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We want to present here some papers on the Euler equations of motion of
nonviscous compressible fluid. We are interested in the solvability of these equa-
tions in the case of domains with boundary. The Euler equations are a typical
initial-boundary value problem for a quasi-linear symmetric hyperbolic system; in
the case of the usual solid wall boundary condition the boundary is characteristic.
For this reason the solvability of these equations can be of more general interest,
since the methods used for this problem can be applied also to other characteristic
symmetric hyperbolic systems from mathematical physics, e.g. magnetohydrody-
namics, shallow water, . . .

In fact, a theory for (even linear) symmetric hyperbolic mixed problems has
been developed only for noncharacteristic boundaries (see [10]) or if the boundary
matrices have constant rank near the boundary (see [9]).

For the sake of simplicity we shall consider only barotropic fluids, i.e. fluids
for which the pressure is a function of the density only. The general case can be
treated following the same ideas. The inviscid barotropic fluid motion in a domain
Ω ⊆ R3 is governed by the following equations (see Landau–Lifschitz [8]):

(1)
%[v̇ + (v · ∇)v − b] +∇p = 0 in QT ≡ (0, T )×Ω ,

%̇+ div(%v) = 0 in QT ,

where v̇ = ∂v/∂t, (v · ∇)v =
∑
i vi∂v/∂xi, % = %(t, x) is the unknown density,

v = (v1, v2, v3) = v(t, x) is the unknown velocity field, p = p(%(t, x)) is the
unknown pressure of the fluid. For physical reasons % and p′(%) are assumed to
be positive. b = (b1, b2, b3) = b(t, x) is the given external force field.

For the initial value problem (i.e. Ω=R3) we refer the reader to Kato [6], [7].
In the case of a bounded domain with a nonempty smooth boundary ∂Ω we
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are interested in, we prescribe the boundary condition

(2) v · n = 0 in ΣT ≡ (0, T )× ∂Ω ,

where n = n(x) is the outward normal vector to ∂Ω.
Finally, the initial data at t = 0 are given:

(3)
v(0, x) = v0(x) ,
%(0, x) = %0(x) ,

where %0(x) > 0 in Ω. Since the pressure is an increasing function of the density,
we can invert this function and express the density as a known function of the
pressure.

Considering velocity and pressure as unknowns (instead of velocity and den-
sity) has the advantage that (1) can be written as a quasi-linear symmetric system
in U = (v, p):

(4) A0(U)
∂U

∂t
+

3∑
j=1

Aj(U)
∂U

∂xj
= F (U) ,

where A0(U) is the diagonal positive definite matrix (here %′ = %′(p))

(5) A0(U) =


%

%
%

%′/%

 ,

Aj(U) are the symmetric matrices

(6) Aj(U) =


%vj δ1j

%vj δ2j
%vj δ3j

δ1j δ2j δ3j (%′/%)vj


and F (U) = (%b, 0). The boundary matrix An(U) is defined on ∂Ω as

(7) An(U) :=
3∑
j=1

Aj(U)nj =
(
%v · nI3 n
nT (%′/%)v · n

)
where I3 is the 3×3 unit matrix. Because of (2), the boundary matrix is singular,
namely the boundary is characteristic for (1), (2).

Hence the theory for noncharacteristic hyperbolic mixed problems (see [10])
cannot be applied. Even the theory for hyperbolic systems with rank of An(U)
uniformly constant near the boundary (see [9]) cannot be applied because the rank
depends on the unknown U and so it can vary arbitrarily close to the boundary.

In order to explain a little more this crucial point, let us try to solve (4), (2),
(3) by means of the construction of successive approximations Um = (vm, pm)
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defined as the solutions of the linear problems

(8)


∂Um
∂t

+
∑
j

Aj(Um−1)
∂Um
∂xj

= F (Um−1) in QT ,

vm · n = 0 on ΣT ,

Um(0) = U
(0)
m in Ω .

For the sake of simplicity here we assume that the positive definite matrix A0

is the identity and that Ω = R3
+ = {x ∈ R3 : x3 > 0}. We have n = (0, 0, 1),

An(Um−1) = A3(Um−1).
The main point is to find a priori estimates such that Um belongs to a suitable

invariant set. In order to obtain an a priori estimate in L2(Ω) we multiply (8) by
Um and integrate over Ω. Integrating by parts gives

(9)
1
2
d

dt

∫
|Um|2 +

1
2

∫
∂Ω

UmA3Um−
1
2

∫
Um

∑
j

∂Aj
∂xj

Um =
∫
F (Um−1)Um .

Since

UmAnUm|∂Ω = 2pmvm · n|∂Ω = 0 ,

if
∑
j ∂Aj/∂xj is bounded on QT , (9) gives an L2-estimate of the form

‖Um(t)‖L2(Ω) ≤
[
‖Um(0)‖L2(Ω) +

t∫
0

‖F (Um−1(τ))‖L2(Ω) dτ
]

(10)

× exp
(

1
2

∥∥∥∥∑
j

∂Aj
∂xj

∥∥∥∥
L∞(QT )

T

)
for any t ∈ [0, T ]. We now look for a priori estimates for derivatives of Um. To do
this, we differentiate (8)1 and obtain a system whose principal part is the linear
operator ∂/∂t +

∑
j Aj(Um−1)∂/∂xj applied to the derivatives of Um. Taking a

partition of unity in the domain we consider separately interior estimates and
estimates near the boundary. Interior a priori estimates can be obtained in a
straightforward way.

To avoid higher order derivatives it is necessary to integrate by parts; this can
be done without problems since no boundary integral arises.

To obtain a priori estimates near the boundary we observe that computa-
tions similar to the ones for the L2-estimate can be done for tangential and time
derivatives.

In fact, such derivatives obey the same boundary condition (8)2, as we see by
differentiating (8)2 with respect to time or tangential directions.

Difficulties arise with normal derivatives for which no boundary condition can
be obtained by differentiating (8)2. Normal derivatives can be obtained from (8)1



450 P. SECCHI

written in the form

(11) A3
∂Um
∂x3

= −
[
∂Um
∂t

+
2∑
j=1

Aj
∂Um
∂xj

]
+ F .

If the boundary matrix is nonsingular, it can be inverted and from (11) one
can express the normal derivatives ∂Um/∂x3 by means of time and tangential
derivatives already estimated.

Unfortunately, this is not our case since the boundary is characteristic.
Since no known theory covers our case, it is necessary to introduce some special

approach to prove solvability of (1)–(3).
A first contribution was given by D. Ebin in [5], where he proved the existence

for short time of a regular solution to (1)–(3) provided that the initial velocity is
subsonic and the initial density is nearly constant (and b ≡ 0).

The existence of a solution to (1)–(3) for general initial data was then proved
by H. Beirão da Veiga [2], [3] and R. Agemi [1]. Denote by Xs

r (T,Ω,Rm) (r < s
positive integers) the space of functions (simply denoted by)

Xs
r :=

s−r⋂
k=0

Ck([0, T ], Hs−k(Ω,Rm))

where Hs(Ω,Rm) is the set of Rm-valued functions on Ω in the Sobolev space
Hs and Ck([0, T ], Hs−k(Ω,Rm)) is the space of bounded k times continuously
differentiable functions on [0, T ] with values in Hs−k(Ω,Rm). We set Xs

0 = Xs.
Their result is the following:

Theorem 1 ([2], [3], [1]). Suppose that the pressure p ∈ Cs+1(R), s ≥ 3, and
that the data (v0, %0, b) belong to Hs(Ω,R4) × Xs

1(T0, Ω,R3), T0 > 0, %0 > 0 in
Ω, and satisfy the necessary compatibility conditions up to order s. Then there
exists a positive constant T ≤ T0 such that (1)–(3) has a unique solution (v, %)
in Xs(T,Ω,R4), such that %(t, x) > 0 in [0, T ]×Ω.

R e m a r k. H. Beirão da Veiga considers only the case s = 3. Following the
same method it is possible to obtain the result for s ≥ 3.

P l a n o f t h e p r o o f. By taking account of the special form of the equations,
system (1)–(3) is solved by transforming it into equivalent problems. In [2], [3]
the following systems are considered (for the sake of simplicity assume Ω to be
simply connected): {div v = θ in QT ,

rot v = ξ in QT ,
v · n = 0 on ΣT ,

(12)θ,ξ {
ξ̇ + (v · ∇)ξ − (ξ · ∇)v + θξ = rot b in QT ,
ξ(0) = rot v0 on ΣT ,

(13)θ
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and, setting g = log %, h(g) = p′(eg),

(14)g



θ̇ + v · ∇θ + div[h(g)∇g] = div b−
∑
ij

DivjDjvi in QT ,

ġ + v · ∇g + θ = 0 in QT ,

θ(0) = div v0 on Ω ,

g(0) = log %0 on Ω ,

h(g)
∂g

∂n
=
∑
ij

(Dinj)vivj + b · n on ΣT .

System (12)–(14) is equivalent to (1)–(3). Denoting by V the left-hand side of
(1)1 divided by % and using (12) we see that (13)1 is rotV = 0 in QT , (14)1 is
div V = 0 in QT and (14)5 is V · n = 0 on ΣT . The three equations hold if and
only if V = 0 in QT , that is, (1)1 is satisfied. (1)2 is given by (14)2.

System (12)–(14) is solved by means of a fixed point argument. First, consider
system (12)δ,ζ , that is, (12)θ,ξ with (θ, ξ) replaced by some given (δ, ζ). This
system is elliptic and gives a velocity v. Secondly, consider (13)δ, that is, (13)θ
with θ replaced by δ and v obtained from (12)δ,ζ . (13)δ is a linear first order
hyperbolic equation that can be solved by means of the method of characteristics.
Given δ, one can show the existence of a fixed point of the map ζ → ξ, provided
that T is sufficiently small.

Consider now system (14)q, that is, (14)g with h(g) replaced by h(q) and v
the velocity corresponding to the fixed point ζ = ξ. To solve (14)q, apply the
operator ∂/∂t+ v · ∇ to equation (14)2. Combining with (14)1 we have

(15)
(
∂

∂t
+ v · ∇

)2

g − div[h(q)∇g] =
∑
i,j

DivjDjvi − div b in QT .

To equation (15) we add the boundary condition (14)q,5 and the initial conditions
(14)4 and

(16) ġ(0) = −v0 · ∇g(0)− div v0 ,

obtained from (14)2 calculated at time t = 0. System (15), (14)5, (14)4, (16) is a
linear hyperbolic mixed problem of second order.

Given the solution g we finally find θ = −ġ − v · ∇g. If T is sufficiently small
the map (δ, q)→ (θ, g) has a fixed point, i.e. a solution of (12)θ,ξ, (13)θ, (14)g.

Agemi’s equivalent formulation is similar to Ebin’s. The density is again ob-
tained from (15), (14)5, (14)4, (16), while for the velocity the Helmholtz decompo-
sition of a vector field into its soleinodal part and its gradient part is introduced.
The two components of this decomposition of v are obtained as solutions of two
suitable problems.

Another interesting contribution to the argument is Schochet’s paper [11],
where a nonisentropic compressible fluid in a bounded domain is considered (with
b ≡ 0). A short-time existence theorem is proved for general initial data, apart
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from regularity assumptions and the necessary compatibility conditions. Further-
more, solutions with low Mach number and almost incompressible initial data are
shown to be close to corresponding solutions of the equations for incompressible
flow.

The solvability of the equations is not obtained by solving equivalent problems
as before. The solution is constructed as the limit of the solutions of approxi-
mating equations, for which the boundary is no more characteristic, so that the
theory for noncharacteristic quasi-linear symmetric hyperbolic problems can be
applied.

The crucial point is how to prove uniform a priori estimates for the approxi-
mating solutions and, in particular, as already pointed out, how to estimate the
normal derivatives. Apart from technical difficulties the main points are the fol-
lowing. Assume for the sake of simplicity that Ω = R3

+. On ∂Ω = {x3 = 0} the
boundary matrix A3 is

(17)


0

O3 0
1

0 0 1 0


of rank two. In a thin layer of ∂Ω the rank is still at least two, due to the continuity
of Um−1 (the approximating solution at step m − 1). From (11) we can obtain,
inverting the last two rows, the normal derivatives ∂v3/∂x3, ∂p/∂x3 in terms
of time and tangential derivatives and of the other normal derivatives ∂v1/∂x3,
∂v2/∂x3 (for simplicity we drop the index m − 1). From a vorticity equation
similar to (13), one can then obtain an estimate for ξ = rot v because of the fact
that the vorticity equation (like (13)) is of transport type (this implies that also
normal derivatives of ξ can be estimated). Finally, it is shown that the usual norm
in the space X3 (where the solution is sought) is equivalent to the sum of a norm
including derivatives up to order three but no normal derivative of third order,
plus the norm in X2 of the normal derivatives ∂v3/∂x3, ∂p/∂x3, plus the norm in
X2 of rot v. Then the estimates for the two normal derivatives ∂v3/∂x3, ∂p/∂x3,
for the vorticity ξ and the standard estimates for the tangential derivatives allow
us to obtain the a priori estimate in X3. For all the details see [11].

This procedure is improved in [12] as shown below.
In [12] I study the motion of a nonviscous compressible barotropic fluid in a

time-dependent domain Ωt of the three-dimensional space. For each t ∈ [0, T0],
T0 > 0, Ωt is defined as Ωt := µ(t, Ω) where µ : [0, T0] × Ω → R is a given
smooth map such that µ(0, Ω) = Ω and such that µ(t, ·) : Ω → Ωt is a diffeomor-
phism, for each t ∈ [0, T0]. The equations of motion (1) are to be satisfied in the
noncylindrical domain DT :=

⋃
0<t<T {t} ×Ωt:

(18)
%[v̇ + (v · ∇)v − b] +∇p = 0 in DT ,

%̇+ div(%v) = 0 in DT ,
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the boundary condition (2) is replaced by

(19) u(t, y) · nt(y) = µ̇(t, x) · nt(y) , t ∈ (0, T ), y = µ(t, x) ∈ ∂Ωt, x ∈ ∂Ω ,

where nt is the outward normal vector to ∂Ωt. (19) states that there is no flux
through the moving boundary. Finally, we add the initial conditions (3).

In the particular case µ(t, ·) = Id (identity on Ω), problem (18), (19), (3)
reduces to (1)–(3).

We reduce problem (18), (19), (3) to the cylindrical domain QT = (0, T )×Ω
by the change of variable (t, y)→ (t, x), where x is such that y = µ(t, x). Set

p(t, x) := p(t, y) = p(t, µ(t, x)), u(t, x) := v(t, µ(t, x))− µ̇(t, x)

and denote by A = A(t, x) the transpose (aki)T of the jacobian matrix [Dµ]−1 =
(aki). Then we have the transformed problem (we drop the bar in p, u)

(20)


%(p)[u̇+ (u ·A∇)u+ (u ·A∇)µ̇+ µ̈− b] +A∇p = 0 in QT ,
(%′/%)[ṗ+ u ·A∇p] +A∇ · u+A∇ · µ̇ = 0 in QT ,
u ·N = 0 on ΣT ,
u(0) = v0 − µ̇(0) in Ω ,
p(0) = p(%0) in Ω ,

where N(t, x) := nt(µ(t, x)).
For problem (20) we prove the existence for short time and uniqueness of a

regular solution (a result similar to the one of Theorem 1) and by means of this
result the existence of classical solutions to problem (18), (19), (3). As in [11] the
solution is constructed as the limit of solutions to approximating equations, for
which the boundary is not characteristic so that the theory for noncharacteristic
quasi-linear symmetric hyperbolic systems can be applied. To explain how we get
the estimates for the normal derivatives, we write (20) in vector form as

A0(U)
∂U

∂t
+

3∑
j=1

Aj(U)
∂U

∂xj
+D(U)U = F (U) ,

where U = (u, p), A0 is given by (5),

Aj(U) =


%viaji 0 0 aj1

0 %viaji 0 aj2
0 0 %viaji aj3
aj1 aj2 aj3 (%′/%)viaji

 ,

D(U) = %(p)


aj1Dj µ̇1 aj2Djµ̇1 aj3Dj µ̇1 0
aj1Dj µ̇2 aj2Djµ̇2 aj3Dj µ̇2 0
aj1Dj µ̇3 aj2Djµ̇3 aj3Dj µ̇3 0

0 0 0 0

 ,

where the summation convention over repeated indices is assumed,

F (U) = (%(p)(b− µ̈),−A∇ · µ̇) .
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The boundary matrix is

An(U) =
(
%u ·AnI3 An

(An)T (%′/%)u ·An

)
.

Assuming for the sake of simplicity that Ω = R3
+, An(U) reduces to (17) on

∂Ω at time t = 0 (recall that A(0) = I3). Hence, for short time, in a thin layer of
∂Ω, the last two rows are linearly independent. On the other hand, as in the case
of the fixed-in-time domain, one can consider a vorticity equation (similar to (13))
and obtain an a priori estimate in X2 for the transformed vorticity ξ̃ = A∇∧ u.

We have

(21) ξ̃1 = ak2
∂u3

∂xk
− ak3

∂u2

∂xk
, ξ̃2 = ak3

∂u1

∂xk
− ak1

∂u3

∂xk
,

where the summation convention is assumed. We can isolate the normal deriva-
tives ∂u/∂x3 in (21) to obtain

(22) a32
∂u3

∂x3
− a33

∂u2

∂x3
= ξ̃1 + “ tan ”, a33

∂u1

∂x3
− a31

∂u3

∂x3
= ξ̃2 + “ tan ”,

where “tan” contains the tangential derivatives of (21). Consider now the linear
system with unknown ∂U/∂x3 formed by (22) and the third and fourth row of

A3
∂U

∂x3
= −

[
A0

∂U

∂t
+

2∑
j=1

Aj
∂U

∂xj
+DU

]
+ F .

The linear system is

(23) Λ
∂U

∂x3
= (ξ̃1, ξ̃2, 0, 0) + “ tan ”,

where “tan” contains only time and tangential derivatives and normal derivatives
of lower order or given terms; the matrix Λ of coefficients is

Λ =


0 −a33 a32 0
a33 0 −a31 0
0 0 %uia3i a33

a31 a32 a33 (%′/%)uia3i


whose determinant on ∂Ω at time t = 0 is equal to −1. Hence in a thin layer
of ∂Ω, for short time, detΛ is different from zero and we can obtain from (23)
all the normal derivatives in terms of the transformed vorticity ξ̃, of time and
tangential derivatives and of lower order terms. This permits us to obtain the a
priori estimates for the approximating solutions. For all the details see [12].

Other interesting papers related to the subject are quoted below.
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