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0. Introduction. Let X1, . . . , X2n be C∞ real vector fields on Ω open in RN
and put

Lj = 1
2 (Xj + iXj+n) , 1 ≤ j ≤ n , L = (L1, . . . , Ln) .

The following hypotheses are assumed throughout:

(H1) (Hörmander condition) the brackets of length at most r of the Xj generate
TxΩ, ∀x ∈ Ω;

(H2) dxξX(x, ξ) are linearly independent;
(H3) [Lj , Lk] = 0, ∀j, k ∈ [1, n].

Under (H1), it is well known that the system {Xj}1≤j≤2n is (1 − 1/r)-
subelliptic, i.e.

‖u‖21/r ≤ C
( 2n∑
j=1

‖Xju‖2 + ‖u‖2
)
, u ∈ C∞c (Ω) ,

cf. Bolley–Camus–Nourrigat [1]. In particular, for ω open ⊂ Ω we have

u ∈ D′(Ω) , Xju ∈ C∞(ω) , 1 ≤ j ≤ 2n ⇒ u ∈ C∞(ω) .

Problem. Give geometric conditions to guarantee L to be hypoelliptic:

u ∈ D′(Ω) , Lju ∈ C∞(ω) , 1 ≤ j ≤ n ⇒ u ∈ C∞(ω) .

Examples. 0) N = 2n, (x1, . . . , xn, y1, . . . , yn) ∈ Ω, Xj = ∂/∂xj , Xn+j =
∂/∂yj , Lj = ∂/∂zj . Then L is the Cauchy–Riemann operator, r = 1 and L is
elliptic.

1) N = 2n+ 1 , (x1, . . . , xn, y1, . . . , yn, t) ∈ Ω, Xj = ∂/∂xj − yj∂/∂t, Xn+j =
∂/∂yj + xj∂/∂t, r = 2. Here, L is the induced Cauchy–Riemann operator on
the hypersurface M = {(z0, . . . , zn) ∈ Cn+1 | Re z0 = 1

2 |z1|
2 + . . . + 1

2 |zn|
2};

it is not hypoelliptic because when taking Fourier transforms in t, we get
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L̂j = ∂zj
− τzj/2 = eτ |z|

2/2∂ze
−τ |z|2/2 and for û(z, τ) = eτ |z|

2/2 if τ < 0, = 0 if
τ > 0, it is clear that Lu = 0 but u 6∈ C∞.

2) Same as above but M is defined by the equation Re z0 = − 1
2 |z1|

2 − . . . −
1
2 |zp|

2 + 1
2 |zp+1|2 + . . .+ 1

2 |zn|
2, 0 < p < n. In this case, L satisfies

(1)
2n∑
j=1

‖Xju‖2 ≤ C
( n∑
j=1

‖Lju‖2 + ‖u‖2
)
, u ∈ C∞c (Ω)

(cf. [3]) and is, therefore, hypoelliptic.

1. Maximal hypoellipticity

R e m a r k. It is out of the question to characterize hypoellipticity for general
systems like Nirenberg and Treves [8] did for n = 1. Even a characterization of
δ-subellipticity:

‖u‖21−δ ≤ C
( n∑
j=1

‖Lju‖2 + ‖u‖2
)
, u ∈ C∞c (Ω) ,

seems beyond the scope of present techniques, except for n = 1 which is the
Egorov–Hörmander theorem [4].

Definition. The system L is called maximal hypoelliptic in Ω if (1) holds. It
is maximal hypoelliptic at (x0, ξ0) ∈ T ∗Ω \0 if

∑n
1 ‖ΨXj ·u‖2 ≤ C

(∑n
1 ‖Lju‖2 +

‖u‖2
)
, u ∈ C∞c (Ω), where Ψ is an elliptic pseudodifferential operator at (x0, ξ0).

Let Σ = {(x, ξ) ∈ T ∗Ω\0 | Xj(x, ξ) = 0 , 1 ≤ j ≤ 2n} be the characteristic set
of X1, . . . , X2n and for (x, ξ) ∈ Σ define the Levi matrix L(x, ξ) by Ljk(x, ξ) =
i{Lj , Lk}(x, ξ) , 1 ≤ j, k ≤ n, where { , } is the Poisson bracket. Denote by
λ1(x, ξ), . . . , λn(x, ξ) ∈ R the eigenvalues of L(x, ξ).

Theorem (Nourrigat [9]). The system L is maximal hypoelliptic at (x0, ξ0) if
and only if there exists a neighbourhood U of (x0, ξ0) and C > 0 such that

D(0) max(|λ1|, . . . , |λn|) ≤ C max(0, λ1, . . . , λn) in U.

C o m m e n t s. 1) Sufficiency of D(0) was proved in [6] when L = ∂b.
2) In the non-degenerate case, i.e., λ1 6= 0, . . . , λn 6= 0 everywhere, D(0) is

equivalent to the condition Y(0) of Folland–Kohn [2].
3) The theorem covers the subellipticity result of Egorov–Hörmander [4] pro-

vided we add
∑
|Xj(x, ξ)| on the right hand side of D(0).

4) The proof relies on a general theorem by Helffer–Nourrigat [3] which reduces
maximal hypoellipticity to injectivity in S(R2n) of operators with polynomial
coefficients.

2. Case of (0, q)-forms for ∂b. From now on, we consider the induced
Cauchy–Riemann operator on a real hypersurface of Cn; therefore, we may
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suppose that locally

Lj =
∂

∂zj
+ i

∂f/∂zj
1 + i ∂f/∂t

∂t

with f : Ω → R of class C∞, Ω open ⊂ Cn × R. Then L gives the ∂b complex

0 −→ Λ0,0C∞(Ω) L0

−→ Λ0,1C∞(Ω) L1

−→ . . .
Ln−1

−→ Λ0,nC∞(Ω) −→ 0 ,

where Λ0,qC∞(Ω) = {
∑
|J|=q uJ dzJ | uJ ∈ C∞(Ω)} and

(2) Lq
( ∑
|J|=q

uJ dzJ

)
=

∑
|J|=q,1≤j≤n

LjuJ dzj ∧ dzJ .

To ∂b we associate its formal adjoint complex ∂
∗
b:

0 −→ Λ0,nC∞(Ω) L
n−1∗

−→ Λ0,n−1C∞(Ω) −→ . . .
L0∗

−→ Λ0,0C∞(Ω) −→ 0 .

R e m a r k. The following general result by Kohn [5] on L2 complexes:

Lq−1Lq−1∗ + Lq∗Lq subelliptic ⇒ kerLq = imLq−1

shows that regularity implies solvability.

Definition. The operator ∂b is maximal hypoelliptic on (0, q)-forms if

‖ReLqu‖2 + ‖ImLqu‖2 ≤ C(‖Lqu‖2 + ‖Lq−1∗u‖2 + ‖u‖2) , u ∈ Λ0,qC∞c (Ω) ,

where ReLq, ImLq are defined as in (2) with Xj , Xn+j on the right hand side.

Example. When the Levi matrix L is non-degenerate, then ∂b is maximal
hypoelliptic on (0, q)-forms if and only if the condition Y(q) holds, i.e. the index
of L is different from q and n− q (cf. Folland–Kohn [2], and [3]).

Theorem. Suppose M = {z ∈ Cn+1|Re z0 = f(z1, . . . , zn)} 3 0 and the
Levi matrix degenerates only at the origin. Then ∂b is maximal hypoelliptic on
(0, q)-forms if and only if Y(q) holds on M \ {0}.

The necessity is due to Helffer–Nourrigat [3]. For sufficiency we know (cf.
[7]) that the sublevel sets of any localized polynomial of f at 0 have the same
homology as those of a quadratic form of index 6= q and 6= n − q. It is then
possible to solve in S(R2n) the equation L̃q−1v = u, v ∈ Λ0,q−1S(R2n), where L̃
is the operator associated to any localized polynomial of f , provided L̃qu = 0. If,
moreover, L̃q−1∗u = 0, then u = 0. This proves the injectivity of (L̃q−1∗, L̃q) in
S(R2n). Maximal hypoellipticity follows from [3].

R e m a r k. Our proof certainly generalizes.

3. Hypersurfaces with Levi form having an isolated singularity

R e m a r k. Only the non-degenerate case and some weakly pseudoconvex
cases, e.g. M = {z ∈ Cn+1 | Re z0 = (‖z1‖2 + . . . + ‖zn‖2)k}, were previously
known examples of hypersurfaces satisfying the hypothesis of our theorem.
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In order to get more examples we first restrict ourselves to homogeneous real
polynomials with non-vanishing hessian; more precisely, let

H(m)
p,q = {P ∈ R[x1, . . . , xn] | P homogeneous of degree m and

x 6= 0 ⇒ (P ′′(x)) has p negative and q positive eigenvalues} .
The following results are proved in [7].

Proposition. If P ∈ H(m)
p,q and n = p+q ≥ 3 then the map P ′ : Rn\0→ Rn\0

is a diffeomorphism.

Proposition. For k ≥ 1 and n = p+ q ≥ 2 we have

a) H(2k+1)
p,q 6= ∅ ⇔ p = q = 1;

b) H(2)
p,q 6= ∅, ∀p, ∀q;

c) H(4)
p,q 6= ∅ ⇔ p = q = 1 or p = 0 or q = 0;

d) H(2k)
p,q 6= ∅, ∀k ≥ 3, ∀p, ∀q.

Example. M = {z ∈ Cn+1 | Re z0 = −(|z1|2 + . . . + |zp|2)k+1 + ε(|z1|2 +
. . .+ |zp|2)k(|zp+1|2 + . . .+ |zn|2)− ε(|z1|2 + . . .+ |zp|2)(|zp+1|2 + . . .+ |zn|2)k +
(|zp+1|2 + . . . + |zn|2)k+1} is strictly p-pseudoconcave and q-pseudoconvex away
from the origin if k ≥ 2 and ε < 2/k2.
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champs de vecteurs, Progr. Math. 58, Birkhäuser, 1985.
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