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We consider unilateral problems for elliptic operators L = (L1, . . . , LN ) with
diagonal principal part in a bounded domain Ω ⊂ Rn. Unilateral problems with
gradient constraints have been studied in the scalar case (N = 1) for quasilinear
elliptic and parabolic operators of general type. The main aim of this article is to
extend the corresponding results to systems. The first step is to find an accept-
able statement of a unilateral problem with gradient constraints. Comparison of
formulations of classical problems and well-known unilateral problems leads to
the following conclusion. In both cases we have to find a function u(x) in Ω using
information about the vectors Lu(x) ∈ RN , x ∈ Ω. In classical problems we are
given values and directions of the vectors Lu(x), whereas in unilateral problems
only directions at points x ∈ Ω̃, where Ω̃ ⊂ Ω is not a priori known, are given.
In the latter case the direction of Lu(x) at x ∈ Ω̃ depends on the value of u(x)
(and possibly of ∇u(x)).

In the scalar case (N = 1) the direction condition is formulated in terms of
the sign of Lu(x). Such an assumption appears in the obstacle problem and the
Evans unilateral problem with gradient constraint. In the obstacle problem for a
system the vectors Lu(x) ∈ RN are directed along the outward normals to given
convex sets K(x) ⊂ RN .

We give the statement of the unilateral problem with constraint on the so-
lution and its gradient. The directions of the vectors Lu(x) ∈ RN coincide with
those of the solution u(x)∈RN at the points x∈Ω where u(x) 6= 0 and the pair
(u(x),∇u(x)) belongs to the boundary of a given convex set K(x) ⊂ RN ×RNn.
We give an equivalent statement of the problem in the form of a local quasivari-
ational inequality with some additional conditions.

Using some ideas of the penalty method, we introduce a regularization as a
boundary value problem with special penalty. The limit function is the solution
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of the problem considered. This solution satisfies the obstacle problem if we are
given the convex constraint only on the solution (not on its gradient).

The paper consists of three sections. In the first some statements of unilateral
problems and regularity results are discussed. The statement of the unilateral
problem for a system with gradient constraint, and the existence theorems, are
formulated in Section 2. A sketch of the proof is given in Section 3. We point out
the difficulties which arose in the vector case and refer to earlier articles by the
author for some technical details.

Acknowledgement. The author is grateful to Professor W. Zaja̧czkowski for
his interest in her earlier results on problems with gradient constraint. The moti-
vation to investigate such problems for systems arose thanks to their discussions.

1. Preliminaries

1.1. Regularity of solutions of classical problems. We recall the well-known
results of [13]. Let u0 be the solution of the Dirichlet problem

(1.1) Lu0 = 0 in Ω , u0 = 0 on ∂Ω

in a bounded domain Ω ⊂ Rn for the elliptic system L = (L1, . . . , LN ), where

(1.2) Lrv = armij (x, v,∇v)vmxixj
+ ar(x, v,∇v) (r = 1, . . . , N) ,

v = (v1, . . . , vN ),∇v = (v1
x1
, . . . , v1

xn
, . . . , vNx1

, . . . , vNxn
). In the scalar case (N = 1)

the differential properties of the solution u0 depend on the smoothness of the
data and character of non-linearity. In the vector case (N > 1) one has to take
into account the type of the system. Thus, the regularity result for systems with
diagonal principal part is quite similar to that in the scalar case if

(1.3) arij(x,w, p) = aij(x,w, p) (r = 1, . . . , N) ,

where ν1|ξ|2 ≤ aijξiξj (∀ξ ∈ Rn) and the functions aij(x,w, p), ar(x,w, p) are
increasing in p ∈ RnN so that

|aij(x,w, p)| ≤ µ(|w|)|p| , |ar(x,w, p)| ≤ µ(|w|)|p|2−δ, δ > 0 ,

where δ > 0, µ(τ) is a positive continuous function for τ > 0. Namely, under the
assumptions mentioned, the conditions aij , ar ∈ Cl+α−2, ∂Ω ∈ Cl+α with α > 0
imply u0 ∈ Cl+α. The analogous results hold for the second and third boundary
value problems.

1.2. Regularity of solutions of variational inequalities. Let L be of divergence
form, i.e., L = B, where

(1.4) Brv =
d

dxi
bri (x, v,∇v) + ar(x, v,∇v) (r = 1, . . . , N) .

Under some assumptions on brj(x,w, p), a
r(x,w, p) we can define an operator
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A : W
◦

1
m(Ω; RN )→W−1

m (Ω; RN ) by the formula

(1.5) 〈Aξ, η〉 =
N∑
r=1

∫
Ω

[bri (x, ξ, ξx)ηrxi
+ ar(x, ξ, ξx)ηr] dx .

For ξ, η ∈ C∞0 (Ω; RN ) we have

〈Aξ, η〉 = −
∫
Ω

Bξ · η dx .

The solution u0 of the Dirichlet problem (1.1) satisfies the variational equality

(1.6) find u0 ∈W
◦

1
m(Ω; RN ) such that

〈Au0, v〉 = 0 for all v ∈W
◦

1
m(Ω; RN ) ,

which is a special case of the variational inequality

(1.7) find u ∈ K such that
〈Au, v − u〉 ≥ 0 for all v ∈ K ,

where K is a convex closed set in W
◦

1
m(Ω; RN ) .

If the operatorA is coercive and pseudomonotone, the classical problem (1.6) has a
solution. The latter is considered as a weak solution of the boundary value problem
(1.1). It follows from general theorems of convex analysis that the variational
inequality (1.7) also has a solution under the same conditions on A and for a
convex closed set K ∈W

◦
1
m(Ω; RN ).

However, the regularity questions for variational inequalities differ from those
for equations. Indeed, let us take data (i.e., arij , a

r, ∂Ω) so that u0 ∈ C∞0 (Ω; RN ).

Take a convex closed set K⊂W
◦

1
m(Ω; RN ) and let u be a solution of (1.7) with the

same data. For some K the differential properties of u can be better than those
of an arbitrary function in W

◦
1
m(Ω; RN ), but there exists a function space W such

that C∞0 (Ω; RN ) ⊂ W ⊂ W
◦

1
m(Ω; RN ), and u 6∈ W . Note that we have such a

situation in variational inequalities with pointwise constraints. For example, in
the obstacle problem, i.e., the variational inequality (1.7) with the set

(1.8) K = {v ∈W
◦

1
m(Ω; RN ) : v(x) ∈ K(x) a.e. in Ω ,

K(x) is a convex closed set in RN} ,

and in the problem with gradient constraint, i.e. (1.7) with

(1.9) K = {v ∈W
◦

1
m(Ω; RN ) : ∇v(x) ∈ K(x) a.e. in Ω ,

K(x) is a convex closed set in RNn} ,

we have u 6∈ C2(Ω; RN ) (see the counterexample in [15, Ch. 2, Sec. 8.7]).
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The first result on the regularity of solutions of variational inequalities with
sets K of type (1.8) or (1.9) was obtained by H. Lewy and G. Stampacchia in 1969
[14]. Up to now, the scalar case has been studied in detail. The most complete
results are established for obstacle problems. Here we mention some regularity
results and refer to the books [7, 12] and the survey [25] for precise formulations
and bibliography.

In the scalar case (N = 1) we have three basic forms of constraints.

(a) The obstacle problem (1.7), (1.8). The limit regularity (u ∈ W 2
∞) was

proved in the case of quasilinear operators. For a sketch of proof see [25].
(b) The thin obstacle problem, i.e., variational inequality of type (1.7), (1.8)

but with constraint u(x) ∈ K(x) for x ∈ S, where S is a given (n−1)-dimensional
surface in Ω, for example S = ∂Ω. The best regularity result (Hölder continuity
of the first derivatives) was proved for linear operators in [5, 11, 24] by different
methods.

(c) The problem with gradient constraint . In the case K(x) = {p ∈ Rn :
|p| ≤ 1}, Lv = ∆v + µ, µ = const, the variational inequality (1.7), (1.9) is the
well-known elastic-plastic torsion problem. The limit regularity (u ∈ W 2

∞) was
apparently proved only in this special case [5]. W 2

q -regularity was established for
divergence-type quasilinear operators and some class of strictly convex bounded
sets K(x) ⊂ Rn [27, 17, 10]; see also [7].

Further, the question arises whether the regularity results obtained for the case
N=1 can be extended to elliptic systems. The answer is affirmative if we consider
the obstacle problem for some systems with diagonal principal part.W 2

q -regularity
for quasilinear systems was proved by S. Hildebrandt and K.-O. Widman [8].
A. A. Arkhipova and N. N. Ural’tseva have considered the thin obstacle problem
[4]. The limit regularity in the obstacle problems for linear diagonal systems with
special constraints was also proved; see formulations of results and references in
[25, 4, 1].

The natural regularity result in obstacle problems for a strongly elliptic sys-
tem is W 2

2 -regularity. The corresponding theorems for some modifications of the
obstacle problems are given in [25]; see also [2].

The regularity question for the variational inequality for systems with gradient
constraint remains open.

1.3. Unilateral problems. The scalar case. The Dirichlet problem is considered
both in a weak formulation (1.6) and in a strong form of a boundary value problem
(1.1). These statements are formally equivalent for a divergence-type operator L.

By analogy, the variational inequality (1.7) can be treated as a weak for-
mulation of a boundary value problem depending on the convex set K. We
refer to these boundary problems and their variants as “unilateral problems”
and use the term “variational inequality” only for (1.7). We emphasize that
these terms are often identified. This does not matter if we restrict ourselves
to the obstacle problems with divergence-type operators, since in this case the
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statements are equivalent. However, we have to distinguish between the state-
ments even in the case N = 1, Lv = ∆v + f(x) if we deal with gradient con-
straints.

We begin with the scalar obstacle problem. Let N = 1 and u be a solution
of (1.7), (1.8). Any convex closed set K(x) ⊆ R can be written in the form
K(x) = [ϕ1(x), ϕ2(x)], where ϕ1(x) ≤ ϕ2(x) (the case ϕ1 = −∞ or ϕ2 = +∞
is admitted). Since v = ψw + (1 − ψ)u ∈ K for ψ ∈ C∞0 (Ω), 0 ≤ ψ ≤ 1,
and w ∈ K, the variational inequality (1.7), (1.8) is formally equivalent to the
pointwise inequality

(1.10) Lu(x) · (w(x)− u(x)) ≤ 0 (∀w ∈ K)

with the boundary condition u = 0 on ∂Ω. It follows from (1.10) that a smooth
solution u of (1.7), (1.8) satisfies the boundary value problem

(1.11)

ϕ1(x) ≤ u(x) ≤ ϕ2(x) in Ω ,

Lu(x)

≥ 0 if u(x) = ϕ2(x), ϕ1(x) < ϕ2(x),
= 0 if ϕ1(x) < u(x) < ϕ2(x),
≤ 0 if u(x) = ϕ1(x), ϕ1(x) < ϕ2(x),

the sign of Lu(x) is arbitrary if ϕ1(x) = ϕ2(x),
u = 0 on ∂Ω .

Note that the sign of Lu(x) is not defined for x ∈ Ω such that the corresponding
setK(x) is degenerate, i.e., intK(x) = ∅ orK(x) = {ϕ1(x)} = {ϕ2(x)}. For every
convex set K(x) ⊂ R there exists a convex function G(x, ·) such that G(x, ·) ∈
C2(R) and

K(x) = {w ∈ R : G(x,w) ≤ 0} = [ϕ1(x), ϕ2(x)] ,
intK(x) = {w ∈ R : G(x,w) < 0} = (ϕ1(x), ϕ2(x)) .

Moreover, intK(x) = ∅ if and only if the value ϕ1(x) = ϕ2(x) is the minimum
point of G(x, ·). Therefore, in this case DwG(x, ϕ1(x)) = 0. Hence we can rewrite
(1.11) in terms of G(x,w) as follows:

(1.12)

G(x, u(x)) ≤ 0 in Ω ,

Lu(x) ↑↑ ∇wG(x, u(x)) if G(x, u(x)) = 0 , DwG(x, u(x)) 6= 0 ,
Lu(x) = 0 if G(x, u(x)) < 0 ,

the sign of Lu(x) is not defined if G(x, u(x)) = 0 and DwG(x, u(x)) = 0,
u = 0 on ∂Ω .

Here a ↑↑ b means that either a = 0 or a 6= 0 has the same sign as b. If 0 ∈ K(x)
(∀x ∈ Ω), then (1.12) reduces to the following boundary value problem:

(1.13)
u(x) ∈ K(x) , Lu(x) · u(x) ≥ 0 in Ω ,

Lu(x) = 0 if u(x) ∈ intK(x) ,
u = 0 on ∂Ω .
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Note that the signs of Lu(x) and of the solution u(x) have to coincide at x such
that u(x) ∈ ∂K(x). Finally, if K(x) = (−∞, ϕ2(x)] and 0 ∈ K(x) (∀x ∈ Ω), i.e.,
ϕ2 ≥ 0, we obtain from (1.11) the boundary value problem in the form

(1.14) min{Lu(x),−G(x, u(x))} = 0 in Ω , u = 0 on ∂Ω .

Considering (1.11)–(1.14) with a non-divergence-type operator L we lose the
connection of the boundary value problems with variational inequalities and in
this case the weak solvability does not follow from general results of convex anal-
ysis. The obstacle problem with non-divergence-type operators was considered in
[3, 23], where the solvability in W 2

p was proved. Note that the existence theorem
and the limit regularity (u ∈W 2

∞) also follow from the results of [21, 22].
It is easy to write out the corresponding boundary value problems (unilateral

problems) for variational inequalities with thin obstacles, boundary obstacles etc.
Indeed, in this case the functions v = ψu + (1 − ψ)w are admissible in (1.7) for
any ψ ∈ C∞0 (Ω), 0 ≤ ψ ≤ 1, and w ∈ K.

Now we analyze the variational inequality (1.7), (1.9) with gradient constraint.
One can show that a solution u(x) of the variational inequality (1.7), (1.9) formally
satisfies the conditions

(1.15)
(u(x),∇u(x)) ∈ K(x) in Ω ,

Lu(x) = 0 if (u(x),∇u(x)) ∈ intK(x) ,
u = 0 on ∂Ω .

However, we cannot obtain any information about the sign of Lu(x) directly from
(1.7), (1.9). It is obvious that the problem (1.15) is not well-posed. L. C. Evans
considered the problem (1.15) with an additional condition on the sign of Lu(x)
in Ω [6]. Namely, he proved the solvability of the problem (cf. (1.14))

(1.16)
min{Lu(x),−F (x, u(x),∇u(x))} = 0 in Ω ,

u = 0 on ∂Ω ,

in the case

Lv = aij(x)vxixj
+ ai(x)vxi

+ a(x)v + f(x) , f ≥ 0 , a ≤ 0 ,

F (x,w, p) = |p|2 − g(x) , g ≥ 0 ,

i.e., the sets K(x) = {p ∈ Rn : |p|2 ≤ g(x)} are balls in Rn centered at the origin
with radius g(x). The assumption f ≥ 0 in Ω provides the inequality u ≥ 0 in Ω.
Hence (1.16) implies that Lu(x) ↑↑ u(x) at x ∈ Ω such that F (x, u(x),∇u(x)) =
|∇u(x)|2 − g(x) = 0. Note that 0 is a minimal value of u. Hence ∇u(x) = 0 at
x ∈ Ω such that u(x) = 0. Consequently, F (x, u(x),∇u(x)) < 0 and Lu(x) = 0
on the set of zeros of u(x).

The results of L. C. Evans were generalized in [9, 16, 26, 18–22].

1.4. Unilateral problems. The vector case. We consider the obstacle problem
(1.7), (1.8) in the case N > 1. Let 0 ∈ K(x) (∀x ∈ Ω) and intK(x) = ∅ if and
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only if K(x) = {0}; moreover, ∂K(x) ∈ C1 for x ∈ Ω such that intK(x) 6= ∅. It
follows that the solution u of (1.7), (1.8) satisfies the pointwise inequality

(1.17) Lu · (v − u) ≤ 0 (∀v ∈ C∞0 (Ω) , v(x) ∈ K(x)) .

For vectors a ∈ RN , b ∈ RN we shall write a ↑↑ b if there exists λ ≥ 0 such that
a = λb. In particular, a ↑↑ 0 means a = 0. It is easy to see that (1.7), (1.8) is
formally equivalent to the next problem:

(1.18)

u(x) ∈ K(x) in Ω ,

Lu(x) = 0 if u(x) ∈ intK(x) , intK(x) 6= ∅ ,
Lu(x) ↑↑ n(x, u(x)) if u(x) ∈ ∂K(x) , intK(x) 6= ∅ ,

the direction of Lu(x) is arbitrary if intK(x) = ∅, i.e., K(x) = {0},
u = 0 on ∂Ω ,

where n(x,w) denotes the unit outward normal vector to ∂K(x) at w ∈ ∂K(x).
Let G(x,w) be a convex function such that

G(x, 0) ≤ 0 , G(x, ·) ∈ C1 ,

K(x) = {w ∈ RN : G(x,w) ≤ 0} , intK(x) = {w ∈ RN : G(x,w) < 0} ,

intK(x)=∅ if and only if ∇wG(x, 0) = 0. To construct G(x,w) one can use the
distance function. For example, in the case of balls K(x) = {w ∈ RN : |w|2 ≤
g(x)} we can take G(x,w) = |w|2−g(x). If g(x0) > 0 for x0 ∈ Ω and |w|2 = g(x0),
then the vector ∇wG(x,w) is directed along the outward normal to ∂K(x), i.e.,
n(x,w) = λ∇wG(x,w) = 2λw, where λ > 0. Thus, the unilateral problem (1.18)
can be written as follows:

(1.19)

G(x, u(x)) ≤ 0 in Ω ,

Lu(x) = 0 if G(x, u(x)) < 0 ,
Lu(x) ↑↑ ∇wG(x, u(x)) if G(x, u(x)) = 0 , ∇wG(x, u(x)) 6= 0 ,

the direction of Lu(x) is arbitrary if ∇wG(x, u(x)) = 0,
u = 0 on ∂Ω .

2. The main result. In this section we formulate a problem with gradient
constraint as a local quasivariational inequality under some additional conditions.
We show that its regular solution satisfies a unilateral problem and give formula-
tions of the existence theorems. A sketch of the proof is given in Section 3. First
we write out assumptions on data.

2.1. The operator A. Let us introduce

(A1) 〈Au, v〉 =
N∑
r=1

∫
Ω

(aij(x)urxi
vrxj

+ (aij(x))xj
urxi

vr − ar(x, u,∇u)vr) dx ,

where aij ∈ C2(Ω), ar ∈ C2(Ω×RN ×RNn), Ω is a bounded domain in Rn with
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boundary ∂Ω ∈ C3. Suppose that the ellipticity condition is satisfied:

(A2) ν1|ξ|2 ≤ aij(x)ξiξj ≤ µ1|ξ|2 (∀ξ ∈ Rn) ,

and for x ∈ Ω, |w| > M , p ∈ RNn

(A3) a(x,w, p) · w =
N∑
r=1

ar(x,w, p)wr < 0 ,

while for x ∈ Ω, |w| ≤M , |p| > R1

(A4) |ar(x,w, p)| ≤ µ2(|w|)(1 + |p|1+α1) ,

where ν1, µ1,M,R1 denote positive constants, the function µ2(τ), τ > 0, is strictly
positive, and 0 < α1 < 1, 1/(1 − α1) < n. Then (A1) defines an operator A :
W
◦

1
2 (Ω; RN )→W−1

2 (Ω; RN ). Moreover, assume that for |p| > R1∣∣∣∣∂ar(x,w, p)∂xk

∣∣∣∣+
∣∣∣∣∂ar(x,w, p)∂wm

∣∣∣∣ ≤ µ3(|w|)(1 + |p|1+α1) ,(A5) ∣∣∣∣∂ar(x,w, p)∂plk

∣∣∣∣ ≤ µ4(|w|)(1 + |p|α1) ,(A6)

where 1≤k≤n and 1≤ l, m≤N , the functions µ3(τ), µ4(τ) are strictly positive
and continuous for τ > 0.

2.2. The operator L. Define

(L1) Lv = aij(x)vrxixj
+ ar(x,w, p) .

It is easy to see that the integral identity

(L2) 〈Au, v〉 = −
∫
Ω

Lu · v dx

holds for functions u ∈W 2
p (Ω; RN ), v ∈W

◦
1
2 (Ω; RN ).

2.3. The function G : Ω × RN → R. Define

(G1) G(x,w) = B(x)w · w =
N∑

l,m=1

blm(x)wlwm ,

where B(x) = (blm(x)) is a symmetric positive-definite matrix,

(G2) B(x)ζ · ζ ≥ ν2|ζ|2 (∀ζ ∈ RN ) ,

where ν2 = const > 0, with elements blm ∈ C2(Ω). Note that G(x,w) is non-
negative and strictly convex with respect to w ∈ RN ; moreover,

(G3) G(x,w) = 0⇔ ∇wG(x,w) = 0⇔ B(x) = 0⇔ w = 0 .

2.4. The function F : Ω × RN × RNn → R. Set

D = {(x,w, p) ∈ Ω × RN × RnN : F (x,w, p) > 0} ,(F1)
K(x) = {(w, p) ∈ RN × RNn : F (x,w, p) ≤ 0} .(F2)
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Suppose that

(F3) F ∈ C1+α2(Ω × RN × RNn) ∩ C2(D) ,

where 0 < α2 < 1, and let F (x,w, p) be convex with respect to (w, p) ∈ RN×RNn.
Then the set K(x) is convex. Moreover, by the definition of a convex function we
have for x ∈ Ω, w ∈ RN , p ∈ RNn

(F4)
N∑
m=1

∂F (x,w, p)
∂wm

wm +
N∑
l=1

n∑
k=1

∂F (x,w, p)
∂plk

plk ≥ F (x,w, p)− F (x, 0, 0) .

We also suppose that F (x,w, p) is strictly convex on D with respect to p ∈ RNn,
i.e.,

(F5)
N∑

m,l=1

∂2F

∂um∂ul
ζmζl + 2

N∑
m,l=1

n∑
k=1

∂2F

∂um∂plk
ζmηlk +

N∑
m,l=1

n∑
k,s=1

∂2F

∂plk∂p
m
s

ηlkη
m
s

≥ ν2|ζ|2 + ν3(|w|)[1 + |p|2](α2−1)/2|η|2 (∀ζ ∈ RN , η ∈ RnN ) ,

where (x,w, p) ∈ D, ζ = (ζ1, . . . , ζN ) ∈ RN , ν2 = const ≥ 0 and ν3(τ) is a strictly
positive continuous function for τ > 0. Furthermore,

(F6) F (x, 0, 0) < 0 (∀x ∈ Ω)

and there exists a function R2(τ) such that for all x ∈ Ω
(F7) K(x) ⊂ {(w, p) ∈ RN × RnN : |p| < R2(|w|)} ,
and for x ∈ Ω, u ∈ RN , |p| ≥ R2(|w|)
(F8) F (x,w, p) ≥ ν4|p|1+α2 .

Moreover, for (x,w, p) ∈ D the following estimates hold:

F (x,w, p) +
∣∣∣∣∂F (x,w, p)

∂xi

∣∣∣∣+
∣∣∣∣∂2F (x,w, p)

∂xi∂xj

∣∣∣∣ ≤ µ5(|w|)[1 + |p|1+α2 ],(F9) ∣∣∣∣∂2F (x,w, p)
∂xi∂plk

∣∣∣∣+
∣∣∣∣F (x,w, p)

∂plk

∣∣∣∣ ≤ µ6(|w|)[1 + |p|α2 ],(F10) ∣∣∣∣∂F (x,w, p)
∂wm

∣∣∣∣+
∣∣∣∣∂2F (x,w, p)

∂xi∂wm

∣∣∣∣ ≤ µ7(|w|)[1 + |p|1+α2−δ] ,(F11)

where 1 ≤ i, j, k ≤ n, 1 ≤ l,m ≤ N , 0 < α2 < 1, δ > 0, the functions µ5(τ),
µ6(τ), µ7(τ) are continuous and positive for τ ≥ 0.

2.5. Formulation of the problem. For v ∈ C(Ω; RN ) write

Ωv = {x ∈ Ω : v(x) 6= 0} ,(2.1)
M(x, v(x)) = {w ∈ RN : G(x,w) ≤ G(x, v(x))}(2.2)

and for v ∈ C1(Ωv; RN ) set

(2.3) ΩvF = {x ∈ Ωv : F (x, v(x),∇v(x)) < 0} .
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Note that the sets Ωv, ΩvF are open in Ω and the M(x, v(x)) are convex closed
sets for all x ∈ Ω. It is obvious that v(x) ∈ ∂M(x, v(x)) (∀x ∈ Ω).

Problem (quasivariational inequality). Find a function

(QV1) u ∈W
◦

1
2 (Ω; RN ) ∩ C(Ω; RN ) ∩ C1(Ωu; RN ) = V

such that

(QV2) 〈Au, (v − u)η〉 ≥ 0

for all η ∈ C∞0 (Ω) with supp η ⊂ Ωu, η ≥ 0, and all v ∈ W
◦

1
2 (Ω; RN ) with

v(x) ∈M(x, u(x)) a.e. in Ω,

F (x, u(x),∇u(x)) ≤ 0 in Ωu ,(QV3)
Au = 0 in ΩuF (as distributions).(QV4)

Problem (unilateral problem). Find a function

(U1) u ∈ C(Ω; RN ) ∩W 2
p,loc(Ωu; RN )

such that

F (x, u(x),∇u(x)) ≤ 0 in Ωu ,(U2)
Lu(x) = λ(x)∇wG(x, u(x)) = λ(x)B(x)u(x) a.e. in Ωu ,(U3)

where λ(x) ≥ 0 is an a priori unknown function and

λ(x) = 0 for x ∈ ΩuF ,(U4)
u = 0 on ∂Ω .(U5)

R e m a r k 2.1. The problem (U1)–(U5) is a free boundary problem. The do-
main Ω is divided into three sets:

Ω1 : u = 0;
Ω2 : u 6= 0, F (x, u,∇u) < 0, Lu = 0,
Ω3 : u 6= 0, F (x, u,∇u) = 0, either Lu = 0 or Lu(x) is directed along the

outward normal to M(x, u(x)) at u(x) ∈ ∂M(x, u(x)).

Note that the set M(x, u(x)) is degenerate for x ∈ Ω1, i.e., for x such that
M(x, u(x)) = {0} ⇔ intM(x, u(x)) = ∅.

R e m a r k 2.2. The scalar variant of (U1)–(U5) can be written as follows:

F (x, u(x),∇u(x)) ≤ 0 in Ωu ,

Lu(x) · u(x) ≥ 0 a.e. in Ω ,

Lu(x) = 0 in ΩuF ,

u = 0 on ∂Ω ,

i.e., the sign of Lu(x) 6= 0 is the same as that of the solution u(x).

2.6. Proposition. If u ∈ C(Ω; RN )∩W 2
p,loc(Ωu; RN ) satisfies (QV1)–(QV4),

then u is a solution of (U1)–(U5).
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P r o o f. (U2) is a consequence of (QV3); and (U1), (U5) are valid because
of the regularity assumption. To verify (U3) we take w ∈ W

◦
1
2 (Ω; RN ) such that

w(x)∈M(x, u(x)) a.e. in Ω and ξ ∈C∞0 (Ω) with 0 ≤ ξ ≤ 1. Then v = ξ(x)u +
(1−ξ(x))w is admissible in (QV2). Hence we can deduce from (QV2) the pointwise
inequality

Lu(x) · (w(x)− u(x)) ≤ 0 a.e. in Ωu .

It means that Lu(x) either vanishes or else its direction coincides with that of
the outward normal n(x, u(x)) to ∂M(x,w) at w = u(x). Since n(x, u(x)) =
λ∇wG(x, u(x)), λ > 0, we obtain (U3). Equality (QV4) yields (U4).

2.7. The penalty problem. Consider the boundary value problem

Luε = βε(F (x, uε,∇uε))B(x)uε in Ω ,(PP1)
uε = 0 on ∂Ω ,(PP2)

where ε > 0, βε(τ) = (1/ε)β0(τ), τ ∈ R, and β0 ∈ C2(R) satisfies

β0(τ) = 0 for τ ≤ 0 , β0(τ) > 0 for τ > 0 ,
β′0(τ) > 0 , β′′0 (τ) ≥ 0 for τ > 0 ,

β0(τ) = τ1+α0 for τ ≥ 1 .

The constant α0, 0 < α0 < 1, is such that

(PP3) max
{

0,
α1 − α2

1 + α2

}
< α0 <

1− α2

1 + α2
.

By (F9) we have for (x,w, p) ∈ D ∩ {(x,w, p) : |w| ≤M}

0 ≤ βε(F (x,w, p)) =
1
ε

[F (x,w, p)]1+α0 ≤ 1
ε
µ5(M)(1 + |p|γ) ,

where γ = (1 +α0)(1 +α2). In view of (PP3) we have γ < 2. Moreover, by (G2),

βε(F (x,w, p))B(x)w · w ≥ 0 .

From Theorem 5.2 of [13, Ch. 8] we conclude that there exists a solution uε ∈
C3(Ω; RN ) ∩ C1(Ω; RN ) of the penalty problem (PP1), (PP2).

2.8. Formulation of the theorems. We assume the conditions from 2.1–2.4 to
be satisfied.

Theorem 2.1. Suppose that

(2.4) ∇wG · ∇wF +
N∑

l,m=1

n∑
k=1

∂F

∂plk
blmpmk ≥ ν5|p|1+α2 − µ7(|w|)p1+α2−γ2 ,

where ν5 = const > 0 and µ7(τ) is a positive continuous function for τ ≥ 0. Then
there exist a sequence uε and a function u ∈ V ∩W 2

p,loc(Ωu; RN ) such that uε → u

in W−1
2 (Ω; RN ) and u satisfies (QV1)–QV4).

Theorem 2.2. Let u be the solution of (QV1)–(QV4) from Theorem 2.1. If
B(x) is the unit matrix then u ∈ C0,1(Ω; RN ).
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Corollary. Under the assumption of Theorem 2.2 the solution u of (QV1)–
(QV4) from Theorem 2.1 is a solution of the unilateral problem (U1)–(U5).

If constraint is given only on the solution, then the regularizations introduced
above yield the solution of the obstacle problem. We show this in a simple case
and refer to the article of S. Hildebrandt and K.-O. Widman [8] for regularity
results in the general case. Let

Lv = ∆vl + alm(x)wm + al(x) (l = 1, . . . , N),(O1)
G(x,w) = |w|2 ,(O2)

F (x,w, p) = |w|2 − f(x) ,(O3)

where f(x) ≥ f0 > 0. In this case ∇wF = ∇wG = w and B(x) is the unit matrix.

Theorem 2.3. Under the conditions (O1)–(O3) there exist a subsequence uε

and a function u ∈ V so that uε → u in W−1
2 (Ω; RN ), u belongs to W 2

p,loc(Ω; RN )
and satisfies the variational inequality (the obstacle problem)

(2.5) u ∈W
◦

1
2 (Ω; RN ) , F (x, u(x),∇u(x)) ≤ 0 in Ω ,

(2.6) 〈Au, v − u〉 ≥ 0

for all v ∈W
◦

1
2 (Ω; RN ) with F (x, v(x),∇v(x)) ≤ 0 a.e. in Ω .

2.9. Examples. (1) The following function F satisfies the conditions (F1)–
(F11):

(2.7) F (x,w, p) = [C(x)p · p+D(x)w · w](1+α2)/2 − g(x) ,

where the (Nn × Nn)-matrix C(x) = (clmks (x)) and (N × N)-matrix D(x) =
(dlm(x)) are real and symmetric, and the elements clmks (x), dlm(x) (1 ≤ l,m ≤ N ;
1 ≤ k, s ≤ n) and the function g(x) belong to the class C2(Ω); moreover, we
assume g(x) > 0 in Ω and

c0|η|2 ≤ C(x)η · η =
N∑

l,m=1

n∑
k,s=1

clmks (x)ηlkη
m
s ≤ c1|η|2 (∀η ∈ RNn) ,(2.8)

d0|ζ|2 ≤ D(x)ζ · ζ =
N∑

m,l=1

dlm(x)ζlζm ≤ d1|ζ|2 (∀ζ ∈ RN ) ,(2.9)

where c0, c1, d1 = const > 0, d0 ≥ 0.
(2) The conditions (F1)–(F11) are also valid for the function

F (x,w, p) =
[ N∑
l=1

n∑
k=1

f lk(x)(plk)2
](1+α2)/2

(2.10)

+
N∑
l=1

n∑
k=1

glk(x,w)|plk|1+γ
l
k − g(x) ,
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where f lk, g ∈ C2(Ω), glk ∈ C2(Ω × RN ), the functions glk(x,w) are convex with
respect to w ∈ RN , and for x ∈ Ω

(2.11) g(x) > 0 , glk(x,w) ≥ 0 , glk(x, 0) = 0 ;

moreover, we assume

0 < f0 ≤ min
l,k

min
Ω

f lk(x) ≤ max
l,k

max
Ω

f lk(x) = f1 ,(2.12)

0 ≤ min
l,k

γlk ≤ max
l,k

γlk = γ0 < α2 .(2.13)

2.8. R e m a r k. The assumption (2.4) is valid if the matrixB(x) or the function
F has a simple form. Namely, if B(x) is the unit (N × N)-matrix, then (2.4)
holds for any convex function F with properties (F1)–(F11). (2.4) is also true
for any positive-definite matrix B(x) and function F such that the sets {(w, p) :
F (x,w, p) ≤ 0} are balls in RN × RNn. In the general case, (2.4) is valid under
some additional conditions. So, the function F from the first example satisfies
(2.4) if

clmks (x) = 0 if k 6= s ,(2.14)
B(x)Ck(x) = Ck(x)B(x) , 1 ≤ k ≤ n .(2.15)

3. Sketch of the proof. We keep the notation of Section 2 and assume that
the conditions of Theorem 2.1 are satisfied. We first deduce some estimates for
the solutions uε of the penalty problem. For the sake of simplicity we often omit
the index ε. By C,C1, C2 etc. we denote different constants not depending on ε.

3.1. The estimate for |uε|Ω. Using the standard argument (see, e.g., [13, Ch. 8,
§5]) it is easy to derive the estimate |uε|Ω ≤ C. One has to consider the function
W (x) = |uε(x)|2 at its maximum point and use conditions (A3), (G2). Therefore
we further assume that the functions µi(|uε(x)|) are bounded above by constants
µi, i = 2, . . . , 7, independent of ε and x ∈ Ω. We also assume that ν3(|uε(x)|) ≥
ν3 = const > 0 in (F5) and R2(|uε|) ≤ R2 <∞.

3.2. The estimate for ‖∇uε‖L2(Ω). Using (PP1) and (L2) we can write the
integral identity

N∑
r=1

∫
Ω

n∑
i,j=1

(
aij(x)urxi

vrxj
+
∂aij
∂xj

urxi
vr − ar(x, u,∇u)vr

)
dx

= −
∫
Ω

β(F (x, u,∇u))
N∑

r,m=1

brm(x)umvr dx (∀v ∈W
◦

1
2 (Ω)) .

The right-hand side is non-positive for any vector-function v(x) = u(x)Φ(x),
where Φ(x) ≥ 0 is a scalar function. Proceeding as in [13, Ch. 8, §3] we obtain

‖∇uε‖L2(Ω) = ‖u‖
W
◦

1
2 (Ω)

≤ C .
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3.3. The estimate for |∇uε|Ω′ . We denote by Ω′ a subdomain of Ω such that
Ω′ ⊂ Ω and by ξ a cut-off function for Ω′. Define W (x) = ξ4F (x, u(x),∇u(x))
and evaluate W (x0) = maxx∈ΩW (x). It is sufficient to consider the case
F (x0, u(x0),∇u(x0)) > 0, |∇u(x0)| > R2 (see (F8)). We denote by C̃ constants
which do not depend on ε, but may depend on dist(Ω′, ∂Ω). At x0 we have

Wxi = ξ4
dF

dxi
+ (ξ4)xiF = 0 (i = 1, . . . , n) ,(3.1)

0 ≥
n∑

i,j=1

aijWxixj
= I1 + I2 + I3 + I4 ,(3.2)

where

I1 =
n∑

i,j=1

ξ4aij

[ N∑
m,l=1

∂2F

∂wm∂wl
∂um

∂xi

∂ul

∂xj
+ 2

N∑
m,l=1

n∑
k=1

∂2F

∂wm∂plk

∂um

∂xi

∂2ul

∂xk∂xj

+
N∑

m,l=1

n∑
k,s=1

∂2F

∂plk∂p
m
s

∂2ul

∂xk∂xi

∂2um

∂xs∂xj

]
,

I2 =
n∑

i,j=1

ξ4
{ N∑
l=1

∂F

∂wl
aij

∂2ul

∂xi∂xj
+

N∑
l=1

n∑
k=1

∂F

∂plk
aij

∂3ul

∂xk∂xi∂xj

}
,

I3 =
n∑

i,j=1

ξ4
{
aij

∂2F

∂xi∂xj
+ 2

N∑
l=1

aij
∂2F

∂xi∂wl
∂ul

∂xj
+ 2

N∑
l=1

n∑
k=1

aij
∂2F

∂xi∂plk

∂2ul

∂xk∂xj

}
,

I4 =
n∑

i,j=1

[
aij(ξ4)xixjF + aij(ξ4)xi

[
∂F

∂xj
+
∂F

∂wl
∂ul

∂xj
+
∂F

∂plk

∂2ul

∂xk∂xj

]]
.

Represent I1 in the form
N(n+1)∑
r,t=1

n∑
i,j=1

aij(x0)drt(x0)qri q
t
j ,

where drt(x0) is the N(n + 1) × N(n + 1)-matrix of the second derivatives of
F (x,w, p) with respect to (w, p) ∈ RN ×RnN at (x0, u(x0),∇u(x0)). By q = (qri )
we denote the Nn(n + 1)-dimensional vector with components q = (q1, . . . , qn),
qi = (ζi, ηi), where

ζi = (u1
xi
, . . . , uNxi

) ∈ RN , ηi = (u1
xix1

, . . . , u1
xixn

; . . . ;uNxix1
, . . . , uNxixn

) ∈ RNn .
Since the matrices aij(x0) and drt(x0) are positive-definite (see (A2) and (F5)),
we obtain

N(n+1)∑
r,t=1

n∑
i,j=1

aijd
rtqri q

t
j ≥ ν1ν3[1 + |∇u|2](α2−1)/2

n∑
i=1

(|ηi|2 + |ζi|2)

≥ ν0(1 + |∇u|2)(α2−1)/2|uxx|2 ,
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where ν0 = ν1ν3 > 0. Thus,

(3.3) I1 ≥ ν0(1 + |∇u|2)(α2−1)/2|uxx|2ξ4 .
In I2, there are terms with third order derivatives of u. Therefore we differen-

tiate the lth equation of the system (PP1) with respect to xk, multiply the result
by ∂F/∂plk and sum over k, l to obtain
n∑

i,j=1

N∑
l=1

n∑
k=1

[
aiju

l
xixjxk

+ (aij)xk
ulxixj

+
dal(x, u,∇u)

dxk

]
∂F

∂plk

=
n∑

i,j=1

N∑
l=1

n∑
k=1

[
β′(F )

dF

dxk

N∑
r=1

blrur + β(F )
N∑
r=1

(blrxk
ur + blrurxk

)
]
∂F

∂plk
.

Using the lth equation of (PP1) to express aijulxixj
we can write

I2 − J

= ξ4
[ n∑
i,j=1

N∑
l=1

n∑
k=1

(
∂F

∂wl
al(x, u,∇u)− ∂F

∂plk
(aij)xk

ulxixj
− ∂F

∂plk

dal(x, u,∇u)
dxk

)]
,

where

J = ξ4
N∑

l,r=1

[
∂F

∂wl
blrur +

n∑
k=1

∂F

∂plk
blrurxk

]
β(F )

+ ξ4β′(F )
N∑

l,r=1

n∑
k=1

∂F

∂plk

dF

dxk
blrur + ξ4β(F )

N∑
l,r=1

n∑
k=1

∂F

∂plk
(blr)xk

ur

= J1 + J2 + J3 .

Without loss of generality one can assume that ε < 1, F (x0, u,∇u) > 1 and
|∇u(x0)| is sufficiently large. Due to the choice of the penalty function β we have

β(F ) =
1
ε
β0(F ) ≥ F 1+α0 ≥ ν̃4|∇u|(1+α2)(1+α0) ,(3.4)

Fβ′(F ) =
1
ε
Fβ0(F ) = (1 + α0)

1
ε
F 1+α0 = (1 + α0)β(F ) .(3.5)

To estimate J1 we note that

∇wG · ∇wF =
N∑

l,r=1

∂F

∂wl
blrwr

and apply the assumption (2.4) of Theorem 2.1 with w = u(x0) and p = ∇u(x0)
to obtain

J1 ≥ ξ4β(F )[ν5|∇u|1+α2 − µ7|∇u|1+α2−γ2 ] , γ2 > 0 .

Hence for sufficiently large |∇u(x0)| we have

J1 ≥
ν5
2
ξ4β(F )|∇u|1+α2 .
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Further, by (3.1) we have ξ4dF/dxk = −(ξ4)xk
F (k = 1, . . . , n). Hence by (3.5)

J2 = −Fβ′(F )
N∑

l,r=1

n∑
k=1

∂F

∂plk
blrur(ξ4)xk

= −(1 + α0)β(F )
N∑

l,r=1

n∑
k=1

blrur
∂F

∂plk
(ξ4)xk

≥ −Cβ(F )[|∇u|α2 + 1]
n∑
k=1

|(ξ4)xk
| .

Here we have used the inequality (F10). By analogy we deduce the bound

J3 ≥ −ξ4β(F )C[|∇u|α2 + 1] .

It is obvious that J1 + J3 ≥ (ν5/4)ξ4β(F )|∇u|1+α2 for large |∇u|. Note that if

ξ|∇u(x0)| ≤ C
n∑
k=1

|ξxk
| = C̃1

then ξ4|∇u| ≤ C̃. If

ξ|∇u(x0)| > C

n∑
k=1

|ξxk
| = C̃1 ,

we obtain by (3.4)

(3.6) J = J1 + J2 + J3 ≥
ν5
8
ξ4β(F )|∇u|1+α2 ≥ ν6ξ4|∇u|(1+α2)(2+α0) .

Now, we write out the derivative dal/dxk and use the conditions (A5) and
(A6) to get ∣∣∣∣ daldxk

∣∣∣∣ =
∣∣∣∣ ∂al∂xk

+
∂al

∂wl
∂um

∂xk
+

N∑
l=1

n∑
s=1

∂al

∂plk

∂2ul

∂xk∂xs

∣∣∣∣(3.7)

≤ C[|∇u|1+α1 + |∇u|2+α1 + |∇u|α1 |uxx|] .

In view of (A4), (F9)–(F11), (3.7) and the assumption |∇u(x0)| > 1 we obtain

(3.8) I2 − J ≥ −ξ4C[|∇u|2+α1+α2 + |∇u|α1+α2 |uxx|] .

For I3 we use (F9)–(F11) to obtain

(3.9) I3 ≥ ξ4C[|∇u|2+α2−δ + |∇u|α2 |uxx|] .

Thus, (3.3), (3.6), (3.8) and (3.9) imply

I1 + I2 + I3 ≥ ξ4
[
ν0(1 + |∇u|2)(α2−1)/2|uxx|2 +

ν6
2
|∇u|(1+α2)(2+α0)

]
(3.10)

− Cξ4[|∇u|2+α1+α2 + |∇u|α1+α2 |uxx|] .
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Apply the Cauchy inequality to obtain

|∇u|α1+α2 |uxx| ≤
ν0
4

(1 + |∇u|2)(α2−1)/2|uxx|+ C|∇u|1+2α1+α2 .

By (PP3)

γ = (1 + α2)(2 + α0) > max{1 + 2α1 + α2, 2 + α1 + α2} .
Therefore for sufficiently large |∇u(x0)| we deduce from (3.10)

(3.11) I1 + I2 + I3 ≥ ξ4
[
ν0
2

(1 + |∇u|2)(α2−1)/2|uxx|2 +
ν6
2
|∇u|(1+α2)(2+α0)

]
.

To estimate I4 we note that

|aij(ξ4)xixj
F | ≤ ξ2F |12aijξxi

ξxj
+ 4ξaijξxixj

| ≤ ξ2C̃|∇u| .
Taking into account the last inequality and (F9)–(F11) we obtain for suffi-

ciently large |∇u(x0)|

I4 ≥ −C̃ξ2|∇u| − C̃ξ3(|∇u|2+α2−δ + |∇u|α2 |uxx|) .
By the Cauchy inequality

ξ3|∇u|α2 |uxx| ≤
ν0
4
ξ4(1 + |∇u|2)(α2−1)/2|uxx|2 + Cξ2|∇u|1+α2 ;

therefore,

I4 ≥ −
ν0
4
ξ4(1 + |∇u|2)(α2−1)/2|uxx|2 − C̃0ξ

2|∇u|2+α2−δ ,

and consequently,
4∑
i=1

Ii ≥ ξ2|∇u|2+α2−δ
[
ξ2
ν6
4
|∇u|γ − C̃0

]
.

Now we have two possibilities: 1) ξ2|∇u(x0)|γ ≤ 8C̃0/ν6 and by (F9) we have
W (x0) ≤ C̃; 2)

∑4
i=1 Ii ≥ ξ(ν6/8)|∇u|(2+α0)(1+α2) > 0; in this case by (3.2) the

last inequality is not true.
Thus, for any subdomain Ω′ with Ω′ ⊂ Ω, the estimate maxx∈Ω′ |∇u

ε(x)| ≤ C̃
holds.

3.4. The existence of the limit function u. Because of the estimates deduced
above one can extract a subsequence from {uε} (which we denote again by uε)
such that uεl converges weakly in W

◦
1
2 (Ω) to ul (l = 1, . . . , N). Moreover, ul ∈

W 1
∞,loc(Ω) (l = 1, . . . , N) and, because of the imbedding theorems, uεl → ul

uniformly on compact sets Ω′ with Ω′ ⊂ Ω.

3.5. The estimate for ξ2βε(F (x, uε,∇uε))|Ω′0 . Let ξ∈C∞0 (Ω), supp ξ⊂Ωu=
{x∈Ω : u(x) 6= 0}. Since u is continuous in Ω, there exists a constant δ>0 such
that (∀x ∈ supp ξ) |u(x)| > δ. Since uε → u uniformly on Ω′, we have |uε(x)| >
δ/2 for sufficiently small ε. Suppose that W (x)=ξ2β(F ) has its maximum at x0∈
supp ξ. Now we show that W (x0) is bounded above by a constant which depends
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on δ and dist(supp ξ, ∂Ω), but does not depend on ε. Assume that W (x0) 6= 0.
At x0 we have

(3.12) Wxi = (ξ2)xiβ(F ) + ξ2
dβ

dxi
= 0 (i = 1, . . . , n) ,

(3.13) 0 ≥
n∑

i,j=1

aijWxixj
=

n∑
i,j=1

[
aij(ξ2)xixj

β + 2aij(ξ2)xi

dβ

dxj
+ aijξ

2 d2β

dxidxj

]
.

Since β(0)=0 and β(τ) is a convex function, we have β(τ) ≤ τβ′(τ). Substituting,
in (3.13), Fβ′(F ) for β(F ) we obtain the lower bound −C̃β′ for the first summand
of (3.13). Writing out the expression for the derivative dβ/dxi and taking into
account the estimates for F and its partial derivatives, we obtain

n∑
i,j=1

2aij(ξ2)xi

dβ

dxj
=

n∑
i,j=1

2aij(ξ2)xi
β′
[
∂F

∂xj
+

N∑
m=1

∂F

∂wm
umxj

+
N∑
l=1

n∑
k=1

∂F

∂plk
ulxkxj

]
≥ β′[−C̃ − C̃ξ|uxx|] .

Since β′′ ≥ 0 and the matrix aij is positive-definite, the third summand in (3.13)
is bounded below by β′ξ2aijd2F/dxidxj . Thus, (3.13) implies

(3.14) 0 ≥
n∑

i,j=1

aijWxixj
≥ β′[−C̃ − C̃ξ|uxx|] + β′ξ2

n∑
i,j=1

aij
d2F

dxidxj
.

We estimate the last term in (3.14) as follows:

(3.15) β′ξ2
n∑

i,j=1

aij
d2F

dxidxj
= β′ξ2

n∑
i,j=1

aij

[
∂2F

∂xi∂xj
+

N∑
m,l=1

∂2F

∂wm∂wl
umxi

ulxj

+
N∑

l,m=1

n∑
k,s=1

∂2F

∂plk∂p
m
s

ulxkxi
umxsxj

+
N∑
m=1

∂2F

∂xi∂wm
umxj

+
N∑

l,m=1

n∑
k=1

∂2F

∂wm∂plk
umxi

ulxkxj
+

N∑
m=1

∂F

∂wm
umxixj

+
N∑
l=1

n∑
k=1

∂F

∂plk
ulxkxixj

]

≥ β′ξ2
[
ν0|uxx|2 − C̃|uxx| − C̃ +

n∑
i,j=1

N∑
m=1

∂F

∂wm
aiju

m
xixj

+
n∑

i,j=1

N∑
l=1

n∑
k=1

∂F

∂plk
aiju

l
xkxixj

]
.

Here ν0 ≤ ν1ν3(1 + |∇uε|2)(α2−1)/2. Because of the estimate from 3.3 we can
assume that ν0 > 0 does not depend on ε. Now, we differentiate the system
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(PP1) with respect to xk and sum over k. By (A5), (A6) and (2.4) we obtain

0 ≥ β′(F )ξ2[ν0|uxx|2 − C̃|uxx| − C̃](3.16)

+ β′(F )
N∑
l=1

n∑
k=1

∂F

∂plk

(
ξ2
dβ

dxk

) N∑
s=1

blsus .

By (3.12) the last summand in (3.16) can be rewritten as follows:

β′(F )
N∑
l=1

n∑
k=1

∂F

∂plk

(
ξ2
dβ

dxk

) N∑
s=1

blsus

= −β′(F )
N∑
l=1

n∑
k=1

∂F

∂plk
(aijulxixj

+ al)(2ξξxk
) ≥ −β′(F )[C̃ξ|uxx|+ C̃] .

Thus, it follows from (3.14) and (3.16) that

0 ≥
n∑

i,j=1

aijWxixj
≥ β′(F )[ν0ξ2|uxx|2 − C̃ξ|uxx| − C̃] .

We apply the Cauchy inequality to obtain

0 ≥
n∑

i,j=1

aijWxixj
≥ β′(F )[ν0ξ2|uxx|2 − C̃] .

Recalling our assumption W (x0) 6= 0 (see 3.5) and, consequently, β′(F ) > 0, we
conclude that ξ2|uxx| ≤ C̃ at x0. Hence

ξ4β2|uε|2 = ξ4|Luε|2 = ξ4
n∑

i,j=1

N∑
l=1

(aijuεlxixj
+ al)2 ≤ C̃ .

Since |uε(x0)| > δ/2, the desired estimate is obtained.

3.6. P r o o f o f T h e o r e m 2.1. Because of the estimates obtained and the
imbedding theorems there exists a subsequence {uε} such that

uεl → ul uniformly in Ω′ ⊂ Ω ,(3.17)
∇uεl → ∇ul uniformly in Ω′u ⊂ Ωu ,(3.18)

uεlxx → ulxx weakly in Lq(Ω′u) (1 < q <∞) ,(3.19)

where u = (u1, . . . , uN ) is the limit function from 3.4. Moreover,

u ∈ C0,1(Ω; RN ) ∩ C1(Ωu; RN ) ∩W 2
2,loc(Ωu; RN ) ,

i.e., u satisfies (QV1). By (3.17) and (3.18) we have β0(F (x, uε,∇uε)) →
β0(F (x, u,∇u)) for x ∈ Ωu. Since βε(τ) = (1/ε)β0(τ), the estimate from 3.5
provides β0(F (x, u,∇u)) = 0. Hence F (x, u,∇u) ≤ 0 for x ∈ Ωu, i.e., the in-
equality (QV3) is valid. To verify the quasivariational inequality (QV2) let us
note that from (3.17), (3.18) we have

〈Auε, η(v − uε)〉 → 〈Au, η(v − u)〉



444 T. N. ROZHKOVSKAYA

for η from (QV2) and v ∈W
◦

1
2 (Ω; RN ). It follows from (PP1) that

(3.20) 〈Auε, η(v − uε)〉 ≤ 0

for any v ∈ W
◦

1
2 (Ω; RN ) such that v(x) ∈ M(x, uε(x)) a.e. in Ω. Now we set

δ = minx∈supp η |u(x)|. We have δ > 0 and G(x, u(x)) ≥ ν4δ
2 for x ∈ supp η. Let

v be an arbitrary function in W
◦

1
2 (Ω; RN ) such that v(x) ∈M(x, u(x)) a.e. in Ω.

Define vn(x) = (1− 1/n)v(x). Note that vn(x) ∈M(x, u(x)) and

G(x, vn) = B(x)vn · vn =
(

1− 1
n

)2

G(x, v) ≤
(

1− 1
n

)2

G(x, u) .

By (3.17) we also have G(x, vn) ≤ G(x, uε) for x ∈ supp η if ε is sufficiently small.
Hence we obtain (QV2) from (3.20) as ε → 0 and n → ∞. To check (QV4) one
has to use (3.17) and (3.18).

3.7. P r o o f o f T h e o r e m 2.2. Proceeding as in [13, Ch. 8] with the help
of the barrier technique one can obtain the conclusion of the theorem.

3.8. P r o o f o f T h e o r e m 2.3. The proof of the estimates for |uε|Ω ,
‖uε‖

W
◦

1
2 (Ω)

and |∇u|∂Ω is quite similar to that in Theorems 2.1 and 2.2. To deduce

the estimate for |∇u|Ω consider the function W (x) = |∇u|2 at its maximum point
x0 ∈ Ω. The inequality

0 ≥ ∆W = 2ulxkxj
ulxkxj

+ 2ulxk
ulxkxjxj

≥ |uxx|2 − 2β′fxk
ulxk

ul + 2β′(ululxk
)2 + 2β|∇u|2

provides the desired estimate.
Note that βε(F (x, uε)) = 0 if |uε(x)| ≤ f0 (see (O3)). Taking this into account

and proceeding as in 3.5 we can establish the estimate βε(F (x, uε)) ≤ C for all
x ∈ Ω. Arguing as in the proof of Theorem 2.1 we deduce that F (x, u(x)) ≤ 0 in
Ω and Lu(x) = λ(x)u(x) where λ(x) ≥ 0. Moreover, λ(x) = 0 if F (x, u(x)) < 0.
Thus, we conclude that the solution u of (QV1)–(QV4) (or (U1)–(U5)) satisfies
the obstacle problem of type (1.19).
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