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1. Position of the problem

1.a. Introduction. It is well known that singularities of the domain give rise
to a loss of regularity for the solutions of any elliptic boundary value problem.
The situation is rather well understood when the singularities are isolated points
of the boundary and are of conical type (see [5], [9]).

When a conical singularity is tensorized with an affine space, one gets an
edge. Regularity results are rather complete in that case [8], [13]. If the operator
is translation invariant along the edge, the asymptotics can be derived in a direct
way from the asymptotics on the corresponding conical domain [3].

But for physical examples in the ordinary three-dimensional space, when a
bounded domain has edges and no corners, then the edges are necessarily curved.
The simplest example is a cylinder with circular basis, cut orthogonally to its
generating lines. But this example is very particular: The opening of the edge is
everywhere π/2 and the curvature of the edge is constant. If one cuts the cylinder
by a plane which is skew with respect to the generating lines, then the edge is
elliptic and the opening angle is varying. This gives rise to difficulties for the pre-
cise analysis of the structure of the solution, due to the fact that the asymptotics
in the corresponding two-dimensional domains depend in a discontinuous way on
the opening parameter. In particular, the coefficients of the singular functions
along the edge (stress intensity factors etc.) will blow up at certain points. Such
a behavior causes difficulties also for numerical approximations.

[81]
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In this note, we consider as model problem the mixed Dirichlet–Neumann
problem for the Laplace operator on a skew cylinder. This problem was posed as
a question to the first author by I. Babuška (Maryland). We already stated results
for this problem in [1]. Here we present improved results. With the introduction
of a complex variable ζ in the normal plane to the edge, we give expressions of
the edge asymptotics in a simplified form. Such a form is based upon the divided
differences of the function λ 7→ ζλ calculated at the exponents of singularities.

This formulation was inspired by a recent paper by Maz’ya and Rossmann [11]
where a different but related problem was treated, namely the problem of writing
the corner singularities of a two-dimensional Dirichlet problem for the Laplacian
in a form that is stable with respect to variations of the corner angle. It is in fact
not hard to see that our formulation is equivalent to that given by Maz’ya and
Rossmann, if we consider the edge angle ω(y) as independent unknown instead
of the edge variable y. The possibility of using powers of a complex variable to
describe singularities in piecewise analytic plane domains was shown in the earlier
work [7].

The restriction to the case of the Laplace operator is actually not as serious
a limitation as it may look: The results we state here can be extended to any
strongly elliptic boundary value problem for a second order operator with real
analytic coefficients.

1.b. Boundary value problem. Let B be an analytic bounded domain in R2.
Let Ψ be an affine function (x2, x3) 7→ x1 = Ψ(x2, x3). We assume that

Ψ(x2, x3) > 0 for all (x2, x3) ∈ B .

We introduce

Ω = {(x1, x2, x3) ∈ R3 | (x2, x3) ∈ B, 0 < x1 < Ψ(x2, x3)} .

This is our skew cylinder. We denote by M the top edge and by ∂1Ω the side of
the cylinder:

∂1Ω = {(x1, x2, x3) ∈ R3 | (x2, x3) ∈ ∂B, 0 < x1 < Ψ(x2, x3)} .

The union of the top and the bottom of the cylinder is denoted by ∂2Ω.
The boundary value problem that we choose to consider here is the following:

(PΩ)
{
∆u = f on Ω ,
u = 0 on ∂1Ω, ∂u/∂n = h on ∂2Ω .

This example is interesting because the singularities appear at a low regularity
level: in a generic way, u 6∈ H2(Ω).

1.c. Singularities on plane sectors. Let ω ∈ (0, 2π) and let G(ω) denote the
two-dimensional angle with opening ω. We use polar coordinates (r, θ) so that
G(ω) corresponds to r > 0, 0 < θ < ω.
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The boundary value problem corresponding to (PΩ) is:

(PG)
{
∆w = f̃ on G ,
w = 0 on θ = 0 , ∂w/∂n = h̃ on θ = ω .

For any integer k ≥ 1, we set

νk = (2k − 1)
π

2ω
.

It is well known [4] that the singularities of any solution of (PG) are linear
combinations of the functions σk (when νk 6∈ N) and τk (when νk ∈ N) below:

σk(r, θ) = rνk sin νkθ ,
τk(r, θ) = rνk(log r sin νkθ + θ cos νkθ) .

Let us write the plane coordinates in complex form: ζ = reiθ. Then we have

σk(r, θ) = Im ζνk , τk(r, θ) = Im ζνk log ζ .

Proposition 1.1. Let s∈R, s>1/2. Let w be a solution of (PG) such that f̃
has Hs−1 regularity and that h̃ has Hs−1/2 regularity. Assume that w has compact
support. Then w admits the decomposition

w = wreg + wsing with wreg ∈ Hs+1−ε(G) ∀ε > 0

and
wsing =

∑
νk<s, νk 6∈N

ckσk +
∑

νk<s, νk∈N
ckτk .

1.d. Aims. Let us return now to our skew cylinder. We assume that for a fixed
real s > 1/2

f ∈ Hs−1(Ω) , h ∈ Hs−1/2(∂1Ω) .
Then there exists a variational solution u ∈ H1(Ω).

For any y ∈ M , let ω(y) be the opening angle of Ω at y. We set ν1(y) =
π/(2ω(y)). If s < miny∈M ν1(y), then u ∈ Hs+1(Ω). From now on we assume
that

min
y∈M

ν1(y) < s .

Then u can be split into two parts for any ε > 0,

u = ureg + using

where ureg ∈ Hs+1−ε(Ω) and using is an asymptotics. Our aim is to describe
the structure of such splittings. In particular, we want to separate as much as
possible the roles of the different variables, the abscissa y along the edge, the
distance r from the edge and the angular variable θ. More precisely, we intend
to separate what comes from the geometrical framework (domain and boundary
value problem) and what comes from the data (f, h).

1. The part that comes from the geometrical framework will be described
as special combinations of real and imaginary parts of powers of ζ and ζ. The
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introduction of such combinations allows us to get rid of the discontinuity in the
expression of the singularities when the function y 7→ νk(y) := (2k− 1)π/(2ω(y))
crosses an integer.

2. The part that comes from the data will be described by some coefficients
c(y) along the edge. The regularity of c depends on s and on the exponents of
the associated singularity.

2. Simple asymptotics

2.a. Simple singularities in two-dimensional domains. Recall that for each
y in the edge M , ω(y) denotes the opening of Ω at y. We can choose local
cylindrical coordinates (y, r, θ) such that r = 0 corresponds to the edge and such
that 0 < θ < ω(y) describes locally the domain Ω.

What can be expected as singularities along the edge for the solution of prob-
lem (PΩ) is

(2.1)
∑
α

cα(y)Sα(y, r, θ)

where the functions Sα do not depend on the data (f, h).
First, we want to link the form of the Sα(y, ·, ·) with the form of singularities of

some two-dimensional boundary value problems on G(ω(y)). Due to the presence
of curvature terms, it is natural to consider instead of ∆ as interior operator on
G a more general second order operator

(2.2) A(z; ∂z) =
∑
|β|≤2

aβ(z)∂βz with aβ ∈ C∞(G) and aβ(0) = δβ .

This means that the principal part of A at the vertex 0 is ∆.
Secondly, we want the functions Sα to depend smoothly on y. In a first stage

we search them as powers of ζ and ζ. That is why we will assume that νk 6∈ N to
avoid the discontinuity between σk and τk.

Proposition 2.1. Let A be an elliptic operator satisfying (2.2). Let ω ∈
(0, 2π). We assume that

(2.3) ∀k ≥ 1 such that kπ/ω < 2s, kπ/ω 6∈ N .

Let w be a solution of problem (PG(ω)) with ∆ replaced by A and satisfying the
same hypotheses as in Proposition 1.1. Then w can be split in the same way with

wsing =
∑

k,l : νk+l<s

2l∑
n=0

ckln Re(e−2inθζνk+l) + c′kln Im(e−2inθζνk+l) .

2.b. Simple asymptotics along the edge. The exponents of the singularities
which appear in the asymptotics along the edge depend on the edge parameter
y. They are the same as in two-dimensional problems as considered above in
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Proposition 2.1 in an angle with opening ω(y). We can enumerate them using a
double index κ = (k, l), where k ∈ N∗ and l ∈ N:

νκ(y) = (2k − 1)
π

2ω(y)
+ l .

We could think that if we assume condition (2.3) for any y, then the functions
Sα will be the real and imaginary parts of

e−2inθζνκ(y) .

Indeed, the tangential derivatives ∂y produce logarithmic terms and the Sα are
the real and imaginary parts of

e−2inθζνκ(y) logq ζ .

We have also to note that an asymptotics in tensor product form such as
(2.1) is not convenient in general, since the cα are not regular enough. Therefore
we define the usual (see [6], [3], [10]) regular extension of the coefficients: we
introduce a function Φ(y, r) such that its partial Fourier transform satisfies

Fy→ξΦ(ξ, r) = ϕ(r|ξ|)

where ϕ is a rapidly decreasing function, has a Fourier transform with compact
support, and satisfies for a sufficiently large N

(2.4) ϕ(0) = 1,
dn

dtn
ϕ(0) = 0 (n = 1, . . . , N) .

We define the convolution with respect to y,

(2.5) (c ∗ Φ)(y, r) :=
∫
Φ(y − y′, r) c(y′) dy′ .

The following theorem describes our result on the “simple” edge asymptotics
in complex variable form, i.e. when any crossing between exponents νκ themselves
and with integer numbers is excluded.

Theorem 2.2. Let I, I ′ be intervals such that the cylindrical local coordinates
(y, r, θ) are defined in a neighborhood U of I ′ in Ω and I b I ′. We suppose there
is no crossing point in I ′:

(2.6) ∀y ∈ I ′, ∀k ≥ 1 such that kπ/ω(y) < 2s , kπ/ω(y) 6∈ N ,

and that the νκ do not cross the value s above I ′. Then any solution u of problem
(PΩ) with f ∈ Hs−1(Ω), h ∈ Hs−1/2(∂1Ω) can be decomposed into

(2.7) u = ureg + using with ureg ∈ Hs+1−ε(U) ∀ε > 0

and

using =
∑
κ,q,n

(cκ,q,n ∗ Φ)(y, r) Re(e−2inθζνκ(y) logq ζ)(2.8)

+ (c′κ,q,n ∗ Φ)(y, r) Im(e−2inθζνκ(y) logq ζ) .
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The coefficients cκ,q,n(y) and c′κ,q,n(y) are defined on I and belong to
Hs−νκ(y)−ε(I) for all ε > 0. The sum extends over those κ for which Re νκ < s
holds on I and over 0 ≤ n ≤ 2l if κ = (k, l).

Simple asymptotics in “real variable form” involve instead of the real and
imaginary parts of e−2inθζνκ(y) logq ζ functions of the type ϕκ,q,n(y, θ)rνκ(y) logq r
where the functions ϕκ,q,n(y, θ) are analytic in all their arguments but only im-
plicitly known. Such asymptotics are given in [6], [12], [10] and [1].

2.c. The crossing of exponents. Now we have to include all positive integers
in the set of exponents due to the possible interaction between polynomials and
singularities. That is the reason for introducing

νκ = l for κ = (0, l) .

The above assumption (2.6) implies that there is no crossing of exponents,
i.e., there are no points y such that νκ(y) = νκ′(y) for some κ, κ′ with κ 6= κ′. In
[6], [12], [10] such a condition is also required.

For our problem of the skew cylinder, it is impossible to avoid such crossings.
For y0 such that ω(y0) = π/2 (there always exist two such points), we have

ν1,0(y0) = ν0,1(y0) = 1 .

The points where crossing of exponents will eventually appear (for large s) are
dense in M , so this phenomenon occurs in a generic way.

In Section 3, we will present the main results of this note for the case when
crossing points are present. Our motivations for their presentation are the follow-
ing.

1. To give an asymptotics in the neighborhood of crossing points which is as
explicit and as simple as possible.

2. To eliminate as many technical hypotheses as possible.

3. Asymptotics at crossing points

3.a. Ordering the exponents. Let y0 be a crossing point, i.e., a point where
there exist distinct κ and κ′ such that

(3.1) νκ(y0) = νκ′(y0) < s .

Since we assume that our cylinder is actually skew, crossing points are isolated,
so there exist open intervals I and I ′ with y0 ∈ I, I ⊂ I ′, and there is no other
crossing point in I ′.

Let Ky0 be the set of indices,

Ky0 := {κ = (k, l) ∈ N2 | νκ(y0) < s} .
We denote by µ0

1, . . . , µ
0
j0

the distinct elements of the set

{νκ(y0) | κ ∈ Ky0} .
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Since y0 is a crossing point, the cardinality of Ky0 is strictly larger than j0. For
each j, let Ky0,j be the subset of Ky0 ,

Ky0,j := {κ ∈ Ky0 | νκ(y0) = µ0
j} .

The µ0
j are either crossing exponents (if #Ky0,j > 1) or simple exponents (if

#Ky0,j = 1).
For each κ, the multiplicity of νκ is the maximal power of log ζ which appears

in the asymptotics (2.8) along with the term ζνκ(y) for y ∈ I \ {y0}. Then we
denote by (κqj)1≤q≤qj an enumeration of Ky0,j , repeating each term according to
its multiplicity.

Finally, we set for y ∈ I ′:

(3.2) νj(y) := max
κ∈Ky0,j

νκ(y) .

3.b. Divided differences. What essentially changes from the simple asymp-
totics (2.8) is the behavior of the functions of ζ. Instead of having separately the
terms ζνκ(y) logq ζ, we have now special combinations of these terms which cannot
be separated, namely the divided differences of the function λ 7→ ζλ at some of
the points νκ1(y), . . . , νκq (y) for each y ∈ I. Recall that, when µ1, . . . , µK are
all distinct, the divided difference of the function w at the K-tuple µ1, . . . , µK is
defined by the classical recursion formula:

w[µ1] = w(µ1)

and for l = 2, . . . ,K

w[µ1, . . . , µl] =
1

µ1 − µl
(w[µ1, . . . , µl−1]− w[µ2, . . . , µl]) .

Moreover, for analytic functions w one has for any µ1, . . . , µK not necessarily
distinct

(3.3) w[µ1, . . . , µK ] =
1

2iπ

∫
γ

w(λ)∏K
l=1(λ− µl)

dλ

where γ is a simple curve surrounding all µl. Thus, for any ζ we consider

(3.4) S[µ1, . . . , µK ; ζ] =
1

2iπ

∫
γ

ζλ∏K
l=1(λ− µl)

dλ .

We see that S[µ1(y), . . . , µK(y); ζ] with analytic µ1(y), . . . , µK(y) is a linear com-
bination of terms of the form ζµl(y) logq ζ with coefficients that are meromorphic
in y. If all µl(y) are equal to the same µ(y) then

(3.5) S[µ, . . . , µ︸ ︷︷ ︸
q+1 times

; r] =
1
q!
rµ logq r .
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When all the µl(y) are distinct, we obtain

(3.6) S[µ1, . . . , µK ; ζ] =
K∑
l=1

ζµl∏q
k=1, k 6=l(µl − µk)

.

Theorem 3.1. Let I, I ′ be intervals satisfying the same assumption as in
Theorem 2.2 except that hypothesis (2.6) is replaced by

(3.7) y0 ∈ I is the only crossing point in I ′ .

Then any solution u of problem (PΩ) with f ∈ Hs−1(Ω), h ∈ Hs−1/2(∂1Ω) can
be decomposed into

(3.8) u = ureg + using with ureg ∈ Hs+1−ε(U) ∀ε > 0

and

using =
∑
j,q,n

(dj,q,n ∗ Φ)(y, r) Re(e−2inθS[νκ1
j
(y), . . . , νκq

j
(y); ζ])(3.9)

+ (d′j,q,n ∗ Φ)(y, r) Im(e−2inθS[νκ1
j
(y), . . . , νκq

j
(y); ζ]) .

The coefficients dj,q,n(y) and d′j,q,n(y) are defined on I and belong to Hs−νj−ε(I)
for all ε > 0. The index n runs through {0, 1, . . . , 2lj} where

lj := max{l ∈ N | ∃k ∈ N : νkl(y0) = µ0
j} .

R e m a r k 3.2. If there is no crossing in I ′, then this statement yields the same
result as Theorem 2.2. Indeed, the sets Ky0,j are all reduced to one element and
the functions in ζ are all of the form S[ν, . . . , ν; ζ], i.e. ζν logq ζ according to (3.5).

R e m a r k 3.3. If y and the multiplicities in (3.9) are such that all νκ1 , . . . , νκq
are different, then one can write the singular function in (3.9) as

e−2inθS[νκ1(y), . . . , νκq (y); ζ] = ζnζ−n
q∑
l=1

al(y) ζνκl (y)

with the coefficients

al(y) =
q∏
r=1
r 6=l

1
νκl(y)− νκr (y)

.

3.c. The first singularity. Let us illustrate our statements by considerations
about the first singularity of our problem (PΩ). We take s > 1 and consider those
points y0 and y′0 such that ω(y0), ω(y′0) = π/2. Since there is one zero Dirichlet
condition, ν(0,0) does not appear. With that choice of s, the first exponents in the
neighborhood of y0 are ν(1,0) and ν(0,1) and they cross each other in y0, and the
same holds for y′0. For simplicity suppose that s < 2 so that only ν(1,0) and ν(0,1)
are relevant, and set

ν1(y) := ν(1,0)(y) =
π

2ω(y)
ν2(y) := ν(0,1)(y) = 1 .
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For y 6= y0 and y in a neighborhood of y0, the simple asymptotics (2.8) holds.
Indeed, the terms involved in using are only the imaginary parts of ζνj and the
only contribution of n is n = 0: The “simple asymptotics” of u is

(3.10) c1 ∗ Φ Im ζν1 + c2 ∗ Φ Im ζν2 .

The function Im ζν1 corresponds to the first corner singularity and Im ζν2 is a
polynomial. Here it is possible to compute c2(y) since it depends only on the
pointwise value of the Neumann boundary datum h on the edge:

c2(y) = h(y, 0)/ cosω(y) .

Then c2 ∈ Hs−1
loc (M \ {y0, y′0}) and c2 generally blows up at y0 and y′0.

In order to get the representation of using according to Theorem 3.1 at the
crossing points, we only need again the imaginary parts of two basis functions,
for instance:

S[ν1(y); ζ] = ζν1(y) , S[ν1(y), ν2(y); ζ] =
ζ − ζν1(y)

1− ν1(y)
.

Then the asymptotics of u can be written

(3.11) d1 ∗ Φ ImS[ν1; ζ] + d2 ∗ Φ ImS[ν1, ν2; ζ] .

We also could have chosen S[ν1(y), ν2(y); ζ] and S[ν2(y); ζ] as basis functions.
As ω → π/2, ImS[ν1(y), ν2(y); ζ] tends to the logarithmic singularity

Im ζ log ζ.
Now we can compare the two above representations (3.10) and (3.11) of a

singular part. The following relations between the coefficients hold:

d1 = c1 + c2 , c1 = d1 − d2/(1− ν1)
d2 = c2(1− ν1) , c2 = d2/(1− ν1) .

3.d. Aims for the future. It would be interesting to know whether asymptotics
for general elliptic equations and systems can be described by similar formulas,
i.e. by divided differences of some analytic generating functions.

For general second order elliptic equations we have obtained asymptotics with
“geometric terms” Sα in the form

ψ(y, θ)S[νκ1(y), . . . , νκq (y); r]

with analytic ψ(y, θ). Such formulas rely upon the fact that there exist analytic
choices for the exponents. But such an analytic choice is generically impossible for
fourth order operators such as the bilaplacian. The basic problem is the expression
of the roots of a polynomial whose coefficients depend analytically on a parameter.
The roots are algebraic but, in general, non-analytic functions of the parameter.
Such situations of bifurcations are studied in [14]. In the general case there appear
combinations of both crossings and bifurcations. We think that even then it will
be possible to reach the aims we described at the end of the first section, i.e., to
separate all that can be separated.
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N o t e. The detailed proofs of the results presented in this paper can be found
in the preprint [2].
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