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0. Introduction. Hyperlogarithmic functions (or higher logarithmic func-
tions) are multivalued analytic functions defined on complex projective varieties,
with unipotent monodromy and with regular singularity. It is known that they
can be expressed by the use of iterated integrals of suitable logarithmic 1-forms
in the sense of K. T. Chen (see [A1l], [H1]). Recently these functions have played
aconsiderable role in various problems of geometry and arithmetic (for example,
see [H2], [B1], [G2], [V], etc.). These are a special case of hypergeometric functions
on a Grassmannian manifold (see [A2], [G1], [V]).

However, there are other kinds of hyperlogarithmic functions which are re-
lated to the configuration of hyperplanes and a hyperquadric (see [A3]). The
volume of a simplex in a hyperbolic space is a hyperlogarithmic function of basic
algebraic invariants, as a simple consequence of the Schlafli formula. However,
there remains the problem of divergence in the case where the vertices lie on the
boundary.

In this note we want to derive a modified Schlifli formula in such a degenerate
case and give a hyperlogarithmic expansion for the volume, by using a technique
developed in [A3]. A similar result has been obtained by Kellerhals [K4]. Her
method is to decompose a simplex into several orthoschemes and to obtain an
explicit formula for each orthoscheme by using the Lobachevskii function JI(z).

In the appendix we discuss a relation between the volume and Appell’s hy-
pergeometric functions of type Fj.

1. The Schléfli formula. A geodesic simplex A in the n-dimensional hyper-
bolic space H = {t3 —t2 — ... —t2 = 1, ty > 0} is defined by the inequalities
f;(t) >0 for n +1 linear functions f;(¢) = ujo+ >y ujuty, 1 <j<n+1. Its
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10 K. AOMOTO
volume V,,(A) is given by the integral

(1.1) Vo(A) = [ Pdton.. Adtny,

f120,...,fny120

for @ = exp[—3(t3—t3—...—t2)]. This is also equal to 2n=1/2((n+1)/2)V, (A)
for a geodesic simplex A in the disc D = {22 + ... + 22 < 1} defined by the

n
inequalities fj(x) > 0 for the inhomogeneous linear functions f;(z) = u;o +

-~

> uju®y. The volume V;,(A) is defined by the integral

(1.2) Va(A)= [(1—af—.. —22) "2 dey AL Nday,
Y
First we assume that A lies in D. Then U?,O_ZZ:1 uiy < 0. We may normalize
it so that U?,o_zzﬂ u?yy = —1. Because of conformal invariance, V,,(A) or equiv-

-~

alently V;,(A) depends only on the inner products a; j = w;j oUk,0 — Y ey Uj, Uk v
for1 <j,k <n+1. a;j, j # k, can also be expressed as cos(j, k), where (j, k) de-
notes the dihedral angle subtended by A between the hyperplanes F; = {f/;(.%) =
0} and Fy, = {fi(z) = 0}. We denote by A the symmetric (n+41) x (n+1) matrix
((ajk))1<jk<n+1 - Note that a; ; = —1. We denote by A(].’ll""ZP) the subdetermi-

yeesdp
nant of A with lines iy, ..., and columns jy, ..., j, for {iy,...,ip}, {j1,. .., Jp} C

{1,2,...,n+1}. We abbreviate A(;f,','.'.’ff;) to A(i1,...,10p).
One can show that A defines a simplex lying in D if and only if
(1.3) (—=1)P A(i1,...,ip) >0 for 1 <p<n, and
(1.4) (=)™t A(1,2,...,n+1) <0.
We denote by vy,...,v,4+1 the vertices of A such that v; € AN FFn...Nn
F;_1NFjz1N...N Fupq. Then v; is on the boundary 0D of D if and only

if A(1,2,...,5—1,7+1,....,n+1) = 0. The Schlafli formula says that, as a
function of the variables a; i, V,(A) satisfies the variational formula

~ 1 —~ )
(15) an(A) = _5 Z Vn—Q(Aj,k) d<]7 k>7
1<j,k<n+1
7k

where AANC denotes the (n — 2)-dimensional subsimplex AAj,k = An F;NF .
d(j, k) is equal to the logarithmic 1-form

0(,@ > ~ Lilog (“MH A(]’k))
J k 2 ajr —i\/A®j, k)

Further, for I = {i1,...,4,} and J = {i1,...,%p, lp+1,%p+2} We define the loga-
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rithmic 1-form

N1, (Al /AT
(1.6) 9< ) = 5-dlog <A(L?p+1) —i A(I)A(J))

I,’Lp+2

for p<n—2, and

I 1 () + (DA(J)
(1.7) 0(J> = jdlog <A( o _AU)A(J))

I:’Ln+1

for p=n —1, n odd.
As a simple consequence of (1.5), V,,(A) can be expressed as a hyperlogarithm
(sometimes called higher logarithm) (see [A5]):

(18) wd= Y e ( ) (I"I—l) ,
pcIC...CI, * v
for a sequence of increasing subsets Ir,..., I, of {1,2,...,n+ 1}, I, = {i1,...
., dor}. v is equal to (n 4+ 1)/2 or n/2 according as n is odd or even. The
integration on the right hand side means K. T. Chen’s iterated integrals along a
path from the base point * to A. As special cases we have

A ar2+ /a3, —1
—~ 1 1,2 1,2
(1.9) Vi(4) = f “ldz = -log

2 T aa— a3, -1
for o = —U170/U171 s ﬁ = —UQ’O/U271 and a2 = UioU2,0 —UL,1U2,1 , while
(1.10) Va(A) =7 — (1,2) — (2,3) — (3,1) .

The following is an immediate consequence of (1.7).

LEMMA 1. The hyperbolic distance between v, and v,11 is given by

111)  Lrog Aliitiat) £ VAQ o DAG, ot )
: 9 Og n— n *
2 A(171'j:";;71717;+1) VAL, .. ,n—=1DA(L,...,n+1)
We see at the same time that
(1.12) A<.Z1""’.Z”_1’,z" ) >0.
2155 tn—15tn+1

This inequality will be used later for n = 3.

2. Regularization of divergent integrals. When one of the vertices lies
on 0D, V,,(A) is well defined and continuous in a; ;, while Vi (A) diverges. The
formula (1.5) holds for n > 4 but not for n = 3. We want to derive a modified
version of the Schléfli formula for V3(A). To do this, we use the technique of
regularization of divergent integrals which has been frequently used since the
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times of J. Hadamard. We consider the integral

(2.1) Va(Alp) = [ (1= |2[) =00 2dzy AL A day

Y

-~

for p>0. When p=0, it reduces to V,,(A). (2.1) is no more conformally invariant.
It cannot be expressed as a function of the variables a;j, for 1 < j,k <n+1. We

denote by A the enlarged symmetric (n + 2) X (n + 2) matrix ((aj,e))o<jk<n+1
with ag o = 1, and ap; = a0 = u;o . Obviously a; o is not conformally invariant.

The following variational formula has been proved in [A3] (see the formula
(3.7) loc. cit. for Ay,..., A1 — 0):

LEMMA 2.1. For an arbitrary n > 1,
(22)  (n—1+p) dVn(Alp)

1 . AG k) 7 A
=3 Z d(j,k>{M} Vo (A k1)

1<j,k<n+1
j#k

n+1 -1 —p/2 1 -
dap pd ——— Vo (Adp—1),
D> ao,k{A(O’k)} Ve Bl =)

where AAM =An F;N Fy and A, = AN F. Vl(AAj,k\,u) has a definite meaning
and gives a function meromorphic in p at least with a pole at p = 0.

The following lemma can be seen by a computation.

LEMMA 2.2. A(0,i) < 0, A(0,i,7) > 0, A(0,i,j,k) < O for any i,j,k €
{1,2,3,4} and A(0,1,2,3,4) = 0.

When §=11in (1.9), Vl(AAW) has a Laurent expansion at p = 0:
1+«
b0,

l-—a
with o = —ag2/+/—A(0, 2), where the constant term (denoted by C.T. Vl(AA\,u))

-~

~ 1 1
(2.3) Vi(Alp) = ~ + {logQ ~3 log

represents the regular part of the divergent integral V;(A):

~ ~ 1 1
(2.4) reg V1(A) = C.T. V1 (A|u) = log2 — 5 log . i_z .

When o = g = —1, we have
~ 2
(2.5) Vi(Alp) = ~ +2log 2+ O(u),

-~

whence reg V1 (A) = 2log 2.

3. Modified Schlifli formula for n=3. Because of symmetry, we only have
to consider the following 4 cases: (i) vq4 € 9D, (ii) v3,v4 € 0D, (iii) va, v3,v4 € 0D
and (iv) v, v9,v3,v4 € OD.
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(1) Assume that vy lies on D and vy1,v9,v3€ D. This is equivalent to saying
that A(1,2,3) = 0, i.e. (1,2) + (2,3) + (3,1) = 7. Then V;(A; ), Vi(As3) and
Vl(A\g,l) diverge, while V1(21,4) V1(3274),V1(A\374) are well defined. For j, k =
1,2,3, as p tends to 0, the coefficient of (j, k) on the right hand side of (2.2) has
a Laurent expansion

AGR) TP A
l+a 1 A, k)

1 1
=~ +{log2— -1 ~log L)
:u+{og 20g1_a+2OgA(Oajak)}—f_O(,u)’

i.e.

(3.3) C.T. [{M}_m%(&,k!u)}
1+a 1 A, k)

1
=log2— -1
og 5108 7

2 % 4(0,5,k)

Here o denotes — ( J )/\/ A(j,k)A(0,j,k,4). We set

A(G, k)1 + a)
A(())j» k)(l - Oé) .

Then by taking the constant term of (2.2) in u, we have

Wik =

(3.4)  2dVs(A) = d(1,2) log Wy 5 + d(2, 3) log Wa,3 + d(3,1) log Wi 1
+ d<1, 4> log W1’4 + d<2, 4) log W274 + d<3, 4> log W3’4 R

for i,j =1,2,3, since (1,2) + (2,3) + (3,1) = 7, i.e.

A(0,5) VAGDAD, ) 4) — A(E)

3.5 Wi =
( ) )] A(l,]) \/—A Z,] A 07’5.)]? ) + A(é::;)
and
©,4,7 A 4 .7 k? 4
(3.6) Wia= (14k) v i )

for the complement {j,k} = {1,2,3,4} — {z’,4}. Since d(1,2) = —d(1, 3) — d(2, 3),
(3.4) can be expressed as
(3.7)  2dV(A) = d(1,3)log W3/ Wi 2 + d(2,3) log Wa 3/ Wi

+d(1,4) log W1 4 + d(2,4) log Wo 4 + d(3,4) log W3 4.

We want to express the quantities Wy 3/W; o and Wy 3/W o in terms of the
variables a;, 1 < j,k < 4. By a conformal change of variables we may assume
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that vy = (0,0,1) € 9D N F; N F> N F3 and that

(3.8) fi=z1, fa=u2171 + U012,

fi = ujnz1 + ujoms + ujsrs +ujo, for j =3,4,
where 1 = uj3; +u3 , = u%,l +ufy =i, +uiotuis—ui,anduss+usg=0.
We can further assume that us o > 0, uz2 <0, uz 3 < 0 and ug3 > 0. We then
have ap1 = ap2 = 0 and

LEMMA 3.1.
2
o a0,3A(1’274)
Wiz = A(1,2,3,4)
Proof. Since
(3.9) 0= A(0,1,2,3,4)
1,2,3

= A(1,2,3,4) — af 3A(1,2,4) + 2a0,3a074A(1 5 4

) - a(2),4A(17 2, 3) )

we have
A(L 2’ 4)(1(2)73 B A(l’ 27 37 4)

2a0,3A(137%)

(3.10) ag,4 =

from the equality A(1,2,3) = 0. Since A(1,2)A(1,2,3,4) —A(;}vzjf =0, we have

12,
(3.11)  A(0,1,2,4) = A(1,2,4) — A(1,2)ag 4
A(L 2){@%7314(1’ 27 4) + A(la 27 37 4)}2

= 5 1252 , le.
4a0,3A(1,2,4)
A(1, 2){a%73A(1, 2,4)+ A(1,2,3,4)}

(3.12) /—A(1,2)A(0,1,2,4) = — 2005 A(127)

1,2,4

Note that ag3 > 0, A(1,2) > 0, A(1,2,4) <0, A(;2%) > 0 and A(1,2,3,4) < 0.
Again from (3.10),

4,1,2\  —ag3A(1,2,4)A(1,2)
(3.13) V—A(1,2)A(0,1,2,4) A( ) =
0,1,2 A1)

In the same way

4,1,2 A(1,2,3,4)A(1,2)
(3.14) V—A(1,2)A(0,1,2,4) + A( > - _ ,
0,1,2 aosA(5)

whence Lemma 3.1 is proved.

LEMMA 3.2.

A(1,2)A(1,3,4)
1 — 2 ) )’y
319 W = a0 5 A28 )
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o, A(1,2)A(2,3,4)
(3.16) Was = “33,4( 2,3)A(1,2,3,4)

Proof. First remark ag3 = us o > 0, A(% g Z) = Ug ou3 2u3 3(Ua,0 + us3) <O,

A(i:?)) = U2,2u32 < 0 and A(Oﬁzgi) = —U22U3 3(U373U4’2 — U372’M473) > 0. By the
Jacobi 1dent1ty

(3.17) 0=A(0,1,2,3,4)A(0,1,3)

0717372 ?
= A(0,1,3,4)A(0,1,2,3) — A(07 1, 3,4)

2
0,1,3,2
= —A(0,1,3,4)A(1,2)a3’3 —A<0’1’3’4>

since A(0,1,2,3) = —aagA(l,Q), whence

AT
(3.18) A(0,1,3,4) = — B
ao 3A(1,2)
From (1.3) and the above,
0,1,3,2
A1, )A(071’3’4)
3.19 “A(1,3)A(0,1,3,4) = 1,347
(3.19) VALHADL50) = Gy

where A(g g ) equals

(3.20) 1A<173» 2> i BA(iii)A(ijiji) —léf(};ﬁ)A(l, 2.4).

2 ALY AGZ3)
in view of the Jacobi identities AG:?)A(SZ) — _A(1’2>A(1j§ji) and
A(1,2)A(1,3) - A(};)Q = 0. Hence

4,1
(3.21) \/—A(1.3)A(0,1,3,4)+A<0’1’§>
A(1,3) A3 . A(2)
A(L2) aps | O%AQ,2)

) ,3 ,2,3
= } ’4 —a _ A(},ZA)A(O’ 1’3)
1,2 ap,3 0.3 a0,3A(1,2) ’
since A(124) = A(ii) ( ) A(1,2)A(} ) and A(0,1,3) = A(1,3) +af 3. Sim-
ilarly
4,1,3 A(1,2)A(1,3,4)
(322) \/_A<17 3)A(07 17 37 4) - A( ) = —ap,3
0,1,3 A(1123)
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Now (3.21) and (3.22) imply

V—A(1,3)A(0,1,3,4) — A( 1Y)
(3.23) T
VvV —A(1,3)A(0,1,3,4) +A(0:1:3)

aO SA(172)2A(11374) o A(172)A(1a374)a3,3

AC2H%a0,1,3)  AL23,4)40,1,3)

which proves (3.15); (3.16) follows by symmetry.

COROLLARY.
A(L2)A(1,3,4)
. WialMhe = 3 5)a0,2.)
A(L2)A(2,3,9)
(3:25) Was/ W2 = 45 3)4(1,2,1)

As a result we have
PROPOSITION (modified Schlafli formula).
(3.26) 2dV3(A) = d(1,3) log(Wy 3/ Wi 2) + d(2,3) log(Wa 5/ Wi 2)
+ d<1, 4> log W174 + d<2, 4) log W274 + d<3, 4> log W3’4 R
where W1 3 /W1 2 and Wa 3/W1 o are given by (3.24)—~(3.25) and W, 4 are given by
(3.6).

(2) Suppose that v3, vy € 0D and v1,v2 € D. Then A(1,2,3) = A(1,2,4) =0,
or equivalently (1,2) 4+ (2,3) 4+ (3,1) = (1,2) +(2,4) + (4,1) = w. One can choose
as independent variables (1, 3), (2, 3), (1,4) and (3,4), so that
(327) 2dV3(A\) = d<1, 3> log(W2,4W173/W1,2) + d<2, 3> log(W274Wg73/Wl72)

+ d<1, 4> log(W174/W274) + d<3, 4) log(W374) .
We must express each coefficient on the right hand side as a function of a;x,
1 <j,k < 4. As functions of pu,

A(1,2) A(1,2)
A(0,1,2) A(0,1,2)
i.e. Wi 2 =1, since it is assumed that ag1 = ag2 = 0. As for W; 3, W5 3, Lemma
3.2 is valid. For W; 4 and Wy 4, similarly,

/2 N
(3.28) C.T. { } Vi(A12|p) —2log2 = —log =0,

_ o A(L,2)A(1,4,3)
(3.29) Wia = %30 5 40,2,3,4)°
(330) W274 2 ( )A( )

~ 044024 )A(1,2,3,4)'
On the other hand, W54 equals (3.6). (3.10) reduces to 2(10,3@07414(}’3’2) =
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—A(1,2,3,4). Hence

(3.31) WisWau/Wis = — iﬁg:iij&zﬁ(ﬁ(;ig 7
(3.32) WoaWa /Wi = — iA(gﬁ()Zé)ﬁ()i(?)f;&‘l) ’
(3.33) Wia/Waa = ﬁggﬁggg ’

AGAY - /—A(3,4)A(1,2,3,4

since A(1'23)” = —A(1,2)A(1,2,3,4).

(3) We assume that vy, vs,vs € 0D, and vy € D. Then A(1,2,3) = A(1,2,4)
= A(1,3,4) = 0, or equivalently (1,2) + (2,3) + (3,1) = (1,2) + (2,4) + (4,1) =
(1,3) + (3,4) + (4 1) = 7. One can choose as independent variables (1,2), (1, 3)
and (1,4). (3.7) reduces to
(3.35)  2dV3(A) = d(1,2) log(Wi,2/(Wa 3Was))

+d(1, 3) log(W1 3/(Wa,3W3.4)) + d(1,4) log(W1 4/ (W2, 4W3 4)) .
By using the relation 2agza04 = —A(1,2,3,4)/A(}'23), (3.16) and (3.30), we
deduce (3.36) below. (3.37) and (3.38) are obtained by symmetry.

(3.36) Wia/(WasWas) = — 4A( A() ()A();l(1 2) = ’
L A(2,3)A(3,4)A(1,2,3,4)

(3.37) Wis/(WasWsa) = —4 A(1,3)A(2,3,4)2

(3.38) Wia/(W3aWa4) = —4 (3’4() () ()A(l 2) L

(4) Case where all the vertices vy, va,vs,v4 € OD. Then A(i, j, k) vanishes for
any 1, j, k, or equivalently (i, j) + (j, k) + (k, i) = m. One can choose the vertices as
vy = (&1,&2,8&3), v2 = (0,1,0), v3 = (0,0, —1), and vq = (0,0, 1) respectively. The
point (&1, &2,&3) in the unit sphere is related to the complex number z = x + iy
by stereographic projection:

2y 2z 1—|2]2
3.39 - _ _ 1=l
Then from (2.2) and (2.5),
(3.40) dVs(A) = D d(i, )W,
1<i<j<4

where W; ; equals A(0,1,7)/A(%, 7). Actually Wi o = %WLg 7W1 a=1Wy3=
1+ ]22, Wau=(1412%)/|2]? and W5 4 = 2(1 + |2]?) /|1 — 2|?. Moreover (1,2)
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argz, (2,3) =argz(z — 1) and (3,1) = arg(1 — ). (3.4) becomes
(3.41) dVs(A) = 2(log |z|d arg(z — 1) — log |z — 1|darg z) ,

—z
—z (-
This function and its polylogarithmic extension have been investigated by

many authors (see [M1], [M2], [G2], [W], [Z]).
Summarizing all the results in Sections 1 and 3, we have

ie. VE),(A\) is the Bloch-Wigner function represented by

~ 1 1
(3.42) V3(A) = { dilog z — dilog z + log |z| log 1
i

THEOREM. For vy,...,v,11 € 0D U D, VH(A\) has a hyperlogarithmic (higher
logarithmic) expansion:

(3.43) Vo (A) = @Ch;d” f 9( 2 >e<2> . 9(?_2) Va(Ar,_,)

forn=2v—1, and

(3.44) V(b= Y f e(?l)e(g) , e(ﬁj) V(A L)

0CI;C...CI,—1 *

for n = 2u, where V3(Ay) and Va(Ay) are given by (3.26), (3.27), (3.35), (3.41)
respectively. Vo(Ay) is given by (1.8). I, = {i1,...,i,} denotes a subset of
(1,2,...,n+1}.

4. Appendix. Appell’s hypergeometric integrals of type F, and the
hyperbolic volume. The integral

(4.1) f@fh Lphe=t pha=l pAa=d gy A dty A dto A dis
— 1 1t B
VA R / exp[—3 yBy]
7T T y120,9220,y32>0,y4 >0
)yt Ty Ty Tyt Ty A dys A dys A dys
1 1 P A=At s+ A )
2 /—A(1,2,3,4) 2 ’

X f 0 0T (bagg + by g + bogne) T
1120,m2>0
x (ba,1m1 + bazne + by smnz) ™ diy A dns

with 2)) = A1 + X2 + Ay — A3, where B = ((b,5))1<r s<4 denotes the inverse A~1.
By the definition we have the homogeneity

(4'2) J()\|{br,sQrQs}) = Q1 92 - Q:;)\3 o J()\Hbr,s}) )
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foro; € C*. One can choose g, such that 0102013 = —1, 0104b1,4 = 0204b24 =
0304b3 4 = 1. For by 3 = —1, byga = bog = b3 4 = 1, J(A|{b,s}) has an integral
expression similar to Appell’s hypergeometric function of type Fy (see [K1]):

/ (a)l-l-m(ﬁ)l—i-m ulo™
4'3 F 9 ) ) ) =
(4.3) alo, 8,7, | u,v) lzo,zmzo (V)i )m I'm!

for u = —b172, v = —bgyg, o = )\2, ,8 = )\3, Y = 1+ ()\3 +>\1 - )\2 - )\4)/2 and
v = A3 — A1 + 1 respectively. They both satisfy the following holonomic system
of partial differential equations (£) (see [K3|, Chap. XI):
(44)  u(l —u)R —v°T — 2uvS

+H{y—(a+B8+1Du}P - (a+ B+ 1)vQ —aBJ =0,
(4.5)  v(1—v)T —u’R —2uvS

+Hy = (a+ B+ 1)v}Q — (a+f+ uP —afJ =0
for R = 92J/ou?, S = 92J/0udv, T = 9?J/0v?, P = 8J/0u and Q = 9J/v.

The change of variables
(4.6) u=wiwy, v=(1—wi)(l—ws),

which we call the Burchnall-Chaundy transformation or simply B.C. transforma-
tion has an integral representation associated with a line configuration (see [B2],
and [K2] for an extension):

o ) — (I
(A7) Falon o o, wi2) = 5y FEIT(y = )T = )
x [ [ et =) T (1 =) P = )T (1= )T
0 0

X (1 —wjz — wgy)”*J””YI_O‘_B_1 dr A dy,

where we put wj =1 —w; and w) = 1 — wy. However, we do not know whether
J()) itself is given by a similar representation through the B.C. transformation.

The holonomic system (€) has an alternative expression, i.e., the Gauss-Manin
connection by using the additional integrals ¢(7,j) and ¢(1,2,3,4). Indeed, we
put

N dr
(4.8) 26.5) = [ PEr
(4.9) 3(1,2,3,4) f¢f1f2f3f4

Then as functions of the variables (a; ;))1<i,j<a, 2(0), @(4,7), ¢(1,2,3,4) satisfy
a variational formula in closed form (Gauss—Manin connection (£')) (see [A3],
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Proposition 2.4,):
- 1 . e
(4.10)  dp(@) =5 > dli. )Aid @i, ).
1#]
(4.11)  A(i, j)de(i, j)

k? )
= dA(l i j))\k)\l gO(l 2 3 4) + da”go(@)

+)\k{—dA<li’J) 5k, J)+dA<m> 5k, z)}
+Al{—dAC:j)@(z,j)+dA<§:Z>¢(z,i)},

~ 1 L+ 17 ka )
(112) 4023005 (1.2,3.0) = 5 Y0 aa(y ) a.d)
i#j I

1 ~
+§dA(]-a 2, 374){_1 + A1+ A+ A3+ >‘4}(10(]-a 2, 374) >

with the fundamental relations

(4.13) 0=X¢(1,2,3,4) — Z br,; (4, k) ,
k=1,k#j

for each j, 1 < j < 4. Hence ¢(1,2,3,4), ¢(1,4), ¢(2,4) and ¢(3,4) are expressed
by linear combinations of ¢(1,2), (2 3) and ©(3,1):
(4.14)  2X\4b 30(1,4)
= (A2 + A3+ A — 1)b149(2,3) + (A2 + A3 — A1 — A\a)p(1, 3)
+ A2+ A3 — A1 — M)b3ap(1,2),  ete.

The volume Vg(AA) given by the formula

(4.15) (] f (14 ba,3m + ba,172) " (1 4 12 — mn2) ~"dmy A die
7120,m22>0

is a special case of the hypergeometric integrals of Appell’s type Fy for a = 3 =
v =+ = 1. The equations (£’) reduce to (3.41).
The B.C. transformation gives

14+bes—biat+/B(1,2,3,4)
2
for biﬂ‘ = 0, b173 = —1, b174 = b274 == b374 =1 and
1-& _ . 1-8&
21+&)" 7 2l+é)
B(l, 2,3, 4) equals 1+ bi? + b%’g + 2b273 + 2b172 — 2()172b273 = —5%/(1 + 53)2 = y2.

(4.16) w, W =

b2 =—
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On the other hand,

&ty 1
p= 2Ly 2

(4.17) e =l

Hence the B.C. transformation
(418) wWw = *b172, (1 - w)(l — E) = *b273

is the composite of the linear fractional transformation (4.17) and the correspon-
dence (3.39) between the configuration matriz B and the point z € C which rep-
resents the vertex vy.
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