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0. We investigate the solvability in W1
2(Ω) of the boundary value problem

uxy = f, f ∈ L2(Ω), (x, y) ∈ Ω ,(1)
u|∂Ω = ϕ(x, y), (x, y) ∈ ∂Ω ,(2)

where Ω ⊂ R2 is a convex bounded domain with piecewise smooth boundary
Γ =

⋃n
j=1 Γj , Γj ⊂ C2. Assume that each Γj is either part of a straight line, or

has strictly positive curvature at each point of Γj . Also, Γ is assumed to have at
most two common points with every line parallel to a coordinate axis.

This problem was first studied by J. Hadamard [2]. He noted that it is not
well-posed. The history and references can be found in [1, 3, 5].

We shall look for a solution u(x, y) in the form

u(x, y) =
x∫

0

y∫
0

f(ξ, η) dξ dη + v(x, y)

(f(x, y) = 0 for every (x, y) 6∈ Ω). Then the problem (1), (2) can be written in
the form

vxy = 0, (x, y) ∈ Ω ,(3)
v = h(x, y), (x, y) ∈ ∂Ω .(4)

It is well known that every generalized solution v ∈W1
2(Ω) of (3) can be written

in the form

v(x, y) = p(x) + q(y)

where p, q are arbitrary functions in W1
2(Ω). So the problem (3), (4) can be
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reformulated as follows: find p, q ∈W1
2(Ω) which satisfy

(5) p(x) + q(y) = h(x, y), (x, y) ∈ ∂Ω .

Following [3], we call the points of Γ at which there is a line of support parallel
to a coordinate axis the vertices of Γ . It is evident that Γ has either two, three
or four vertices.

We shall consider here the cases of two and three vertices. In those cases, neces-
sary and sufficient conditions for the solvability of the problem (3), (4) in W1

2(Ω)
and explicit formulae for solutions will be obtained. Uniqueness of solutions was
proved in [4].

1. Let Γ have two vertices P0, P1. We shall consider a regular case: the one-
sided tangents to Γ at P0, P1 are not parallel to coordinate axes. Let s be a
natural parametrization of Γ : Γ = {(x(s), y(s)) | 0 ≤ s < l}, (x(0), y(0)) = P0,
(x(s1), y(s1)) = P1. Define

H(s) = h(x(s), y(s)) ,(6)
P (s) = p(x(s)), Q(s) = q(y(s)) .(7)

It is not hard to prove the following statement.

Lemma 1.1. p, q ∈ W1
2(Ω) if and only if P,Q ∈ W1

2,%(0, l), where %(s) =
s(l − s)|s1 − s|, s ∈ (0, l).

Define onto functions f+, f− : (0, l) → (0, l) to be the nontrivial solutions of
the equations

(8) x(s) = x(f+(s)), y(s) = y(f−(s)), s ∈ (0, l) .

Then P,Q defined by (7) satisfy

(9) P (s) = P (f+(s)), Q(s) = Q(f−(s)), s ∈ (0, l) .

So, the problem (3), (4) can be reformulated as follows: find P,Q ∈ W1
2,%(0, l)

satisfying (9) and

(10) P (s) +Q(s) = H(s) , s ∈ (0, l) .

Define onto functions fk : (0, l)→ (0, l), k ∈ Z, by

f0(s) = s, f1(s) = f−(f+(s)), f−1(s) = f+(f−(s)), fk+1(s) = f1(fk(s)) .

The properties of the functions fk were described in [4]. Choose ψ0 ∈ (0, s1) and
define a system of intervals Mk, k ∈ Z, by

M0 =
{

(f1(ψ0), ψ0], f1(ψ0) < ψ0,
(ψ0, f1(ψ0)], f1(ψ0) > ψ0,

M2k = {fk(s) | s ∈M0} , M2k+1 = [f+(fk(s)) | s ∈M0} .
The following lemma was proved in [4].

Lemma 1.2. 1) Mk ∩Mm = ∅, k ∈ Z, k 6= m.
2)
⋃+∞
k=−∞M2k = (0, s1),

⋃∞
k=−∞M2k+1 = (s1, l).
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Define w(s) for s ∈ (0, l) \ {s1} as follows: if s ∈ (0, s1), then

(11) w(s) =


0, s ∈M0,

0∑
j=−k+1

H(fj(s))−H(f−(fj(s))), s ∈M2k, k ∈ N,

−
k∑
j=1

H(fj(s))−H(f−(fj(s))), s ∈M−2k, k ∈ N;

if s ∈ (s1, l), then

(12) w(s) = w(f+(s)) .

The following theorem is the main result of this section.

Theorem 1.1. There exist P,Q ∈W1
2,%(0, l) satisfying (9), (10) if and only if

the following conditions hold :

1) for all s ∈ (0, s1)
(a) w(fk(s))− w(f−k(s))− w(fk(ψ0)) + w(f−k(ψ0))→ 0 as k →∞;
(b) w(fk(s))− w(fk+1(s))→ 0 as k → −∞;

2) (a) for all s ∈ (0, l) \ {s1} the following limits exist :

(13) w1(s) =
{

limk→∞(w(fk(s))− w(fk(ψ0))) , s ∈ (0, s1),
limk→∞(w(fk(s))− w(fk(f+(ψ0)))) , s ∈ (s1, l);

(b) w − w1 ∈W1
2,%(0, l), H − w + w1 ∈W1

2,%(0, l).

If conditions 1), 2) hold , then all solutions P,Q ∈W1
2,%(0, l) of (9), (10) have the

form

(14) P (s) = w(s)− w1(s) + c, Q(s) = H(s)− w(s) + w1(s)− c, c ∈ R .

2. Let Γ have three vertices P0, P1, P2. Moreover, suppose that neither of the
lines x = const, y = const through P0 intersects Ω, and the line x= const (resp.
y = const) through P1 (resp.P2) does not meet Ω. We shall consider a regular
case: the one-sided tangents to Γ at P0 are not parallel to coordinate axes. Let s be
a natural parametrization of Γ : Γ = {(x(s), y(s)) | 0 ≤ s < l}, (x(0), y(0)) = P0,
(x(sj), y(sj)) = Pj , j = 1, 2, where s1, s2 ∈ (0, l).

Define µ±j ∈ R ∪ {±∞}, j = 1, 2, by

µ±j = lim
s→sj±0

y′(s)/x′(s), j = 1, 2 .

Define dj(s), %j(s), j = 1, 2, s ∈ (0, l), by

dj(s) =


1, µ+

j = µ−j ,

|sj − s|, µ+
j 6= µ−j , 0 < |µ

±
j | <∞,√

|sj − s|+ θ(s− sj), 0 < |µ−j | <∞, |µ
+
j | ∈ {0,∞},√

|sj − s|+ θ(sj − s), 0 < |µ+
j | <∞, |µ

−
j | ∈ {0,∞},

%j(s) = s(l − s)dj(s) ,
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where θ(s) = (1 + sign(s))/2.
It is not hard to prove the following result.

Lemma 2.1. p ∈W1
2(Ω) (resp. q ∈W1

2(Ω)) if and only if

P (s) = p(x(s)) ∈W1
2,%2(0, l) (resp. Q(s) = q(y(s)) ∈W1

2,%1(0, l)) .

So, the problem (3), (4) in this case can be reformulated as follows: find
P ∈W1

2,%2(0, l), Q ∈W1
2,%1(0, l) satisfying (9), (10) for all s ∈ (0, l) \ {s1, s2}.

Define a system of open intervals Mk, k ∈ Z, by

M0 =
{

(s1, s2), s1 < s2,
(s2, s1), s1 > s2,

M2k = {fk(s) | s ∈M0}, M2k+1 = {f+(fk(s)) | s ∈M0} .
The following lemma was proved in [4].

Lemma 2.2. 1) Mk ∩Mm = ∅, k,m ∈ Z, k 6= m.
2)
⋃∞
k=−∞Mk = (0, l).

Define w(s) for s ∈
⋃∞
k=−∞Mk by formula (11) if s ∈

⋃∞
k=−∞M2k, and by

(12) if s ∈
⋃∞
k=−∞M2k+1.

The following theorem is the main result of this section.

Theorem 2.1. There exist P ∈ W1
2,%2(0, l), Q ∈ W1

2,%1(0, l) satisfying (9),
(10) for all s ∈ (0, l) \ {s1, s2} if and only if the following conditions hold :

1) for all s ∈
⋃∞
k=−∞Mk,

(a) w(fk(s))− w(f−k(s))→ 0 as k →∞;
(b) w(fk(s))− w(fk+1(s))→ 0 as k → −∞;

2) (a) for all s ∈
⋃∞
k=−∞Mk the limit

(15) w1(s) = lim
k→∞

(w(fk(s))− w(fk(ψ0)))

exists, where ψ0 ∈M0 is arbitrary ;
(b) (w(s)− w1(s)) ∈W1

2,%2(0, l);
(H(s)− w(s) + w1(s)) ∈W1

2,%1(0, l).

If conditions 1), 2) hold , then all solutions P ∈ W1
2,%2 , Q ∈ W1

2,%1 of (9), (10)
have the form (14).

R e m a r k 1. Conditions 1), 2) of Theorems 1.1, 2.1 are in fact the conditions
of orthogonality of the right sides of (1), (2) to L2(Ω) generalized solutions of the
homogeneous problem (1), (2).

R e m a r k 2. Irregular cases for two and three vertices can be handled similarly.

R e m a r k 3. Consider the family of differential operators Lλu = (1−λ)uxx−
λuyy, λ ∈ (0, 1). Then there are bounded convex domains with piecewise smooth
boundary such that for every λ ∈ (0, 1) except some set {λ1, . . . , λk} the boundary
has less than four vertices in the coordinates ξ =

√
λ · x +

√
1− λ · y, η =√

λ · x−
√

1− λ · y. A general form of such domains was described in [4].
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