖Du(r)‖2

L∞)dr
}
.

To present an example we take the simple case s = 0 and F (u,∇u) = y2
xyxx.

From

(ytt − ∆y, yt) = (y2
xyxx, yt)

we get

1

2

d

dt
(‖yt‖2 + ‖∇y‖2) ≤ ‖u‖2‖u‖∞‖∇u‖∞

or

‖u‖2 ≤ ‖u0‖2 + 2
t∫

0

‖u‖2{‖u‖2
∞ + ‖∇u‖2

∞}(s) ds .

From Gronwall’s lemma the proposition then follows.

The fourth step is essential. Setting τ :=3, ̺ :=τ+N6/5 = 5 and σ :=1+̺ = 6
we define

Mτ (T ) := sup
t∈[0,T ]

(1 + t)2/3‖u(t)‖L6
,τ

and show that a constant M0, independent of T , exists such that

(2.6) Mτ (T ) ≤M0 for small u0 ∈ L2
,σ ∩ L6/5

,̺ .

To prove this estimate one uses inequalities for products of functions

‖F (u,∇u)‖
L

6/5
,̺

≤ c‖u‖L2
,σ
‖u‖2

L6
,τ
,

as well as

‖u‖L∞ + ‖Du‖L∞ ≤ c‖u‖L6
,τ
.
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The latter estimate follows from the differential equation and Sobolev’s inequality.
Thus we obtain

‖F (u,∇u)‖
L

6/5
,̺

≤ c‖u‖L2
,σ
‖u‖2

L6
,τ

≤ c‖u‖2
L6

,τ
δ exp

{
c

t∫

0

(‖u‖2
L∞ + ‖Du‖2

L∞)(r) dr
}

≤ c‖u‖2
L6

,τ
δ exp

{
c

t∫

0

Mτ (T )2

(1 + r)4/3
dr

}
≤ c‖u‖2

L6
,τ
δ exp{cMτ (T )2} .

By the Lp-Lq estimate (2.3) with q = 6 and p = 6/5, it follows from

u(t) = e−Atu0 +
t∫

0

e−A(t−r)F (u,∇u)(r) dr

that, with x := M(T ),

(1 + t)2/3‖u(t)‖L6
,τ

≤ c

{
δ +

t∫

0

(
1 + t

1 + t− r

)2/3

‖F (u,∇u)‖
L

6/5
,̺

(r) dr

}

≤ cδ

{
1 + cx2ecx2

t∫

0

(
1 + t

1 + t− r

)2/3(
1

1 + r

)4/3

dr

}

or

x ≤ cδ(1 + x2ecx2

) with δ := ‖u0‖L2
,σ

+ ‖u0‖
L

6/5
,̺

.

For δ sufficiently small this implies Mτ (T ) ≤M0.
An a priori estimate for the local solution u(t) follows for small δ, namely

‖u(t)‖s ≤ c‖u0‖s exp
{
c

t∫

0

(‖u‖2
L∞ + ‖Du‖2

L∞)(r) dr
}

≤ c‖u0‖s exp
{
c

t∫

0

‖u(r)‖2
L6

,τ
dr

}

≤ c‖u0‖s exp

{
cMτ (T )2

t∫

0

dr

(1 + r)4/3

}

≤ K‖u0‖s with c = cs, K = Ks .

Thus

(2.7) ∃Kσ independent of T ∀t ∈ [0, T ] ‖u(t)‖σ ≤ Kσ‖u0‖σ .

Therefore one can apply the local existence theorem once again and obtain the
desired global solution

u ∈ C([0,∞),Hσ) ∩ C1([0,∞),Hσ−1)

for u0 sufficiently small.
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The previous results also show for t→ ∞

‖u(t)‖L6
,τ

+ ‖u(t)‖L∞ + ‖Du(t)‖L∞ = O(t−2/3) .

Corresponding results hold in R
n for n ≥ 2. For n ≥ 6 one can allow quadratic

growth in eq. (2.1). This also holds for n = 4, 5. The proof and especially esti-
mate (2.2) have to be modified, however, by replacing the L1-norm by the L2-
norms of suitable Γu0. The Γ are differential operators leaving the wave equation
invariant. The Lorentz transformation is an example (comp. S. Klainerman [1985],
D. Christodoulou [1986] and F. John [1987]).

Even in R
3 global smooth solutions exist with quadratic growth in eq. (2.1),

if the nonlinearity fulfills a “null condition” [S. Klainerman 1986]. Nirenberg’s
example has that structure.

The methods of Klainerman and Ponce may be extended to many differ-
ential equations of mathematical physics. In particular, problems in elasticity
were treated by F. John. Our group did some work on thermoelasticity. These
equations are of special interest because of the coupling of a hyperbolic and a
parabolic equation. There are always vibrations in R

n, n ≥ 2. R. Racke [1990c]
was able to show that in R

3 solutions generally explode; for small data, how-
ever, global smooth solutions exist. S. Jiang [1988] solved special initial-boundary
value problems in R

1. He also proved Lp-Lq estimates for the plate equation with
damping. R. Racke [1990d] used the generalized Fourier transformation (gener-
alized eigenfunction expansion) combined with the results of C. S. Morawetz
and D. Ludwig [1968] to obtain Lp-Lq estimates for more general equations
with a damping term. Thus he was able to treat the exterior Dirichlet prob-
lem.

To solve exterior boundary value problems without damping is, however, more
difficult. The Dirichlet problem for the wave equation was treated by Y. Shibata
and Y. Tsutsumi [1986 and 1987] assuming smooth and convex (non-trapping)
boundaries. They used difficult energy estimates and the results of B. R. Vain-
berg (comp. [1989]), and also C. S. Morawetz and D. Ludwig [1968] concerning
the asymptotics of the resolvent of the linear problem.

The case of inhomogeneous and anisotropic media is also largely open. There
are results by O. Liess [1989] in crystal optics.

Largely unsolved is also the question of existence of global weak solutions in
R

3 and their uniqueness. Little is known about existence and behaviour of shock
waves.

2.3. Elastic media with cubic symmetry. The elastic media that were treated
so far are isotropic. Thus it is also interesting to look at anisotropic media and I
shall finally report on some work I did together with a student of mine, M. Stoth.
To make the calculations simple we choose a medium in R

2 with cubic symmetry.
We start with the linear case and derive Lp-Lq estimates. The linear equations of
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elasticity then read

Utt −
(
a∂2

1 + b∂2
2 (b+ c)∂1∂2

(b+ c)∂1∂2 b∂2
1 + a∂2

2

)
U = 0 .

Using Fourier transformation this reads

Ûtt +

(
aξ21 + bξ22 (b+ c)ξ1ξ2

(b+ c)ξ1ξ2 bξ21 + aξ22

)
Û = 0 .

Let

P (λ, ξ) := λid −
(
aξ21 + bξ22 (b+ c)ξ1ξ2

(b+ c)ξ1ξ2 bξ21 + aξ22

)
.

Then {(λ, ξ) ∈ R
3 | detP (λ, ξ) = 0} is the characteric manifold of P , and S :=

{ξ ∈ R
2 | detP (1, ξ) = 0} is called Fresnel’s wave surface.

The constants a, b, c are not completely free. From physical considerations a,
b have to be positive and |c| < a. In case a = 2b + c the medium is isotropic.
Mathematically simple and interesting are also the cases c = −b (a weakly coupled
system), and a = b.

We have

detP (λ, ξ) = λ2 − λ(a+ b)|ξ|2 + ab(ξ41 + ξ42) + (a2 − 2bc− c2)ξ21ξ
2
2

= (λ− λ1(ξ))(λ − λ2(ξ)) .

Thus we obtain two eigenvalues λ1(ξ) and λ2(ξ). Let Pi(ξ) be the projectors on
the corresponding eigenspaces and µi(ξ) := λi(ξ)

1/2. Assuming U(0) =: U0 = 0
and Ut(0) =: U1 we then get

Û(t) =
sinµ1t

µ1
P1Û

1 +
sinµ2t

µ2
P2Û

1 .

We have to estimate, for example,

V (t, x) :=
∫

R
2

eixξ sinµ1(ξ)t

µ1(ξ)
(P1Û

1)(ξ) dξ .

In the isotropic case (a = 2b+ c) we obtain λ1 = a|ξ|2, λ2 = b|ξ|2 and

P1,2 =
1

|ξ|2
(

ξ21 ±ξ1ξ2
±ξ1ξ2 ξ22

)
.

V then has the same structure as the corresponding integral of the wave equation
and one therefore obtains the same asymptotics.

In case of a = b = 1, c = 0 we get

λ1,2(ξ) = ξ2 ± ξ1ξ2 ≥ 1
2ξ

2

and

P1,2 =
1

2

(
1 ±1
±1 1

)
.
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Choosing

z := r

(
cosϕ
sinϕ

)
and ξ = ξ(z) =

1√
3

( √
3 1

−
√

3 1

)
z =: Az

we obtain

z =
1

2

(
1 −1√
3

√
3

)
ξ and det

∂(ξ1, ξ2)

∂(r, ϕ)
=

2
√

3

3
r .

Furthermore, we know λ1(ξ(z)) = (ξ2 + ξ1ξ2)(z) = |z|2. Thus

V (t, x) =
2√
3

∞∫

0

2π∫

0

eixξ(z) sin |z|t
|z| P1Û

1(ξ(z))r dϕdr ,

or with y := Atrx,

V (t, x) =
2√
3

∫

R
2

eiyz sin |z|t
|z| P1Û

1(Az) dz .

Therefore the solutions asymptotically behave like the solutions of the wave equa-
tion. We therefore again get the same asymptotics.

The general case is more interesting. Since we are interested in estimating the
energy only, we consider

w(t, x) :=
∫

R
2

ei|ξ|{xξ0+µ(ξ0)t}h(ξ) dξ .

Our aim is an estimate of the form

(2.8) ‖w(t)‖L∞ ≤ c

(1 + t)s
‖h‖L∞

,1
.

Here we assume h ∈ C
◦

∞(R2), and c may depend on supph. Furthermore,

0 = µ4 − (a+ b)µ2 +A(ϕ) with A(ϕ) = f cos 4ϕ+ g ,

and

ξ0 :=

(
cosϕ
sinϕ

)
, f :=

2ab− d

8
, g :=

6ab+ d

8
, d := a2 + b2 − (b+ c)2 .

Let r := 1/µ, let k be the curvature of

r(ϕ) ·
(

cosϕ
sinϕ

)

and n(ϕ) its normal. We can attach to each x a “point of stationary phase” ϕx.
Then n(ϕx) has the same direction as x and using stationary phase methods we
obtain

w(t, x) = O(1/(1 + t)1/2)
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if k(ϕx) 6= 0. Furthermore,

w(t, x) = O(1/(1 + t)1/3) if k(ϕx) = 0 and k′(ϕx) 6= 0 ,

w(t, x) = O(1/(1 + t)1/4) if k(ϕx) = 0 and k′(ϕx) = 0 .

The first case corresponds to normal behaviour in R
2, as found with the wave

equation or isotropic elastic medium. But the two other cases can also be found.
Choosing a = 5 and b = 2 we get

k = 0, k′ 6= 0 for c = 4.9 and ϕ = 0.471 ,

k = 0, k′ = 0 for c = 0 and ϕ = π/4 ,

k = 0, k′ = 0 for c =
√

15 − 2 = 1.873 and ϕ = 0 .

To illustrate this, the Fresnel surfaces for different coefficients are shown in Figures
1–6;

ϕ→ r(ϕ) ·
(

cosϕ
sinϕ

)

is plotted there.

Fig. 1. Left: a = 5, b = 2, c = 4.9. Right: a = 5, b = 2, c = 4

Fig. 2. Left: a = 5, b = 2, c = 1.87. Right: a = 5, b = 2, c = 1

Fig. 3. Left: a = 5, b = 2, c = 0. Right: a = 5, b = 2, c = −1.5
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Fig. 4. a = 5, b = 2, c = −2

Fig. 5. Left: a = 1, b = 1, c = 0.75. Right: a = 1, b = 1, c = 0

Fig. 6. Left: a = 1, b = 1, c = −0.75. Right: a = 1, b = 1, c = −1

Let us indicate the proof. On setting

ζ = µξ, x = |x|
(

cosψ
sinψ

)
, g(ζ) =

1

µ2
h

(
ζ

µ

)
, f(t, ϕ) =

|x| cos(ψ − ϕ)

µ(ϕ)
+ t ,

we obtain

w(t, x) =
∫

R
2

ei|ζ|f(t,ϕ)g(ζ) dζ .

For g ∈ C
◦

∞(R2) and with constants γ depending on supp g this can be estimated
as follows.

t s m a l l : For t < 1 we obtain |w(t, x)| ≤ γ‖g‖L∞ ≤ γ‖h‖L∞ .
t l a r g e : Assume t≥1. Depending on a, b and c positive constants p, q exist

with p ≤ r(ϕ) ≤ q. In case t ≥ 2q|x| we then get

f ≥ −|x|r + t ≥ −|x|q + t ≥ t/2
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and thus by partial integration

|w(t, x)| ≤ γ

t
‖h‖L∞

,1
.

The case t < 2q|x| is more interesting. Starting from

f ′(ϕ) := ∂ϕf(t, ϕ) =
|x|

µ2(ϕ)
{µ(ϕ) sin(ψ − ϕ) − µ′(ϕ) cos(ψ − ϕ)}

we define a point of stationary phase τ byf ′(τ) = 0 or tan(ψ − ϕ) = µ′/µ(ϕ). If
ϕ 6∈ [τ − δ, τ + δ] we obtain from |f ′(ϕ)| ≥ γ|x|

|w(t, x)| ≤ γ

|x| ‖h‖L∞ ≤ γ

t
‖h‖L∞ .

What remains is ϕ ∈ (τ−δ, τ+δ) and the behaviour of w(t, x) depends on whether

f ′′(τ) 6= 0 ,

or

f ′′(τ) = 0 and f ′′′(τ) 6= 0 ,

or

f ′′(τ) = f ′′′(τ) = 0 and f iv(τ) 6= 0 .

f ′′(τ) = 0 is equivalent to (µ + µ′′)(τ) = k(τ) = 0. Thus we are finally led to
three possible cases which, using the stationary phase method, yield the desired
estimates of w. Further details can be found in Stoth [1991].

Depending on the coefficients one thus obtains the decay coefficients

s1 = 1/2, s2 = 1/3, s3 = 1/4 .

For the wave equation in R
2 one knows s = 1/2.

Thus the Lp-Lq estimate (2.3) also gets worse for cubic elastic media. From
(2.8) and a resultat by Pecher [1976] we obtain with u := DU in R

2

(2.9) ‖u(t)‖Lq ≤ cq(1 + t)−s(1−2/q)‖u0‖Lp
,Np

for 1 < p ≤ 2, 1/p + 1/q = 1 with 2(2 − p)/p ≤ Np < 2(2 − p)/p+ 1.
We can thus prove the existence of global smooth solutions of the quasilinear

system of elasticity

∂2
tUi = Cimjn(∇U)∂m∂nUj

with initially cubic symmetry only under a stronger restriction on the nonlinearity.
If

|Cimjn(∇U) − Cimjn(0)| ≤ c|∇U |α−1

then such solutions exist as indicated in the following table:

s α p q
1/2 4 8/7 8
1/3 5 10/9 10
1/4 6 12/11 12
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Aluminium, copper and nickel are anisotropic cubic media. For aluminium we
find the decay coefficient 1/2, and for copper and nickel 1/3:

a b c s
Aluminium 9.5 2.8 4.9 1/2
Copper 25.2 12.2 15.4 1/3
Nickel 17 7.55 12.3 1/3
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