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1. Introduction. Let Ω be a bounded domain of Rn with boundary Γ , n≥1.
The goal of this note is to summarize results regarding existence and number of
solutions of the equation

(1)
{
∆ϕ− |∇ϕ|q + λϕp = 0 in Ω ,
ϕ > 0 in Ω , ϕ = 0 on Γ .

| | denotes the Euclidean norm in Rn, λ > 0, p, q > 1.
This equation was introduced in [CW1] in connection with the evolution prob-

lem

(2)

ut = ∆u− |∇u|q + |u|p−1u in Ω × R+ ,
u(x, 0) = ϕ(x) in Ω ,
u(x, t) = 0 on Γ × R+ .

More precisely, the following was proved in [CW1]:

Theorem 1. Let u be a solution to (2), and let ϕ be a smooth function satis-
fying

ϕ = 0 on Γ , ϕ ≥ 0 in Ω ,(i)
∆ϕ− |∇ϕ|q + ϕp = 0 on Γ ,(ii)
∆ϕ− |∇ϕ|q + ϕp ≥ 0 in Ω ,(iii)

E(ϕ) =
1
2

∫
Ω

|∇ϕ(x)|2 dx− 1
p+ 1

∫
Ω

|ϕ(x)|p+1 dx ≤ 0 ,(iv)

and either

q <
2p
p+ 1

and |ϕ|p+1 large enough, or(v)

q =
2p
p+ 1

and p large enough.(vi)

[75]
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Then u blows up in finite time. (| |r denotes the usual Lr(Ω)-norm.)

P r o o f. It is enough to use the fact that E(u(·, t)) ≤ E(ϕ) ≤ 0 to show that
F (t) = |u(·, t)|22 satisfies a differential inequality that implies blow up. We refer
to [CW1] for details.

Next, to complete the example of blow up we need to construct a solution
to (i)–(iv). To accomplish this one can remark that if ϕ satisfies (1) and λ ≤
2/(p+ 1) then (i)–(iv) hold.

Other proofs of blow up involve also (1) (see [F]).
It should be noted that, roughly speaking, one can assert that blow up occurs

if and only if q < p (see for instance [Q], [KP], [AW]).
We turn now to the study of (1).

2. The radial case. In this section we assume that Ω = B(0, R) where
B(0, R) denotes the ball of center 0 and radius R in Rn.

Theorem 2. Assume that Ω = B(0, R). Then any solution to (1) is radially
symmetric.

P r o o f. It is enough to adapt the arguments of [GNN].

In polar coordinates (1) becomes (for simplicity we keep the notation ϕ = ϕ(r)
for the solution):

(3)

{
ϕ′′ +

n− 1
r

ϕ′ − |ϕ′|q + λϕp = 0 on (−R,R) ,

ϕ > 0 on (−R,R) , ϕ(±R) = 0 .
This leads naturally to study for a > 0 the ordinary differential equation

(4)

{
ϕ′′ +

n− 1
r

ϕ′ − |ϕ′|q + λϕp = 0 on r > 0 ,

ϕ(0) = a , ϕ′(0) = 0 .
More precisely, if ϕ vanishes and if z(a) denotes the first zero of ϕ then the

solution to (4) will provide a solution to (3) on (0, z(a)). The complete solution
will be obtained by symmetrization. We will assume z(a) = +∞ when ϕ does not
vanish.

Let us assume that we are in the subcritical case, i.e. that

(5) p <
n+ 2
n− 2

if n ≥ 3 , no restriction if n < 3 .

Under this assumption we have:

Theorem 3. (i) If q < 2p/(p+1) then for any R, λ > 0 there exists a solution
to (3); moreover , this solution is unique when n = 1.

(ii) If q = 2p/(p + 1) then if a solution to (3) exists for some R a solution
exists for any R.

(a) If n = 1, λ ≤ (2p)p/(p+ 1)2p+1 then (3) has no solution.
(b) If n = 1, λ > (2p)p/(p+ 1)2p+1 then (3) has a unique solution.
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(c) If n ≥ 2, λ ≤ (2p)p/(p+ 1)2p+1 then (3) has no solution.
(d) If n ≥ 2, there exists λ∗ such that for λ > λ∗, (3) has a solution.

(iii) If q > 2p/(p+ 1) then there exists a number R(λ) such that
(a) for any R ≥ R(λ) the problem (3) has at least one solution,
(b) for any R < R(λ) the problem (3) has no solution,
(c) for any R > R(λ), q > p the problem (3) has at least two solutions.

P r o o f. Most of the proofs of the above assertions are based on a careful
analysis of the properties of ϕ, solution to (4). We are going to restrict ourselves
to the last assertion of the theorem which is maybe the more fascinating.

First we claim that

ϕ′(r) < 0 when ϕ(r) > 0 .

Letting r → 0 in the first equation of (4) we get nϕ′′(0) = −λap < 0. Hence
since ϕ is smooth and ϕ′(0)=0, ϕ′<0 around 0. Denote by r0 the first point in the
set {r > 0 : ϕ(r) > 0} where ϕ′(r0) = 0. Then ϕ′′(r0) = −λϕ(r0)p < 0. Hence, ϕ′

is decreasing around r0 and by definition of r0 one cannot have ϕ′(r0) = 0. This
completes the proof of our assertion.

Next we have

(6) H(r) =
ϕ′2

2
+

λ

p+ 1
ϕp+1 is decreasing when ϕ(r) > 0 .

It is enough to multiply the equation (4) by ϕ′ to get

H ′(r) = [ϕ′′ + λϕp]ϕ′ =
[
−n− 1

r
ϕ′ + |ϕ′|q

]
ϕ′ < 0

and the result follows.
We now show that

(7)

√
p+ 1

2λ
a−(p−1)/2 ≤ z(a) .

We can assume without loss of generality that z(a) < +∞. Then on (0, z(a))
one has by (6)

1
2
ϕ′2 ≤ H(r) ≤ H(0) =

λ

p+ 1
ap+1 ,

hence

|ϕ′| ≤

√
2λ
p+ 1

a(p+1)/2 .

Integrating between 0 and z(a) we get

a =
∣∣∣ z(a)∫

0

ϕ′(s) ds
∣∣∣ ≤ z(a)

√
2λ
p+ 1

a(p+1)/2

and (7) follows.
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In the same spirit one has

(8)
(
p+ 1
λ

)1/q

a1−p/q ≤ z(a) .

This is a slightly sharper estimate than the one contained in [CWi] and the
proof we give here is different.

Integrating between 0 and z(a) and using Hölder’s inequality we get

(9) a =
∣∣∣ z(a)∫

0

ϕ′(s) ds
∣∣∣ ≤ ( z(a)∫

0

|ϕ′(s)|q+1 ds
)1/(q+1)

z(a)1−1/(q+1) .

Next from the first equation of (4) we deduce after multiplication by ϕ′ < 0

ϕ′′ϕ′ + |ϕ′|q+1 + λϕpϕ′ = −n− 1
r

ϕ′2 < 0 on (0, z(a)) .

Integrating between 0 and z(a) we get

ϕ′(z(a))2

2
+

z(a)∫
0

|ϕ′(s)|q+1 ds− λ

p+ 1
ap+1 < 0

from which it follows that
z(a)∫
0

|ϕ′(s)|q+1 ds <
λ

p+ 1
ap+1 .

Combining this inequality and (9) yields (8).
From (7) and (8) it results that

z(a) ≥ Max
(√

p+ 1
2λ

a−(p−1)/2,

(
p+ 1
λ

)1/q

a1−p/q
)
.

If we are in the case p < q then

(10) lim
a→0

z(a) = +∞ , lim
a→+∞

z(a) = +∞ .

So, we see that the function z(a), which is continuous, is bounded from below by
a positive constant. Set

Rλ = inf
a>0

z(a) .

Clearly for R < Rλ there is no a such that z(a) = R and (4) has no solution.
If R > Rλ, by (10), there are at least two a such that z(a) = R and (4) has
at least two solutions. This completes the proof of the assertions (iii)(b) and
(c) of the theorem in the case q > p. The proof of (iii)(b) in the case where
2p/(p+ 1) < q < p is much more involved and we refer the reader to [CV] or [V]
for details.

The interested reader will find a proof of the other assertions in [CW1] or
[CW2] except for (ii)(d) which is in [V] and has been obtained independently by
J. Hulshof and F. B. Weissler (cf. [W]).
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R e m a r k. A consequence of (ii)(c) is that for λ small enough the problem{
∆ϕ− |∇ϕ|2p/(p+1) + λϕp = 0 in Rn ,
ϕ > 0 in Rn , lim|x|→+∞ ϕ(x) = 0 ,

admits a continuum of radially symmetric solutions and also of course since the
problem is invariant by translations, continua of nonsymmetric solutions (see [P]
for this kind of problems).

3. The general case. We would like to conclude this note showing that
some of the results obtained for a ball extend to the general case. We will restrict
ourselves to the following very simple result contained in [V], referring the reader
to [CV] and [V] for more.

Theorem 4. Assume that p = q. Then if

(11) λ ≤ p diam(Ω)−p

where diam(Ω) denotes the diameter of Ω then (1) has no solution.

P r o o f. If ϕ is a solution to (1), by the strong maximum principle one has
∂ϕ/∂n < 0 on Γ where n denotes the unit outward normal to Γ . Hence, integrat-
ing the first equation of (1) over Ω we get∫

Ω

|∇ϕ(x)|p − λϕ(x)p dx =
∫
Ω

∆ϕ(x) dx =
∫
Γ

∂ϕ(x)
∂n

dσ(x) < 0 ,

which reads also ∫
Ω

|∇ϕ(x)|p dx < λ
∫
Ω

ϕ(x)p dx .

Using the Poincaré Inequality∫
Ω

ϕ(x)p dx ≤ 1
p

(diam(Ω))p
∫
Ω

|∇ϕ(x)|p dx

we obtain∫
Ω

|∇ϕ(x)|p dx < λ
∫
Ω

ϕ(x)p dx ≤ λ

p
(diam(Ω))p

∫
Ω

|∇ϕ(x)|p dx .

This leads to a contradiction if (11) holds.
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