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Abstract. The paper considers the static Maxwell system for a Lipschitz domain with
perfectly conducting boundary. Electric and magnetic permeability ε and µ are allowed to be
monotone and Lipschitz continuous functions of the electromagnetic field. The existence theory
is developed in the framework of the theory of monotone operators.

0. Introduction. In the static case Maxwell’s equations of the electromag-
netic field, described by the electric field E and the electric induction (displace-
ment) D, and by the magnetic field H and the magnetic induction B, are

(0.1) curlE = j , curlH = 0 , divD = q , divB = 0 ,

where j is a given current density and q is a known charge density. The connection
between electric and magnetic field on the one hand and electric and magnetic
induction on the other hand is usually given in terms of the so-called material
relations:

(0.2) D = ε(E,H) , B = µ(E,H) .

In the following we will focus on the system of linear differential equations
(0.1) in conjunction with material relations of the type (0.2) in the case that the
medium described by these material relations is confined to a bounded domain Ω
with a perfectly conducting boundary ∂Ω. The exterior domain case can be dealt
with by similar considerations (see [11] for details). The boundary conditions
modelling a perfectly conducting container of the medium in question are

(0.3) n× E = 0 and n ·B = 0 on ∂Ω ;

here n denotes the exterior normal to ∂Ω.
In order to develop the solution theory for the boundary value problem (0.1)–

(0.3), we first have to reformulate the equalities involved in suitable spaces. A
high degree of convenience and elegance can be achieved by the use of differential
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forms in formulating the problem and we shall make use of this opportunity.
It is a simple task to translate the above boundary value problem for static
electromagnetic fields into the language of differential forms. We shall briefly
outline this transition for the benefit of those readers who are less comfortable
with differential forms. Consider E, D as differential forms of degree one and H,
B as such forms of degree two, i.e.

E(x) = E1(x) dx1 + E2(x) dx2 + E3(x) dx3 ,

D(x) = D1(x) dx1 +D2(x) dx2 +D3(x) dx3 ,

H(x) = H1(x) dx2 ∧ dx3 +H2(x) dx3 ∧ dx1 +H3(x) dx1 ∧ dx2 ,

B(x) = B1(x) dx2 ∧ dx3 +B2(x) dx3 ∧ dx1 +B3(x) dx1 ∧ dx2 .

Here “∧” denotes the so-called wedge product which is characterized by its formal
alternating property:

(0.4) dxi ∧ dxj = − dxj ∧ dxi ,

and the fact that it is associative and linear over the module of functions (i.e.
linear over R for fixed x ∈ R3). Note that in particular (0.4) implies dxi ∧ dxi =
0, i = 1, 2, 3. The dxi are interpreted as the dual elements to the canonical basis
of R3, and alternating products of these as multilinear maps giving the parity of
the permutation of the elements of the canonical basis relative to the order in
which the indices appear in the wedge product.

The differential operators curl and div (divergence) can now be written in
terms of the exterior derivative using the duality between differential forms of
degree one and two as expressed by the Hodge star operator ∗.

In the present situation of the three-dimensional Euclidean space the Hodge
star operator can be expressed by the properties of being linear over the module
of functions and satisfying

(0.5)

∗ dxi = dxi+1 ∧ dxi+2 (i = 1, 2, 3 mod 3) ,

∗1 = dx1 ∧ dx2 ∧ dx3 ,

∗ ∗ = 1 (here 1 denotes the identity) .

As an illustration of these properties we note that e.g.

(∗H)(x) = H1(x) dx1 +H2(x) dx2 +H3(x) dx3 ,

and

(∗E)(x) = E1(x) dx2 ∧ dx3 + E2(x) dx3 ∧ dx1 + E3(x) dx1 ∧ dx2 .

The formal operation of the exterior derivative d can be recalled most easily
by considering d as a formal 1-form:

(0.6) d = ∂1 dx
1 + ∂2 dx

2 + ∂3 dx
3 ;

here ∂i, i = 1, 2, 3, denotes the partial derivative with respect to the ith variable.
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Then the action of d can be written as the formal alternating product

(0.7) dω = d ∧ ω ,

where ω denotes an arbitrary differential form (with differentiable coefficients).
To illustrate the usefulness of the exterior derivative in the present context let

us consider the exterior derivatives of E and B. We have (using the summation
convention)

dE = d ∧ E = (∂i dxi) ∧ (Ej dxj) = ∂iEj dx
i ∧ dxj

= (∂1E2 − ∂2E1) dx1 ∧ dx2 + (∂2E3 − ∂3E2) dx2 ∧ dx3

+ (∂1E3 − ∂3E1) dx1 ∧ dx3

= (∂i+1Ei+2 − ∂i+2Ei+1) dxi+1 ∧ dxi+2

(summation over indices mod3), and

dB = d ∧B = (∂i dxi) ∧ (Bj dxj+1 ∧ dxj+2)

= ∂iBj dx
i ∧ dxj+1 ∧ dxj+2

= ∂iBi dx
i ∧ dxi+1 ∧ dxi+2 = ∂iBi dx

1 ∧ dx2 ∧ dx3 .

These calculations illustrate that the exterior derivative can be utilized to express
curlE and divB conveniently in the language of differential forms. The same can
be done for transcribing divD and curlH using the Hodge star operator. Letting
δ denote the operator (−1)q−1 ∗ d∗ (where q indicates the degree of the form this
operator is applied to), we have δD and −δH in place of these vector analytical
expressions.

By transcribing j as a 2-form: j = jkdx
k+1 ∧ dxk+2, and q as a 0-form (i.e. a

function), the initial system of differential equations can be written as

(0.8) dE = j , δH = 0 , δD = q , dB = 0 .

Since differential forms of different degree can easily be distinguished, we may,
as a first benefit of our transcription, write ω = E + B and η = D + H in the
sense of a direct sum. With this convention we can simplify (0.8) to just two
equations:

(0.9) dω = j and δη = q .

The next observation is that the boundary conditions (0.3) take on a very simple
form. By using the invariance properties of differential forms with respect to coor-
dinate transformations and assuming for now that the boundary can be described
in local coordinates by x3 = 0, the restriction of ω to the submanifold x3 = 0
is

E1(x1, x2, 0) dx1 + E2(x1, x2, 0) dx2 +B3(x1, x2, 0) dx1 ∧ dx2 .

Thus the boundary conditions (0.3), having in these coordinates the form

E1(x1, x2, 0) = E2(x1, x2, 0) = B3(x1, x2, 0) = 0 ,
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can simply be expressed by saying that ω vanishes on the boundary as a sub-
manifold of R3, i.e.

(0.10) ω = 0 on ∂Ω .

The connection between ω and η has to be extracted from the material relations
(which we assume to be possible) in the form

(0.11) η = ε(ω) ,

where for simplicity we have re-used the symbol ε with little danger of confu-
sion.

In order to develop the discussion of problem (0.9)–(0.11) we will have to
introduce suitable (real) Hilbert spaces to give a rigorous interpretation to our
boundary value problem. Our base space will be an L2-type space with inner
product composed of the parts

(0.12) (α, β)q =
∫
Ω

α ∧ ∗β , α, β q-forms , q = 0, 1, 2, 3 .

Note that α ∧ ∗β is always a 3-form and the integral can be understood as an
ordinary volume integral by using dx1 dx2 dx3 as (Cartesian) volume element.
This underlying space L2(Ω) is defined as the completion of (direct) sums of
differential forms of all degrees q = 0, 1, 2, 3 with C∞-coefficients having compact
support in Ω, with respect to the norm ‖ · ‖ induced by the inner product

(0.13) (u, v) =
3∑
q=0

(uq, vq)q ,

where u = u0 + u1 + u2 + u3, v = v0 + v1 + v2 + v3, uq, vq denoting q-forms
with compactly supported and smooth coefficients. We will denote the set of such
differential forms by C

◦

∞(Ω).
The precise meaning of equations (0.9)–(0.11) will be established in a suitable

functional-analytic setting based on L2(Ω) and under suitable assumptions, in
particular for the nonlinearity ε. It is clear that the framework described here can
be generalized further. The necessary ideas may be found in [11]. Here, however,
we shall focus on the application problem at hand. In a certain sense the present
paper is a continuation of the work in [6], the difference being that we here will
be dealing with more general material relations allowing for a coupling of electric
and magnetic effects.

In the first section we shall develop the main tools for the solution theory
that is given in Section 2. Section 1 will also provide the necessary terminology to
formulate (0.9)–(0.11) in a more precise way. The main results are contained in the
main theorem and the associated corollary (existence, uniqueness and continuous
dependence of solution). General references for notations and for more details on
differential forms are e.g. [4], [12].



STATIC ELECTROMAGNETIC FIELDS 353

1. Basic concepts and formulation of problem. To introduce suitable
Hilbert spaces to interpret the boundary value problem of electro- and magneto-
statics we shall employ for convenience a definition scheme introduced in [10].

Let d, δ denote the formal exterior derivative and its co-derivative respectively.
They are both densely defined and closable as operators, say d

◦
, δ

◦
, defined on

C
◦

∞(Ω). Thus, we may extend the meaning of differentiability to be generalized
in the weak sense, which in the present context means

(1.1) δ = −d
◦∗ on D(d

◦∗) , d = −δ
◦∗ on D(δ

◦∗) .

Since d, δ thus extend d
◦
, δ

◦
we may use d, δ as the standard notation. Which

operator is intended can be seen from a look at the domain. In this framework
we define the Hilbert spaces

(1.2)

H(d,Ω) := {ψ ∈ L2(Ω) | dψ ∈ L2(Ω)} ≡ D(δ
◦∗) ,

H(δ,Ω) := {ψ ∈ L2(Ω) | δψ ∈ L2(Ω)} ≡ D(d
◦∗) ,

H
◦

(d,Ω) := {ψ ∈ H(d,Ω) | (dψ, χ) + (ψ, δχ) = 0 for all χ ∈ H(δ,Ω)} ,

H
◦

(δ,Ω) := {ψ ∈ H(δ,Ω) | (δψ, χ) + (ψ, dχ) = 0 for all χ ∈ H(d,Ω)} ,
where the respective graph inner products

(1.3) (· , ·) + (d· , d·) , (· , ·) + (δ·, δ·)
are used as the underlying inner products. Apparently, we have

(1.4) H
◦

(d,Ω) ⊂ H(d,Ω) ,

i.e. H
◦

(d,Ω) is a subspace of H(d,Ω). By Hodge star duality we also have

(1.5) H
◦

(δ,Ω) ⊂ H(δ,Ω) .

Note that the Hodge star operator is a unitary automorphism of L2(Ω).
Now let Φ stand for either d or δ, and if Φ denotes one, then Φ′ denotes the

other. With this notation we also introduce the subspaces

(1.6)
H0(Φ,Ω) = {ψ ∈ H(Φ,Ω) | Φψ = 0} ,

H
◦

0(Φ,Ω) = {ψ ∈ H
◦

(Φ,Ω) | Φψ = 0} ,
and

(1.7) H
◦

0(Φ,Φ′, Ω) = {ψ ∈ H
◦

0(Φ,Ω) | Φ′ψ = 0} = H
◦

0(Φ,Ω) ∩H0(Φ′, Ω) .

The latter spaces (i.e. those defined in (1.7)) are known as the spaces of harmonic
differential forms. By Hodge star duality they are the same for both choices. With
the same convention we introduce another two Hilbert spaces:

(1.8) H
◦

(Φ,Φ′, Ω) = H
◦

(Φ,Ω) ∩H(Φ′, Ω) ,

with the inner product

(1.9) (· , ·) + (Φ·, Φ·) + (Φ′·, Φ′·) .
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These are unitarily equivalent. The Hodge star operator induces a unitary map-
ping between H

◦
(d, δ) and H

◦
(δ, d).

We shall omit the reference to the domain Ω since it will be clear from the
context.

Within the language developed so far we may describe the set where we shall
seek solutions ω of (0.9)–(0.11), in the following way:

(1.10) ω ∈ H
◦

(d) , ε(ω) ∈ H(δ) .

Here ε is inherited from (0.11) as far as the 1-form and 2-form parts of ω (and η)
are concerned. We assume that (0.11) is trivially extended to 0-forms and 3-forms
as the identity and continue to use the same notation for this extended “material”
relation. We note that the condition ω ∈ H

◦
(d) generalizes the boundary condi-

tion (0.10). In the following we may use the classical notation “ω = 0 on ∂Ω”
in this generalized interpretation. It should be kept in mind, however, that this
generalization of the boundary condition needs no restriction on the regularity of
the boundary.

A simple application of the projection theorem for Hilbert spaces leads to our
first decomposition lemma (for a proof, compare [8]).

Lemma 1. We have the following orthogonal decompositions of L2(Ω):

L2(Ω) = dH
◦

(d)⊕H
◦

0(d, δ)⊕ δH(δ)(1.11)

= dH
◦

(d)⊕H0(δ)

=H
◦

0(d)⊕ δH(δ)

and

L2(Ω) = dH(d)⊕H
◦

0(δ, d)⊕ δH
◦

(δ)(1.12)

= dH(d)⊕H
◦

0(δ)

= H0(d)⊕ δH
◦

(δ) .

Note that (1.12) follows from (1.11) by Hodge star duality.
As an immediate consequence of Lemma 1 and the definition of the graph

spaces of d, δ, we have the following decomposition result.

Lemma 2. The Hilbert spaces H(d), H
◦

(d) allow the following representations
as direct sums:

H(d) = dH(d)⊕H
◦

0(δ, d)⊕ δH
◦

(δ) ∩H(d)(1.13)

= H0(d)⊕ δH
◦

(δ) ∩H(d)

= dH(d)⊕H
◦

0(δ) ∩H(d)

and

H
◦

(d) = dH
◦

(d)⊕H
◦

0(d, δ)⊕ δH(δ) ∩H
◦

(d)(1.14)
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= H
◦

0(d)⊕ δH(δ) ∩H
◦

(d)

= dH
◦

(d)⊕H0(δ) ∩H
◦

(d) .

Moreover , the dual results for H(δ) and H
◦

(δ) are valid :

H(δ) = δH(δ)⊕H
◦

0(d, δ)⊕ dH
◦

(d) ∩H(δ)(1.15)

= H0(δ)⊕ dH
◦

(d) ∩H(δ)

= δH(δ)⊕H
◦

0(d) ∩H(δ)

and

H
◦

(δ) = δH
◦

(δ)⊕H
◦

0(δ, d)⊕ dH(d) ∩H
◦

(δ)(1.16)

= H
◦

0(δ)⊕ dH(d) ∩H
◦

(δ)

= δH
◦

(δ)⊕H0(d) ∩H
◦

(δ) .

The decompositions are orthogonal with respect to the inner product of H(d) and
H(δ), respectively.

Note that the dual result can be obtained by exchanging the role of d and δ.
This allows us to be brief about the dual statement and we shall do so henceforth.
Lemma 2 implies the following result.

Lemma 3. We have

dH(d) = d(δH
◦

(δ) ∩H(d)) , dH
◦

(d) = d(δH(δ) ∩H
◦

(d)) .

The dual results are also valid.

Another consequence of Lemma 2 is the following density result.

Lemma 4. The set H(d) ∩ δH
◦

(δ) is dense in the subspace δH
◦

(δ) of L2(Ω).
Similarly , H

◦
(d) ∩ δH(δ) is dense in the subspace δH(δ) of L2(Ω).

P r o o f. Noting that H
◦

(d) (and therefore H(d)) is dense in L2(Ω), we only
have to apply the decompositions of Lemma 2. The respective projections are
continuous (in the space L2(Ω)) and therefore the desired result follows.

To proceed we have to be more specific about assumptions on the boundary
of Ω. We shall assume that

(1.17) M is an open, bounded domain of R3 which is also a Lipschitz manifold
with boundary.

According to [9] our assumption on Ω guarantees the following compactness
results:

(1.18) H
◦

(d, δ) ↪→↪→ L2(Ω) , H
◦

(δ, d) ↪→↪→ L2(Ω) .

An immediate consequence of these imbedding results is that the unit sphere in
H
◦

0(d, δ) is compact and therefore that H
◦

0(d, δ) is finite-dimensional. Let B
◦

be a
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fixed (finite) basis of the harmonic space H
◦

0(d, δ). Without loss of generality we
may assume that the elements of B

◦
are differential forms of specific degrees (rather

than general linear combinations of these). As another consequence of (1.18) we
have

Lemma 5. There is a uniform constant C such that

(1.19) ‖ω‖ ≤ C
(
‖dω‖+ ‖δω‖+

∑
ψ∈B

◦

|(ω, ψ)|
)
,

for all ω ∈ H
◦

(d, δ) or ω ∈ H
◦

(δ, d).

P r o o f. The estimate can be shown by a standard contradiction argument
making use of the compact imbedding results (1.18) (see [2], [8]).

Lemma 5 implies the following closedness results.

Lemma 6. The following spaces are closed subspaces of L2(Ω):

(1.20) dH(d) = d(δH
◦

(δ) ∩H(d)) , dH
◦

(d) = d(δH(δ) ∩H
◦

(d)) ,

and by the Hodge ∗ duality

(1.21) δH(δ) = δ(dH
◦

(d) ∩H(δ)) , δH
◦

(δ) = δ(dH(d) ∩H
◦

(δ)) .

P r o o f. It suffices to consider the first case. The second closedness result
follows analogously. The rest of the lemma is obtained by star duality.

Applying the previous lemma to sequences (φn)n in δH
◦

(δ) ∩ H(d),
or δH(δ) ∩ H

◦
(d) respectively, yields the convergence of (φn)n in L2(Ω). Note

that δH(δ)⊥B
◦
. By the closedness of the differential operators involved and tak-

ing Lemma 3 into account this shows the closedness of the spaces in (1.20) and
also that the closure bars can be omitted in Lemma 3.

The above results suggest the following reformulation of our initial problem.

Boundary value problem of electro-magnetostatics: Find ω ∈ H
◦

(d) such that
ε(ω) ∈ H(δ) and

(1.22) dω = f , δε(ω) = g ,

where f, g ∈ L2(Ω) are given.

As necessary solvability conditions we obtain immediately from Lemma 1:

(1.23) f ∈ H
◦

0(d) , g ∈ H0(δ) ,

(1.24) f, g⊥H
◦

0(d, δ) .

Note that a 0-form in H
◦

0(d) is necessarily the zero function, and a 3-form in H0(δ)
is necessarily a constant multiple of the volume form, which in conjunction with
(1.24) implies that this 3-form must also be zero. Therefore, f does not contain
any 0-form component and g does not contain any 3-form part.
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The solution theory of (1.22) will be obtained by a now straightforward ap-
plication of the theory of monotone operators (see e.g. [1], [5]). This will be the
focus of the next section. We continue to follow the ideas described in [11] and
will therefore permit ourselves to be brief.

2. Solution theory of non-linear EM-statics. In order to solve prob-
lem (1.22) we shall reformulate it as an abstract equation of the form

(2.1) A(u) = F ,

where u is to be found in a certain Hilbert space V continuously and densely
imbedded into another Hilbert space H (with norm ‖ · ‖ and inner product (· , ·)),
F is a given right-hand side in the normed dual V ′ of V and A is a monotone
operator. Thus, by the usual identification of H with its dual, we have a Gelfand
triple

(2.2) V ↪→ H ↪→ V ′ ,

and A maps V into V ′.
The operator A is usually given by a continuous form

α : V × V → R ,
via the relations

(2.3) 〈A(u), v〉 = α(u, v) for all v ∈ V ,
and

u ∈ D(A) := {u ∈ V | α(u, ·) is a continuous linear functional on V } .
Consequently, (2.1) may be written in variational form

(2.4) α(u, v) = 〈F, v〉 for all v ∈ V .
We recall from [5] that solvability of problems (2.1), (2.4) is assured by the

following

Proposition. Let A (or α) be a strongly monotone and coercive operator (or
form), i.e. there is a constant ϑ > 0 such that

〈A(u)−A(v), u− v〉 ≥ ϑ‖u− v‖2

(or α(u, u− v)− α(v, u− v) ≥ ϑ‖u− v‖2), and

〈A(u), u〉 ≥ ϑ‖u‖2

(or α(u, u) ≥ ϑ‖u‖2), for all u, v ∈ V . Then there exists a unique solution of (2.1)
(or (2.4)).

In order to satisfy the assumption of this proposition we constrain ourselves
to a certain class of non-linearities.

Assumption. ε is a bijection such that ε−1 is a Lipschitz continuous and
strongly monotone mapping from L2(Ω) to L2(Ω) (with ε(0) = 0 for simplicity).
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In order to obtain uniqueness of the solution of (1.22) we have to impose a
finite number of additional conditions:

(2.5) (ψ, ε(ω)) = cψ for all ψ ∈ B
◦
,

where cψ, ψ ∈ B
◦
, are given real numbers.

We shall see that conditions (1.23), (1.24) are indeed sufficient to obtain a
solution of problem (1.22). Unique existence follows for solutions satisfying con-
ditions of the type (2.5).

In order to find a solution we decompose ω according to Lemma 1 and taking
Lemma 6 into account:

(2.6) ε(ω) = dϕ0 + h0 + δΦ ,

where

(2.7) ϕ0 ∈ H
◦

(d) ∩ δH(δ) , h0 ∈ H
◦

0(d, δ) ,

(2.8) Φ ∈ H(δ) ∩ dH
◦

(d) .

Since h+ δφ is in H0(δ), ϕ0 ∈ H
◦

(d)∩ δH(δ) is determined as the unique solution
of the boundary value problem

(2.9) δdϕ0 = δε(ω) = g ,

and is thus determined by the given g alone. Uniqueness and existence follows
by applying Riesz’ representation theorem to the space H

◦
(d)∩ δH(d) (with norm

‖d · ‖).
Moreover, since

(2.10) δH(δ)⊥B
◦
,

we have by (2.5)

(2.11) (ψ, h0) = cψ − (ψ, dϕ0) for all ψ ∈ B
◦
.

We can see that (2.11) determines h0 uniquely in terms of the given cψ, ψ ∈ B
◦
,

and the previously determined ϕ0 (choosing B
◦

as an orthonormal basis of H
◦

0(d, δ)
makes this obvious). Thus it remains to find φ.

R e m a r k. The idea used here is of course just a variant of the usual approach
to solve the problem by introducing potentials. The role of potential is played
by φ. The basic idea of this reduction is quite natural and has been applied
previously (for the electrostatic problem) in the particular way employed here by
D. Graffi (see [3], pp. 11–14).

From (1.22) we have

(2.12) dε−1(δφ+ (h0 + dϕ0)) = f .

Choose

(2.13) H := dH
◦

(d) , V = H(δ) ∩ dH
◦

(d) ,
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and define

(2.14) α(u, v) = (ε−1(δu+ β0)− ε−1(β0), δv)

for u, v ∈ V , where
β0 = h0 + dϕ0 .

The density of V in H follows according to Lemma 4. Due to the assumption on ε
we see that α is strongly monotone and coercive, so that the Proposition can be
applied; i.e. we get a unique solution φ ∈ V of

(2.15) α(φ, v) = (f, v)− (ε−1(β0), δv) for all v ∈ V .
Note that the right-hand side of (2.15) is indeed a continuous, linear functional
in V ′. The solution φ of (2.15) apparently also satisfies

(ε−1(δφ+ β0) , δv) = (f, v) ,

which in turn implies

ω := ε−1(δφ+ β0) ∈ H
◦

(d) .
This ω apparently solves problem (1.22), (2.5), proving existence. Uniqueness of
the solution of (1.22), (2.5) is clear since in fact—as demonstrated—this problem
is equivalent to (2.9), (2.11), (2.12) and the latter is equivalent to its variational
formulation (2.15). Thus, we obtain our main theorem.

Theorem. The boundary value problem (1.22), (2.5) has a unique solution ω
iff conditions (1.23), (1.24) are satisfied.

It should be clear that if f = j, g = q and cψ = 0 for 0-forms and 3-forms
ψ in B

◦
it follows that ω and η have no (non-trivial) 0-form and 3-form parts

(compare the arguments used for f , g above). In this case the problem reduces
to our original problem.

The existence part of the standard proof of the main theorem involves the a
priori estimate

ϑ‖δφ‖2 ≤ (ε−1(δφ+ β0)− ε−1(β0) , (δφ+ β0)− β0)

≡ α(φ, φ) = (f, φ)− (ε−1(β0), δφ)

≤ ‖f‖ ‖φ‖+ ‖ε−1(β0)‖ ‖δφ‖ ≤ (C‖f‖+ ‖ε−1(β0)‖)‖δφ‖
for the solution φ of (2.15). Here we have used Lemma 5 in the last step. Thus
we obtain

(2.16) ‖δφ‖ ≤ C(‖f‖+ ‖ε−1(β0)‖)
for the solution φ. By the properties of ε−1 and the definition of β0 we obtain the
a priori estimate

(2.17) ‖φ‖ ≤ C
(
‖f‖+ ‖g‖+

[∑
ψ∈B

◦

|cψ|2
]1/2)

,
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where the constant C > 0 does not depend on the data. The estimate (2.16) can
be used to derive an estimate for the original solution ω:

(2.18) ‖ω‖ ≤ C0

(
‖f‖+ ‖g‖+

[∑
ψ∈B

◦

|cψ|2
]1/2)

,

where the generic constant C0 > 0 does not depend on the data f , g, and cψ,
ψ ∈ B

◦
. This yields the following corollary to the main theorem.

Corollary. The solution ω of (1.22), (2.5) depends continuously on the data
in the sense of (2.18). A corresponding result holds for the solution φ of (2.15).

For further generalizations and extensions of these results we refer the inter-
ested reader to [6] and [11].
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