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Abstract. The global existence theorem of classical solutions for one-dimensional nonlinear
thermoelasticity is proved for small and smooth initial data in the case of a bounded reference
configuration for a homogeneous medium, considering the Neumann type boundary conditions:
traction free and insulated. Moreover, the asymptotic behaviour of solutions is investigated.

1. Introduction. The equations of one-dimensional nonlinear thermoelastic-
ity have been investigated in the case of a bounded reference configuration for a
homogeneous medium by Slemrod in 1981 (see [4]). He proved the global existence
of smooth solutions for small data, considering the boundary conditions: traction
free and constant temperature, or rigidly damped and insulated. The cases of
Dirichlet boundary conditions: rigidly damped and constant temperature, and of
Neumann boundary conditions: traction free and insulated, remained open for
several years after Slemrod’s work. In 1990, Racke and Shibata [3] proved the
global existence of smooth solutions for small and smooth data in the case of
Dirichlet boundary conditions. As is well known, in proving the existence theo-
rem of smooth solutions for at least small and smooth data, the main step is to
show the decay properties of solutions to linearized equations. In [3], Racke and
Shibata used spectral analysis to the reduced stationary problem to get the decay
properties, which was a completely different approach from Slemrod’s work.

In this paper, the global existence of smooth solutions for small and smooth
data is proved in the case of Neumann boundary conditions. Our approach here
is principally the same as in Racke and Shibata [3], but more delicate discussions
are needed, because of the Neumann boundary conditions.
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Now, let us recall the equations of one-dimensional nonlinear thermoelasticity.
Let Ω = (0, 1) be the unit interval in R, which is identified with the reference
configuration R. The thermoelastic motion is described mathematically by the
deformation map Ω 3 x 7→ X(t, x) ∈ R and the absolute temperature T (t, x) ∈ R
of the material point of coordinate X(t, x), where t denotes the time variable.
Then, the equations of balance of linear momentum and of balance of energy are
given by (cf. Carlson [1])

(B.M) %RXtt = S̃x + %Rb ,

(B.E) (ε̃+ (%R/2)X2
t )t = (S̃Xt)x + %RbXt + q̃x + %Rr ,

where we use the following notation: The subscripts t and x denote differentiations
with respect to t and x, respectively. %R is the material density and it is assumed to
be 1 in the sequel. The b and r are specific body force and heat supply, respectively.
We assume that b = r = 0 below. ε̃ is the specific internal energy. q̃ is the
heat flux. S̃ is the Piola–Kirchhoff stress tensor. According to the 2nd Law of
Thermodynamics and Coleman’s theorem [2], we make throughout the following
assumptions.

Assumptions. (1) There exists a so-called Helmholtz energy functionψ(F, T ),
which is real-valued and in C∞(G(B)), such that

(A.1) S̃ = S(Xx(t, x), T (t, x)) and ε̃ = ε(Xx(t, x), T (t, x)) where
(A.2) S(F, T ) = (∂ψ/∂F )(F, T ) , ε(F, T ) = ψ(F, T )− T (∂ψ/∂T )(F, T )

and F = Xx ;
G(B) = {(F, T ) ∈ R2 | |F − 1|+ |T − T0| < B , T > T0/2} ;

T0 is a positive constant denoting the natural temperature of the reference bodyR
and B is another positive constant. Moreover, we assume that

(A.3) (∂2ψ/∂F 2)(F, T ) > 0 , (∂2ψ/∂T 2)(F, T ) < 0 , (∂2ψ/∂F∂T )(F, T ) 6= 0
for (F, T ) ∈ G(B) ;

(A.4) S(1, T0) = 0 .

(2) There exists a positive function Q(F, T ) ∈ C∞(G(B)) such that

(A.5) q̃ = Q(Xx(t, x), T (t, x))Tx(t, x) .

The purpose of this paper is to prove the global existence of smooth solutions
to the following problem:

Xtt = S(Xx, T )x in (0,∞)×Ω ,(1.1)
(ε(Xx, T ) + 1

2X
2
t )t = (S(Xx, T )Xt)x + (Q(Xx, T )Tx)x in (0,∞)×Ω ,(1.2)

S(Xx, T ) = Tx = 0 on (0,∞)× ∂Ω ,(1.3)
X(0, x) = x+ u0(x) , Xt(0, x) = u1(x) , T (0, x) = T0 + θ0(x) in Ω ,(1.4)
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where ∂Ω denotes the boundary of Ω, i.e. ∂Ω = {0}∪ {1}, and u0, u1 and θ0 are
given functions.

Now, let us discuss the equilibrium state. In view of (A.4), X = x and T = T0

are solutions for the initial data u0 = u1 = θ0 = 0. Integrating (1.2) on (0, t)×Ω,
we have

(1.5)
1∫

0

{ε(Xx(t, x), T (t, x)) + 1
2X

2
t (t, x)} dx

=
1∫

0

{ε(1 + u′0(x), T0 + θ0(x)) + 1
2u1(x)2} dx ,

u′0(x) = (du0/dx)(x), as long as the solutions exist. If we expect that Xt → 0 and
(Xx, T )→ (X∞, T∞) (other constant states) as t→∞, in view of (1.3) and (1.5),
X∞ and T∞ satisfy

(1.6.a) ε(X∞, T∞) =
1∫

0

{ε(1 + u′0(x), T0 + θ0(x)) + 1
2u1(x)2} dx ;

(1.6.b) S(X∞, T∞) = 0 ;
(1.6.c) (X∞, T∞) ∈ G(B) .

On the other hand, if we consider the map G(B) 3 (F, T ) 7→ (ε(F, T ), S(F, T ))
∈ R2, by (A.2), (A.3) and (A.4) we see that the Jacobian ∂(ε, S)/∂(F, T ) of
this map at (F, T ) = (1, T0) is equal to −T0(∂2ψ/∂T 2)(1, T0)(∂2ψ/∂F 2)(1, T0) +
T0(∂2ψ/∂F∂T )(1, T0)2 > 0. The inverse mapping theorem gives the unique exis-
tence of (X∞, T∞) satisfying (1.6) provided that |u′0(x)|, |u1(x)| and |θ0(x)| are
sufficiently small for x ∈ [0, 1].

To find the energy conservation (1.5) and other constant states (X∞, T∞) at
t =∞, (1.2) is quite important, but the form of (1.2) is rather complicated. So,
once we know (1.5) and (1.6), using the entropy

(1.7) N(F, T ) = −(∂ψ/∂T )(F, T ) ,

we rewrite (1.2) as follows:

(1.2)′ TN(Xx, T )t = (Q(Xx, T )Tx)x in (0,∞)×Ω .

In fact, multiplying (1.1) by Xt implies that 1
2 (X2

t )t = SxXt. Using the constitu-
tive relations (A.2) and (1.7), we have ε(Xx, T )t = TN(Xx, T )t + S(Xx, T )Xtx.
Since (S(Xx, T )Xt)x = S(Xx, T )xXt + S(Xx, T )Xtx, (1.2)′ follows from (1.1)
and (1.2). Obviously, (1.2) also follows from (1.1) and (1.2)′. From now on, we
shall solve the problem (1.1), (1.2)′, (1.3) and (1.4) instead of the problem (1.1),
(1.2), (1.3) and (1.4).

Now, we discuss the initial conditions and compatibility conditions. To do
this, assume for a moment the existence of solutions X and T satisfying
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(Xx(t, x), T (t, x)) ∈ G(B). Put

(1.8) ui+2(x) = (∂i+2
t X)(0, x) and θi+1(x) = (∂i+1

t T )(0, x) for i ≥ 0 .

In fact, ui+2 and θi+1 are determined successively from u0, u1 and θ0 by differ-
entiating (1.1) and (1.2)′ with respect to t at t = 0. We would like to show the
existence of solutions satisfying the conditions

(1.9.a) X ∈
L+2⋂
j=0

Cj([0,∞), HL+2−j) ,

(1.9.b) T ∈ CL+1([0,∞), L2) ∩
L⋂
j=0

Cj([0,∞), HL+2−j) ,

(1.9.c) (Xx(t, x), T (t, x)) ∈ G(B) for (t, x) ∈ [0,∞)× [0, 1]

where the notation is summarized at the end of this section. Therefore, we must
assume that

(1.10)
ui ∈ HL+2−i (0 ≤ i ≤ L+ 1) , θi ∈ HL+2−i (0 ≤ i ≤ L) ,

(1 + u′0(x), T0 + θ0(x)) ∈ G(B) for x ∈ [0, 1] .

Note that the fact that uL+2 and θL+1 belong to L2 follows from (1.10) if we
differentiate (1.1) and (1.2)′ L times with respect to t at t = 0.

Moreover, differentiating the boundary condition (1.3) with respect to t at
t = 0, we have

(1.11) ∂itS(Xx, T )|t=0 = θix = 0 for x = 0, 1 and i = 0, 1, . . . , L ,

because ∂itS(Xx, T ) and ∂itTx belong to HL+1−i for t ≥ 0. Note that (1.11) are
conditions imposed on u0, u1 and θ0. We shall say that u0, u1 and θ0 satisfy the
compatibility condition of order L if (1.11) is satisfied.

The purpose of this paper is to prove

Theorem 1.1. Let 0 < τ < 1/16 and K and L be integers such that

(1.12) K ≥ 3 and L ≥ 8K2 + 15K − (1 + τ)
K − (1 + τ)

.

Let u0, u1 and θ0 in (1.4) be given and let ui+2 and θi+1 (0 ≤ i ≤ L − 1) be the
functions defined by (1.8). Assume that (1.10) holds true and that u0, u1 and θ0
satisfy the compatibility condition of order L. In addition, assume that

(1.13)
1∫

0

u1(x) dx = 0 .

Put

(1.14) E =
L+1∑
i=0

‖ui‖L+1−i +
L−1∑
i=0

‖θi‖L+1−i + ‖θL‖ .
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Then there exists a δ > 0 such that if E ≤ δ, then the problem (1.1)–(1.4) admits
a unique solution X, T satisfying (1.9). Moreover , the asymptotic behaviour of X
and T is given by Y (t) ≤ 1 for t ≥ 0, where

(1.15) Y (t) = Y1(t) + Y2(t) ,
Y1(t) = ‖V ‖t,K,0 + ‖(Ttx, Ttxx)‖t,K,0 ,

Y2(t) = ‖V ‖t,0,L−1 +
{ t∫

0

‖∂Ls Tx(s, ·)‖2 ds
}1/2

,

V = (Xt, Xx −X∞, Xtt, Xtx, Xxx, T − T∞, Tt, Tx, Txx) .

Finally, we explain the notation used throughout. All the functions are as-
sumed to be real-valued, except for paragraphs 2.2 and 2.3. The i stands for

√
−1

in paragraphs 2.2, 2.3 and 2.4 only, otherwise it is used as an index. We denote
the usual L2 space on (0, 1), its inner product and its norm by L2 = H0, ( , ) and
‖ ·‖, respectively. It will be clear from the context whether (a, b) denotes an open
interval in R or the inner product. Put Hm = {u ∈ L2 | ‖u‖m = ‖dmx u‖ < ∞},
where dms u(s) = ((dlu/dsl)(s), 0 ≤ l ≤ m) for s = t, x. By CL(I,B) we denote
the set of all B-valued functions which are L times continuously differentiable
in I. Put

‖v‖t,K,L = sup{(1 + s)K‖DLv(s, ·)‖ | 0 ≤ s < t} ,
|v|t,K,L = sup{(1 + s)K |dLs v(s)| | 0 ≤ s < t} ,
‖(v1, . . . , vl)‖t,K,L = ‖v1‖t,K,L + . . .+ ‖vl‖t,K,L ,
|(v1, . . . , vl)|t,K,L = |v1|t,K,L + . . .+ |vl|t,K,L ,

〈u, v〉 = u(1)v(1)− u(0)v(0) , 〈u〉2 = |u(1)|2 + |u(0)|2 ,
DLu(t, x) = (∂jt ∂

k
xu(t, x) , 0 ≤ j + k ≤ L) , ∂jt = ∂j/∂tj , ∂kx = ∂k/∂xk .

We also write ux = ∂xu, ut = ∂tu, uxx = ∂2
xu, utx = ∂t∂xu, utt = ∂2

t u. Moreover,
∂ms u = (u, ∂su, . . . , ∂ms u) for s = t, x. We use the same letter C to denote various
positive constants and C(A,B, . . .) means that the constant depends essentially
on A,B, . . . only.

2. Decay rate of solutions to linearized problem. In this section, we
investigate the decay of solutions to the linear problem

utt − αuxx + δθx = fΩ in [0, t0]× (0, 1) ,(2.1)
βθt − γθxx + δutx = gΩ in [0, t0]× (0, 1) ,(2.2)
(αux − δθ)(t, l) = fΓl(t) , γθx(t, l) = 0 for l = 0, 1 and t ∈ [0, t0] ,(2.3)

where α, β and γ are positive constants and δ is a non-zero real number. The
purpose of this section is to prove

Theorem 2.1. Let t0 > 1, 0 < τ < 1 and K be an integer ≥ 1. Let u and θ
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satisfy (2.1)–(2.3) and

u(t, x) ∈
2⋂
j=0

C4K+6+j([0, t0], H3−j) ,(2.4.a)

θ(t, x) ∈ C4K+8([0, t0], L2) ∩ C4K+7([0, t0], H2) ∩ C4K+6([0, t0], H3) .(2.4.b)

Then, we have the following decay estimate of solutions u and θ to (2.1)–(2.3):

(2.5) ‖αux − δθ‖t,K,1 + ‖∂1
t∂

1
xθx‖t,K,0

≤ C(K)
{
‖∂4K+7

t u(0, ·)‖1 + ‖∂4K+6
t u(0, ·)‖2

+ ‖∂4K+7
t θ(0, ·)‖2 + ‖∂4K+6

t θ(0, ·)‖1 + ‖∂4K+6
t fΩ,x‖t,K+τ+1,0

+‖∂4L+6
t gΩ‖t,K+τ+1,1 +

1∑
l=0

|fΓl|t,K+τ+1,4K+7

}
for 0 ≤ t ≤ t0, where ∂1

t∂
1
xθx = (θx, θxx, θtx, θtxx).

We shall prove Theorem 2.1 below, dividing the proof into several paragraphs.

2.1. Reduction of equations. Since the Neumann boundary condition seems
to be more complicated to deal with than the Dirichlet boundary condition, and
since Racke and Shibata [3] developed a technique for dealing with the Dirich-
let condition case, we shall reduce the problem (2.1)–(2.4) to Dirichlet problem.
Put

(2.6) v = αux − δθ and κ = γθx .

Then v and κ satisfy the Dirichlet problem

avtt − bvxx + δκtx = FΩ in [0, t0]× (0, 1) ,(2.7)
cθt − dθxx + δvtx = GΩ in [0, t0]× (0, 1) ,(2.8)
v(t, l) = fΓl(t) and κ(t, l) = 0 for l = 0, 1 and t ∈ [0, t0] ,(2.9)

where a = β, b = αβ + δ2, c = (αβ + δ2)/γ, d = α, FΩ = (αβ + δ2)fΩ,x − δgΩ,t
and GΩ = αgΩ,x. Indeed, by using (2.6), we easily get (2.7), so we may omit the
proof.

2.2. Spectral analysis. To get the decay properties of solutions to (2.7)–(2.9),
changing ∂t to ik, where i =

√
−1 and k ∈ C, we consider the following system

of ordinary differential equations of second order with parameter k ∈ C:

bu′′ + ak2u− ikδθ′ = fΩ in (0, 1) ,(2.10)
dθ′′ − ikcθ − ikδu′ = gΩ in (0, 1) ,(2.11)
u(l) = fΓl and θ(l) = 0 for l = 0 and 1 .(2.12)

Theorem 2.2. There exists a discrete set Λ in C and operators Rl(k), l = 1, 2,
k ∈ C−Λ, with the following properties: Rl, l = 1, 2, is a holomorphic map from
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C − Λ to L(H,H2), where H = L2 × L2 × C2 and L(H,H2) is the space of all
bounded linear operators from H into H2; moreover ,

(2.13) Λ ∩ {k ∈ C | Im k ≤ 0} = ∅ ,

and u = R1(l)U and θ = R2(k)U satisfy the problem (2.10)–(2.12) for k ∈ C− Λ
and U = (fΩ , gΩ , fΓ0, fΓ1) ∈ H.

Employing the same arguments as in Racke and Shibata [3, Lemmas 1.1–1.6
of §1], we can construct the operators Rl(k) by using the well-known analytic
Fredholm theorem. So, we may omit the proof.

Theorem 2.3. Let k ∈ C with |Re k| ≥ 1 and Im k ≤ 0. For U =
(fΩ , gΩ , fΓ0, fΓ1) ∈ H, we put

I(k) = |k| ‖fΩ‖+ |k|−1‖gΩ‖+ |k|5/2(|fΓ0|+ |fΓ1|) .

Then we have for j = 0, 1, 2,

‖R1(k)U‖j ≤ C|k|2+jI(k) and ‖R2(k)U‖j ≤ C|k|2jI(k)

where ‖ · ‖0 = ‖ · ‖.

Differentiating (2.10)–(2.12) with respect to k and using Theorem 2.3, by
induction we easily get

Corollary 2.4. Let k ∈ C with |Re k| ≥ 1 and Im k ≤ 0. Under the same
notation as in Theorem 2.3,

‖(d/dk)lR1(k)U‖j ≤ C(l)|k|4l+2+jI(k) ,
‖(d/dk)lR2(k)U‖j ≤ C(l)|k|4l+2jI(k)

for j = 0, 1, 2 and any integer l ≥ 0.

P r o o f o f T h e o r e m 2.3. Put u = R1(k)U , θ = R2(k)U and |fΓ | =
|fΓ0|+ |fΓ1|. We shall use the following six inequalities:

‖θ‖ ≤ C{|k|−1/2‖fΩ‖1/2‖u‖1/2 + |k|−1‖gΩ‖+ |k|−1/2〈u′〉1/2|fΓ |1/2} ;(2.14)

〈θ′〉 ≤ C{‖θ′‖+ |k|1/2‖θ‖1/2‖θ′‖1/2 + |k|1/2‖u′‖1/2‖θ′‖1/2 + ‖gΩ‖} ;(2.15)

〈u′〉 ≤ C{‖u′‖+ |k| ‖u′‖1/2‖u‖1/2 + |k| ‖u′‖1/2‖θ′‖1/2 + ‖fΩ‖} ;(2.16)

‖u‖ ≤ C{|fΓ |+ ‖θ‖+ |k|−1‖θ′‖+ |k|−1〈θ′〉+ |k|−1‖gΩ‖} ;(2.17)

‖θ′‖ ≤ C{|k|1/2‖u′‖1/2‖θ‖1/2 + ‖gΩ‖1/2‖θ‖1/2} ;(2.18)

‖u′‖ ≤ C{|k| ‖u‖+ ‖θ′‖+ |Re k|−1‖fΩ‖(2.19)

+ |Re k|−1/2|k|1/2(〈u′〉1/2|fΓ |1/2 + ‖θ‖1/2‖gΩ‖1/2)} .

Before explaining how to get (2.14)–(2.19), we shall prove the estimates of Rl(k),
l = 1, 2. Since the equations are linear, we decompose R(k)U = (R1(k)U,R2(k)U)
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as follows:

R(k)U =
3∑
j=1

(uj , θj)

where (u1, θ1) = R(k)(fΩ , 0, 0, 0), (u2, θ2) = R(k)(0, gΩ , 0, 0) and (u3, θ3) =
R(k)(0, 0, fΓ0, fΓ1).

S t e p 1. We prove

(2.20)
‖θ1‖ ≤ C|k| ‖fΩ‖ ,
‖u1‖ ≤ C|k|3‖fΩ‖ ,

‖θ′1‖ ≤ C|k|3‖fΩ‖ ,
‖u′1‖ ≤ C|k|4‖fΩ‖ .

For simplicity, we write u1 = u and θ1 = θ in the course of the proof of (2.20).
Note that gΩ = 0, fΓ0 = fΓ1 = 0 in this case. By (2.14),

(2.21) ‖θ‖ ≤ C|k|−1/2‖f‖1/2‖u‖1/2 .

Substituting (2.21) into (2.18), we have

(2.22) ‖θ′‖ ≤ C|k|1/4‖f‖1/4‖u′‖1/2‖u‖1/4 .

Substituting (2.21) and (2.22) into (2.15), we have

(2.23) 〈θ′〉 ≤ C{|k|1/4‖fΩ‖1/4‖u′‖1/2‖u‖1/4 + |k|3/8‖fΩ‖3/8‖u′‖1/4‖u‖3/8

+|k|5/8‖fΩ‖1/8‖u′‖3/4‖u‖1/8} .

Substituting (2.23) into (2.17) and using (2.21) and (2.22), we have

(2.24) ‖u‖ ≤ C{|k|−1/2‖fΩ‖1/2‖u‖1/2 + |k|−3/4‖fΩ‖1/4‖u′‖1/2‖u‖1/4

+|k|−5/8‖fΩ‖3/8‖u′‖1/4‖u‖3/8 + |k|−3/8‖fΩ‖1/8‖u′‖3/4‖u‖1/8} .

Now, we use the well-known inequality

(2.25) ab ≤ ε

p
ap +

1
εq
bq for a, b ≥ 0 , ε > 0 , and p, q ≥ 1 ,

1
p

+
1
q

= 1 .

Then, applying (2.25) to (2.24), we have

(2.26) ‖u‖ ≤ C{|k|−1‖fΩ‖+ |k|−1‖fΩ‖1/3‖u′‖2/3 + |k|−1‖fΩ‖3/5‖u′‖2/5

+|k|−3/7‖fΩ‖1/7‖u′‖6/7} .

Substituting (2.26) into (2.22), we have

(2.27) ‖θ′‖ ≤ C{‖fΩ‖1/2‖u′‖1/2 + ‖fΩ‖1/3‖u′‖2/3 + ‖fΩ‖2/5‖u′‖3/5

+|k|1/7‖fΩ‖2/7‖u′‖5/7} .

Substituting (2.26) and (2.27) into (2.19), we have

(2.28) ‖u′‖ ≤ C{‖fΩ‖+ ‖fΩ‖1/3‖u′‖2/3 + ‖fΩ‖3/5‖u′‖2/5

+ |k|4/7‖fΩ‖1/7‖u′‖6/7 + ‖fΩ‖1/2‖u′‖1/2 + ‖fΩ‖2/5‖u′‖3/5

+|k|1/7‖fΩ‖2/7‖u′‖5/7} .
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Applying (2.25) to (2.28), we have

(2.29) ‖u′‖ ≤ C|k|4‖fΩ‖ .
Substituting (2.29) into (2.26) and (2.27), we have

(2.30) ‖u‖ , ‖θ′‖ ≤ C|k|3‖fΩ‖ .
Substituting (2.30) into (2.21), we have (2.20).

S t e p 2. Employing the same arguments as in Step 1, we prove

(2.31)
‖θ2‖ ≤ C|k|−1‖gΩ‖ ,
‖u2‖ ≤ C|k| ‖gΩ‖ ,

‖θ′2‖ ≤ C|k| ‖gΩ‖ ,
‖u′2‖ ≤ C|k|2‖gΩ‖ .

S t e p 3. We prove

(2.32)
‖θ3‖ ≤ C|k|5/2|fΓ | , ‖θ′3‖
‖u3‖ ≤ C|k|9/2|fΓ | , ‖u′3‖

≤ C|k|9/2|fΓ | ,
≤ C|k|11/2|fΓ | .

For simplicity, we put u3 = u, θ3 = θ and M = 〈u′〉. Note that fΩ = gΩ = 0 in
this case. By (2.14), we have

(2.33) ‖θ‖ ≤ C|k|−1/2M1/2|fΓ |1/2 .
By (2.18) and (2.33), we have

(2.34) ‖θ′‖ ≤ C|k|1/4‖u′‖1/2M1/4|fΓ |1/4 .
Combining (2.15), (2.33) and (2.34), we have

(2.35) 〈θ′〉 ≤ C{|k|1/4‖u′‖1/2M1/4|fΓ |1/4 + |k|3/8‖u′‖1/4M3/8|fΓ |3/8

+|k|5/8‖u′‖3/4M1/8|fΓ |1/8} .
Substituting (2.33), (2.34) and (2.35) into (2.17), we have

(2.36) ‖u‖ ≤ C{|fΓ |+ |k|−1/2M1/2|fΓ |1/2 + |k|−3/4‖u′‖1/2M1/4|fΓ |1/4

+|k|−5/8‖u′‖1/4M3/8|fΓ |3/8 + |k|−3/8‖u′‖3/4M1/8|fΓ |1/8} .
Substituting (2.34) and (2.36) into (2.19) yields

(2.37) ‖u′‖ ≤ C{|k| |fΓ |+ |k|1/2M1/2|fΓ |1/2 + |k|1/4‖u′‖1/2M1/4|fΓ |1/4

+|k|3/8‖u′‖1/4M3/8|fΓ |3/8 + |k|5/8‖u′‖3/4M1/8|fΓ |1/8} .
Applying (2.25) to (2.37), we have

(2.38) ‖u′‖ ≤ C|k|{|fΓ |+ |k|3/2M1/2|fΓ |1/2} .
Substituting (2.38) into (2.34) and (2.36) yields

(2.39) ‖θ′‖ , ‖u‖ ≤ C{|fΓ |+ |k|3/2M1/2|fΓ |1/2} .
Substituting (2.38) and (2.39) into (2.16) yields

(2.40) M ≤ C{|k|3/2|fΓ |+ |k|3M1/2|fΓ |1/2} .
Applying (2.25) to (2.40) implies that M ≤ C|k|6|fΓ |; substituting this into
(2.33), (2.38) and (2.39), we have (2.32).
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Using (2.20), (2.31) and (2.32), we have the conclusion of the theorem for
j=0 and 1. Finally, by using (2.10) and (2.11) and the estimates for j=0 and 1,
we have the estimates for j = 2.

Now, we shall prove the inequalities (2.14)–(2.19). By integration by parts, we
have

(2.41) b‖u′‖2 − ak2‖u‖2 + ikδ(θ′, u) = b〈u′, u〉 − (fΩ , u) ;
(2.42) d‖θ′‖2 + ikc‖θ‖2 + ikδ(u′, θ) = d〈θ′, θ〉 − (gΩ , θ) .

From the real part of (2.42) it follows that

d‖θ′‖2 − (Im k)c‖θ‖2 = Re{−ikδ(u′, θ) + d〈θ′, θ〉 − (gΩ , θ)} .
Since Im k ≤ 0, we have (2.18). Taking the complex conjugate of (2.42) and using
the identity (θ, u′) = 〈θ, u〉 − (θ′, u), we have

d‖θ′‖2 − ikc‖θ‖2 − ikδ〈θ, u〉+ ikδ(θ′, u) = d〈θ, θ′〉 − (θ, gΩ) .

Multiplying this and (2.42) by k and k, respectively, we have

(2.43) bk‖u′‖2 − a|k|2k‖u‖2 − dk‖θ′‖2 + i|k|2c‖θ‖2

= bk〈u′, u〉 − k(fΩ , u)− i|k|2δ〈θ, u〉 − dk〈θ, θ′〉 − k(θ, gΩ) .

Note that Im k = − Im k ≥ 0. (2.14) and (2.19) follow from the imaginary part
and real part of (2.43), respectively. Since

(2.44) 2 Re(θ′′, (2x− 1)θ′) = 〈θ′〉2 − 2‖θ‖2 ,
substituting (2.11) into the left-hand side of (2.44) and using Schwarz’s inequal-
ity, we have (2.15). Employing the same arguments implies (2.16), too. Finally,
integration of (2.11) on (x, 1) yields

u(x) = (iδk)−1
{ 1∫
x

gΩ(s) ds+ iδkfΓ1 + ick
1∫
x

θ(s) ds− d(θ′(1)− θ′(0))
}
,

from which (2.17) follows immediately. This completes the proof of the theorem.

2.3. Decay rate of solutions to (2.7)–(2.9)

Theorem 2.5. Let K be an integer ≥ 1 and 0 < τ < 1. Let v and κ sat-
isfy (2.7)–(2.9) with t0 =∞ and the regularity condition

(2.45) v ∈
2⋂
j=0

C4K+6+j([0,∞), H2−j) , κ ∈
1⋂
j=0

C4K+6+j([0,∞), H2−j) .

In addition, assume that I(4K + 6, 4K + 7,K) <∞, where

I(L,M,K) = ‖∂Lt (FΩ , GΩ)‖∞,K+τ+1,0 + |(fΓ0, fΓ1)|∞,K+τ+1,M .

Then for any t > 0 we have

‖v‖t,K,1 + ‖∂1
t∂

1
xκ‖t,K,0

≤ C(K){‖∂4K+6
t D1v(0, ·)‖+ ‖∂4K+6

t ∂1
xκ(0, ·)‖+ I(4K + 6, 4K + 7,K)} .
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P r o o f. Let ϕ(t) be a function in C∞(R) such that ϕ(t) = 1 for t ≥ 2 and = 0
for t ≤ 1. Put u = ϕv and θ = ϕκ. Then u and θ satisfy

(2.46) autt − buxx + δθtx = fΩ in [0,∞)× (0, 1) ,
(2.47) cθt − dθxx + δutx = gΩ in [0,∞)× (0, 1) ,
(2.48) u(t, l) = ϕ(t)fΓl(t) , θ(t, l) = 0 for l = 0 and 1, and t ∈ [0,∞) ,

where

(2.49)
fΩ = ϕ(t)FΩ(t, x)− 2aϕ′(t)vt(t, x)− aϕ′′(t)v(t, x)− δϕ′(t)κx(t, x) ,
gΩ = ϕ(t)GΩ(t, x)− cϕ′(t)κ(t, x)− δκ′(t)vx(t, x) .

Put

ĤΩ(k, x) =
∞∫
−∞

e−iktHΩ(t, x) dt for H = F and G ,

f̂Γl(k) =
∞∫
−∞

e−iktϕ(t)fΓl(t) dt for l = 0 and 1 .

Moreover, put

w(t, x) =
1

2π

∞∫
−∞

eiktR1(k)U(k) dk , ξ(t, x) =
1

2π

∞∫
−∞

eiktR2(k)U(k) dk

where U(k) = −(F̂Ω(k, ·), ĜΩ(k, ·), f̂Γ0(k), f̂Γ1(k)). Then, employing the same
arguments as in the proof of Theorem 2.1 in Racke and Shibata [3, §2], by Theo-
rem 2.2 and Corollary 2.4 and the uniqueness of solutions to the problem (2.46)–
(2.48) which will be guaranteed by the energy inequality below, we see that w = u
and ξ = θ. Moreover, for t ≥ 2 we have

(2.50) ‖D1v(t, ·)‖+ ‖∂1
t∂

1
xκ(t, ·)‖ = ‖D1w(t, ·)‖+ ‖∂1

t∂
1
xξ(t, ·)‖

≤ C(K)(1 + t)−K{‖∂4K+6
t (fΩ , gΩ)‖∞,K+τ+1,0 + |(fΓ0, fΓ1)|∞,K+τ+1,4K+7}

≤ C(K)(1 + t)−K{I(4K + 6, 4K + 7,K)

+ max
0≤t≤2

‖∂4K+6
t (D1v(t, ·), ∂1

xκ(t, ·))‖}

where in the final step of (2.50) we have used the facts that suppϕ′(t), suppϕ′′(t)
⊂ [1, 2] (cf. (2.49)). To estimate the final two terms of (2.50), we give the energy
estimate for the problem (2.7)–(2.9). Namely, we show that

(2.51) ‖(vt(t, ·), vx(t, ·), κx(t, ·))‖2 +
t∫

0

‖κs(s, ·)‖2 ds

≤ CeCt
[
‖(vt(0, ·), vx(0, ·), κx(0, ·))‖2

+
t∫

0

{‖(FΩ(s, ·), GΩ(s, ·))‖2 + |(f ′Γ0(s), f ′Γ1(s))|2} ds
]
.
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Once we get (2.51), differentiating (2.7)–(2.9) l times (1 ≤ l ≤ 4K + 6) with
respect to t and applying (2.51) to the resulting equations, we have

(2.52) ‖∂4K+6
t (vt(t, ·), vx(t, ·), κx(t, ·))‖
≤ C[‖∂4K+6

t (vt, vx, κx) |t=0 ‖+ I(4K + 6, 4K + 7, 0)] for t ∈ [0, 2] .

Since ‖w‖ ≤ C{‖wx‖+ |w(0)|}, from (2.52) it follows that

(2.53) max
0≤t≤2

‖∂4K+6
t (D1v(t, ·), ∂1

xκ(t, ·))‖

≤ C{‖∂4K+6
t (D1v, ∂1

xκ) |t=0 ‖+ I(4K + 6, 4K + 7, 0)} .

Combining (2.53) and (2.50), we have the assertion of the theorem.
Now, let us prove (2.51). Multiplying (2.7) by vt, we have

(2.54)
1
2
d

dt
{a‖vt(t, ·)‖2 + b‖vx(t, ·)‖2}+ δ(κtx(t, ·), vt(t, ·))

= b〈vx(t, ·), vt(t, ·)〉+ (FΩ(t, ·), vt(t, ·)) .

Noting that κt(t, l) = 0 for l = 0 and 1, by integration by parts and (2.8), we
have
(2.55) δ(κtx(t, ·), vt(t, ·)) = −(κt(t, ·), δvtx(t, ·))

= −(κt(t, ·), GΩ(t, ·)) + c‖κt(t, ·)‖2 +
d

2
d

dt
‖κx(t, ·)‖2 .

Combining (2.54) and (2.55) implies that

(2.56)
1
2
d

dt
{a‖vt(t, ·)‖2 + b‖vx(t, ·)‖2 + d‖κx(t, ·)‖2}+ c‖κt(t, ·)‖2

= (FΩ(t, ·), vt(t, ·)) + (GΩ(t, ·), κt(t, ·)) + b〈vx(t, ·), vt(t, ·)〉

≤ 1
2 [‖FΩ(t, ·)‖2 + ‖vt(t, ·)‖2 + σ‖κt(t, ·)‖2 + σ−1‖GΩ(t, ·)‖2

+ (|δ|+ bσ−1)|f ′Γ (t)|2 + bσ〈vx〉2] for any σ ∈ (0, 1) ,

where |f ′Γ (t)|2 = |f ′Γ0(t)|2 + |f ′Γ1(t)|2. To estimate the boundary term 〈vx(t, ·)〉,
we use the identity (2.44). Then by integration by parts and by (2.7)–(2.9), we
have

(2.57)
b

2
〈vx(t, ·)〉2 +

d

2
〈κx(t, ·)〉2 − b‖vx(t, ·)‖2 − d‖κx(t, ·)‖2

= (avtt(t, ·) + δκtx(t, ·)− FΩ(t, ·), (2x− 1)vx(t, ·))

+ (cκt(t, ·) + δvtx(t, ·)−GΩ(t, ·) , (2x− 1)κx(t, ·))

= a
d

dt
(vt(t, ·), (2x− 1)vx(t, ·))− a

2
|f ′Γ (t)|2 + a‖vt(t, ·)‖2

+ (cκt(t, ·), (2x− 1)κx(t, ·))− (FΩ(t, ·), (2x− 1)vx(t, ·))

− (GΩ(t, ·), (2x− 1)κx(t, ·)) .
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Combining (2.56) and (2.57) and choosing σ > 0 sufficiently small, we have

(2.58)
1
2
d

dt
[a‖vt(t, ·)‖2 + b‖vx(t, ·)‖2 + d‖κx(t, ·)‖2

+ 2σ(avt(t, ·) + δκx(t, ·), (2x− 1)vx(t, ·))] +
c

2
‖κt(t, ·)‖2

≤ C[a‖vt(t, ·)‖2 + b‖vx(t, ·)‖2 + d‖κx(t, ·)‖2 + ‖FΩ(t, ·)‖2

+ C(σ){‖GΩ(t, ·)‖2 + |f ′Γ (t)|2}] .

Choosing σ > 0 so small that

|2σ(avt(t, ·) + δκx(t, ·), (2x− 1)vx(t, ·))|
≤ 1

2 (a‖vt(t, ·)‖2 + b‖vx(t, ·)‖2 + d‖κx(t, ·)‖2) ,

integrating (2.58) from 0 to t and applying Gronwall’s inequality to the resulting
inequality, we have (2.51), which completes the proof of the theorem.

2.4. Proof of Theorem 2.1. Noting (2.6), we get Theorem 2.1 immediately in
case t0 = ∞. Employing the same arguments as in the proof of Theorem 2.2 in
Racke and Shibata [3, §2], by using the cut-off technique and Theorem 2.1 for
t0 =∞, we can prove Theorem 2.1 for general t0 > 1.

3. A priori estimate of solutions local in time. Let X(t, x) and T (t, x)
satisfy the following:

(3.1) Xtt = S(Xx, T )x in [0, t0]×Ω ;
(3.2) TN(Xx, T )t = (Q(Xx, T )Tx)x in [0, t0]×Ω ;
(3.3) S(Xx, T ) = Tx = 0 on [0, t0]× ∂Ω ;
(3.4) X(0, x) = x+ u0(x) , Xt(0, x) = u1(x) , T (0, x) = T0 + θ0(x) in Ω ;
(3.5) (Xx(t, x), T (t, x)) ∈ G(B) for all (t, x) ∈ [0, t0]× [0, 1] ,

X ∈
L+2⋂
j=0

Cj([0, t0], HL+2−j) ,

(3.6)

T ∈ CL+1([0, t0], L2) ∩
L⋂
j=0

Cj([0, t0], HL+2−j) .

For simplicity, we shall say that X and T are solutions in [0, t0] if X and T satisfy
all of (3.1)–(3.6). Put u(t, x) = X(t, x) −X∞x and θ(t, x) = T (t, x) − T0. Note
that utt = Xtt, θt = Tt, ux = Xx −X∞, and then from (3.1)–(3.4) we easily find
the equations which u and θ should satisfy. Let V be the same as in Theorem 1.1;
then V = (ut, ux, utt, utx, uxx, θ, θt, θx, θxx). Also, let Y (t), Y1(t) and Y2(t) be the
same as in Theorem 1.1. We use this notation throughout this section. Moreover,
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set

(3.7) E1 =
L+1∑
j=0

‖∂jt u(0, ·)‖L+1−j +
L−1∑
j=0

‖∂jt θ(0, ·)‖L+1−j + ‖∂Lt θ(0, ·)‖ .

Note that

(3.8) E1 ≤ E + (3/2)1/2|1−X∞|+ |T0 − T∞| .
Since |1−X∞|, |T0−T∞| → 0 as E → 0, and since E will be chosen small enough,
we choose δ > 0 in such a way that

(3.9) (X∞, T∞) ∈ G′(B) = {(F, T ) ∈ Rn | |F − 1|+ |T − T0| < 3
4B, T > 3

4T0} .
Obviously, G′(B) ⊂ G(B). By (A.3), Assumption (2) and (1.7), we see that

(3.10) α0 ≤
∂S

∂F
(F, T ),

∂N

∂T
(F, T ), Q(F, T ),

∣∣∣∣ ∂2ψ

∂F∂T
(F, T )

∣∣∣∣ ≤ α1

for (F, T ) ∈ G′(B) with some positive constants α0 and α1.
Our purpose in this section is to prove the following a priori estimate for

solutions in [0, t0].

Theorem 3.1. Let X and T be solutions in [0, t0]. Assume that (1.13) is valid.
Then there exists a δ > 0 such that if E ≤ δ then Y (t) ≤ 1 for all t ∈ [0, t0].

To prove Theorem 3.1, we shall essentially use the following.

Theorem 3.2. Let X and T be solutions in [0, t0]. Assume that (1.13) is valid
and that E1 ≤ 1. Then there exists a σ > 0 such that

(3.11) Y (t) ≤ C{expCY (t)}{E1 + (1 + Y (t))L−1Y (t)2}
provided that |V (t, x)| ≤ σ for all (t, x) ∈ [0, t0] × [0, 1]. Here, C is a positive
constant independent of X, T , t0 and σ.

P r o o f o f T h e o r e m 3.1. We assume that Theorem 3.2 is valid. In view
of (3.8), we choose δ > 0 in such a way that E1 ≤ 1. Let δ′ ∈ (0, 1], to be
determined in the course of the proof. Put I = {t ∈ [0, t0] | Y (s) ≤ δ′ for
0 ≤ s ≤ t}. Our task is to prove that I = [0, t0] under the suitable choice of δ
and δ′. Since Y (0) ≤ 2E1, in view of (3.8), we choose δ > 0 so small that E1 <

1
2δ
′

provided that E ≤ δ. Then Y (0) < δ′ if E ≤ δ. By the continuity of Y (s), this
implies that I is a non-empty set. The continuity of Y (s) also implies that I is
closed, so it suffices to prove that I is open. Let t ∈ I, namely, Y (t) ≤ δ′ (≤ 1).
Since Y (s) is monotonically increasing and continuous, it is sufficient to prove
that Y (t) < δ′. Let σ > 0 be the same constant as in Theorem 3.2. By Sobolev’s
inequality, we know that |V (s, x)| ≤ c1Y (s) for (s, x) ∈ [0, t0] × [0, 1] with some
constant c1 > 0. Choose δ′ > 0 in such a way that c1δ′ ≤ σ. Then |V (s, x)| ≤ σ
for (s, x) ∈ [0, t]× [0, 1]. Replacing t0 by t, we can apply Theorem 3.2. Then from
(3.11) we see that Y (t) ≤ c2{E1 + Y (t)2} where c2 = 2L−1CeC , where we have
used the fact that Y (t) ≤ 1. We choose δ > 0 so small that c2E1 < δ′/2 provided
that E ≤ δ. Moreover, we choose δ′ in such a way that c2δ′ < 1/2. Then we
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have Y (t) ≤ c2E1 + c2(δ′)2 < δ′/2 + δ′/2 = δ′, which completes the proof of
Theorem 3.1.

P r o o f o f T h e o r e m 3.2. Choose σ > 0 so small that

(X∞ + ux(t, x), T∞ + θ(t, x)) ∈ G′(B) for all (t, x) ∈ [0, t0]× [0, 1] .

We begin with L2 estimates of higher order derivatives. Put

El(t)2 = ‖∂lt(ut(t, ·), ux(t, ·), θ(t, ·))‖2 +
t∫

0

‖∂lsθs(s, ·)‖2 ds .

First, we shall estimate EL(t). Differentiating (3.1)–(3.3) L times with respect
to t, we have

∂2
t v − (SF vx + ST ξ + F 1

L)x = 0 in [0, t0]×Ω ,(3.12)
NT ξt +NF vtx − T−1(Qξx + ∂Lt Q · θx)x = F 2

L +GL in [0, t0]×Ω ,(3.13)
SF vx + ST ξ + F 1

L = ξx = 0 on [0, t0]× ∂Ω ,(3.14)

where
(3.15)

v = ∂Lt u , ξ = ∂Lt θ ,

RG = RG(t) = (∂R/∂G)(X∞ + ux, T∞ + θ) for R = N,S, and G = F, T ;

F 1
L = F 1

L(t) = ∂Lt S − (SF∂Lt ux + ST∂
L
t θ) ;

F 2
L = F 2

L(t) = {∂Lt N − (NT∂Lt θ +NF∂
L
t ux)}t + (NT )t∂Lt θ + (NF )t∂Lt ux ;

GL = GL(t) = ∂Lt {T−1(Qθx)x} − T−1(Q∂Lt θx + ∂Lt Q · θx)x .

Note that −ST = NF . Multiplying (3.12) and (3.13) by ∂tv and ξ, respectively,
integrating the resulting equations on Ω and using (3.14), we have

0 =
1
2
d

dt
{‖∂tv‖2 + (SF vx, vx) + (NT ξ, ξ) + 2(F 1

L, vx)} − ((F 1
L)t, vx)(3.16)

− 1
2 ((NT )tξ, ξ)− 1

2 ((SF )tvx, vx) + (T−1(Qξx + ∂Lt Q · ξx), ξx)

+ ((T−1)xQξx, ξ)− (F 2
L +GL, ξ) .

Now, we use the following trick:

(3.17.a) |(F 1
L, vx)| ≤ (α0/4)‖vx‖2 + α−1

0 ‖F 1
L‖2

≤ (α0/4)‖vx‖2 + 2α−1
0 ‖F 1

L(0)‖2 + 2α−1
0

( t∫
0

‖∂sF 1
L(s)‖ ds

)2

≤ (α0/4)‖vx‖2 + 2α−1
0 ‖F 1

L(0)‖2 + 2α−1
0 τ−2‖(F 1

L)t‖2t,1+τ,0 ;

∣∣∣ t∫
0

((F 1
L)t, vx) ds

∣∣∣ ≤ 1
2

t∫
0

(1 + s)−(1+τ)‖vx(s, ·)‖2 ds(3.17.b)

+ (2τ2)−1‖(F 1
L)t‖2t,1+τ,0 ;



472 Y. SHIBATA

∣∣∣ t∫
0

(F 2
L +GL, ξ) ds

∣∣∣ ≤ 1
2

t∫
0

(1 + s)−(1+τ)‖ξ(s, ·)‖2 ds(3.17.c)

+ τ−2(‖F 2
L‖2t,1+τ,0 + ‖GL‖2t,1+τ,0) ;

(3.17.d)
t∫

0

(T−1(Qξx + ∂Lt Q · θx), ξx) ds

≥ 4α0

3T0

t∫
0

‖ξx(s, ·)‖2 ds−
t∫

0

‖∂Lt Q(s, ·) · θx(s, ·)‖ ‖ξx(s, ·)‖ ds

≥ 2α0

3T0

t∫
0

‖ξx(s, ·)‖2 ds− Cτ−2‖∂Lt Q · θx‖2t,(1+τ)/2,0 ;

(3.17.e)
∣∣∣ t∫

0

((NT )tξ, ξ) ds
∣∣∣+
∣∣∣ t∫

0

((SF )tvx, vx) ds
∣∣∣

≤ |||(NT )t|||t,1+τ,0
t∫

0

(1 + s)−(1+τ)‖ξ(s, ·)‖2 ds

+ |||(SF )t|||t,1+τ,0
t∫

0

(1 + s)−(1+τ)‖vx(s, ·)‖2 ds ,

where |||w|||t,1+τ,0 = sup{(1 + s)(1+τ)|w(s, x)| | (s, x) ∈ [0, t]× [0, 1]}.
Hence, integrating (3.16) from 0 to t, estimating the resulting formula by using

(3.17) and (3.10) and applying Gronwall’s inequality, we have

(3.18) EL(t) ≤ C{expCI1(t)}{E2 + I2(t)} ,
where

(3.19)

I1(t) = |||((NT )t, (SF )t)|||t,1+τ ,
I2(t) = ‖((F 1

L)t, F 2
L, GL)‖t,1+τ,0 + ‖∂Lt Q · θx‖t,(1+τ)/2,0 ,

E2 = EL(0) + ‖F 1
L(0)‖ .

Now, we shall estimate El(t) for 0 ≤ l ≤ L − 1. To do this, we rewrite
(3.1)–(3.3) as follows:

utt − (αux − δθ +A1)x = 0 in [0, t0]×Ω ,(3.20)
βθt − γθxx + δutx = −A2

t +B in [0, t0]×Ω ,(3.21)
αux − δθ +A1 = θx = 0 on [0, t0]× ∂Ω .(3.22)

Here, by Taylor expansion, we have put

(3.23)
α = (∂S/∂F )(X∞, T∞) , δ = −(∂2ψ/∂T∂F )(X∞, T∞) ,

β = (∂N/∂T )(X∞, T∞) , γ = Q(X∞, T∞)T−1
∞ ,
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(3.24)

A1 = A1(ux, θ) = S(X∞ + ux, T∞ + θ)− αux + δθ ,

A2 = A2(ux, θ) = N(X∞ + ux, T∞ + θ)−N(X∞, T∞)− βθt − δutx ,
B = B(∂1

xu, ∂
2
xθ) = (T∞ + θ)−1[Q(X∞ + ux, T∞ + θ)θx]x − γθxx .

Differentiating (3.20)–(3.22) l times with respect to t, and employing the same
arguments as in the proof of (3.18), we have

(3.25) El(t) ≤ C{El(0) + ‖∂ltA1(0)‖+ I3(t)} ,

where

(3.26) I3(t) = ‖(A1, A2)‖t,1+τ,L + ‖B‖t,1+τ,L−1 .

Now, we shall estimate the derivatives with respect to x. Using (3.20) and
(3.21), we have

(3.27) ‖∂L−1−P
t ∂P+2

x u(t, ·)‖
≤ α−1{‖∂L−1−P

t ∂Px ∂
2
t u(t, ·)‖+ |δ| ‖∂L−1−P

t ∂P+1
x θ(t, ·)‖+ I3(t)} ,

(3.28) ‖∂L−1−P
t ∂P+2

x θ(t, ·)‖
≤ γ−1{β‖∂L−1−P

t ∂t∂
P
x θ(t, ·)‖+ |δ| ‖∂L−1−P

t ∂t∂
P+1
x u(t, ·)‖+ I3(t)}

for 0 ≤ P ≤ L− 1. By (3.21) and (3.22), we also have

‖∂L−1
t ∂xθ(t, ·)‖ =

{ L−1∑
l=0

−(∂ltθ(t, ·), ∂ltθxx(t, ·))
}1/2

(3.29)

≤ C{‖∂Lt θ(t, ·)‖+ ‖∂Lt ux(t, ·)‖+ I3(t)} .

Using (3.27), (3.28) and (3.29), by induction on P we have

(3.30) ‖∂L−1−P
t ∂P+2

x u(t, ·)‖+ ‖∂L−1−P
t ∂P+2

x θ(t, ·)‖+ ‖∂L−1−P
t ∂P+1

x θ(t, ·)‖
≤ CI4(t) for 0 ≤ P ≤ L− 1 ,

where I4(t) = ‖∂Lt (ut(t, ·), ux(t, ·), θ(t, ·))‖+I3(t). Hence, combining (3.18), (3.25)
and (3.30), we have

(3.31) Y2(t) ≤ C{expCI1(t)}{E1 + ‖∂L−1
t A1(0)‖+ ‖F 1

L(0)‖+ I2(t) + I3(t)} .

Now, we shall estimate the nonlinear terms. To do this, we need the following
calculus lemma (cf. [3, §3] for its proof).

Lemma 3.3. (1) Let t ≥ 1 and let L be an integer ≥ 1. Then

‖f‖t,K,N ≤ C(K,L)‖f‖αt,K/α,0‖f‖
1−α
t,0,L where N ∈ (0, L) and α = 1−NL−1 .

(2) Let L ≥ 1 and let F be a smooth function defined on {u = (u1, . . . , um) ∈
Rm | |u| ≤ u0}. Assume that F (u) = O(|u|k) near u = 0. If |u(t, x)| ≤ u0 for
(t, x) ∈ [0, t0]×Ω, then

‖DLF (u(t, ·))‖ ≤ C(F,L)(1 + ‖DLu(t, ·)‖)L−k‖DLu(t, ·)‖k .
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(3) Let L ≥ 2. Then

‖∂Lt (u(t, ·)v(t, ·))− ∂Lt u(t, ·) · v(t, ·)− u(t, ·)∂Lt v(t, ·)‖
≤ C(L){‖DL−1u(t, ·)‖ ‖D[L/2]+1v(t, ·)‖+ ‖D[L/2]+1u(t, ·)‖ ‖DL−1v(t, ·)‖} .

(4) Let rj (1 ≤ j ≤ m and m ≥ 2), K, L and M be integers such that

L ≥ 1 ,
m∑
j=1

rj = L , 0 ≤ r1 ≤ r2 ≤ . . . ≤ rm , M ≥ 1 , K + L ≤M .

Then ∥∥∥ m∏
j=1

uj

∥∥∥
K
≤ C

m∏
j=1

‖uj‖M−rj .

First of all, we show that

(3.32) ‖V ‖t,1+τ,[L/2]+1 ≤ CY (t) .

For t ≤ 1, (3.32) is obvious because [L/2]+1 ≤ L−1. For t ≥ 1, by Lemma 3.3(2),

‖V ‖t,1+τ,[L/2]+1 ≤ C‖V ‖αt,(1+τ)/α,0‖V ‖
1−α
t,0,L−1 ,

where α = 1− ([L/2] + 1)(L− 1)−1. Since (1 + τ)/α ≤ K as follows from (1.12),
we have (3.32).

By Sobolev’s inequality and (3.32), we also have

(3.33) |||V |||t,1+τ ≤ CY (t) .

Application of (3.33) to |||RG|||t,1+τ (cf. (3.15)) immediately yields

(3.34) I1(t) ≤ CY (t) .

Now, we estimate I2(t). For simplicity, we use the following notation for the
function Z = Z(X∞ + ux, T∞ + θ) : Z0 = Z(X∞, T∞) and Z1 = Z1(ux, θ) =
Z − Z0. Note that Z1(ux, θ) = O(|(ux, θ)|). Since ∂Lt Q = ∂Lt Q

1, by (3.33) and
Lemma 3.3(2),

(3.35) ‖∂Lt Q ·θx‖t,(1+τ)/2,0 ≤ |||θx|||t,(1+τ)/2‖∂Lt Q1‖t,0,0 ≤ C(1+Y (t))L−1Y (t)2 .

Here and hereafter, we sometimes use the estimates ‖(ux, θ)‖t,0,L ≤ Y (t). By
direct calculation, we have

(F 1
L)t = {∂Lt (S1

Futx)− S1
F∂

L
t utx − ∂Lt S1

F · utx}+ {∂Lt (S1
T θt)− S1

T∂
L
t θt

− ∂Lt S1
T · θt}+ ∂Lt S

1
F · utx + ∂Lt S

1
T · θt − ∂tS1

F · ∂Lt ux − ∂tS1
T · ∂Lt θ .

Then, applying (2) and (3) of Lemma 3.3 and using (3.32) and (3.33), we have

(3.36) ‖(F 1
L)t‖t,1+τ,0 ≤ C(1 + Y (t))L−1Y (t)2 .

Performing the same change of the formula for F 2
L, by (2) and (3) of Lemma 3.3,

(3.32) and (3.33), we also have

(3.37) ‖F 2
L‖t,1+τ,0 ≤ C(1 + Y (t))L−1Y (t)2 .
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Put T−1 = T−1
∞ + a(θ) where a(θ) = −θ/(TT∞). Since

GL = {∂Lt (a(θ)(Qθx)x)− a(θ)∂Lt (Qθx)x − ∂Lt a(θ) · (Qθx)x}+ ∂Lt a(θ) · (Qθx)x
+ T−1{∂Lt (Q1θxx)− ∂Lt Q1 · θxx −Q1∂Lt θxx}
+ T−1{∂Lt (Q1

xθx)− ∂Lt Q1
x · θx −Q1

x∂
L
t θx} ,

and since (Qθx)x = O(|(ux, uxx, θ, θx, θxx)|), Q1 = O(|(ux, θ)|) and Q1
x =

O(|(ux, uxx, θ, θx)|), by (2) and (3) of Lemma 3.3, (3.32) and (3.33), we have

(3.38) ‖GL‖t,1+τ,0 ≤ C(1 + Y (t))L−1Y (t)2 .

Combining (3.35)–(3.38), we have

(3.39) I2(t) ≤ C(1 + Y (t))L−1Y (t)2 .

Now, we shall estimate I3(t). Since S(X∞, T∞) = 0, Al(ux, θ), l = 1, 2,
are quadratic forms in (ux, θ). Thus, we may write symbolically Al(ux, θ) =
al(ux, θ)(ux, θ), where al(ux, θ)=O(|(ux, θ)|). Applying (2) and (3) of Lemma 3.3,
(3.32) and (3.33), we have

‖Al‖t,1+τ,L ≤ C{‖al‖t,0,L−1‖(ux, θ)‖t,1+τ,[L/2]+1(3.40)

+ ‖al‖t,0,[L/2]+1‖(ux, θ)‖t,1+τ,L−1 + ‖al‖t,0,L|||(ux, θ)|||t,1+τ
+ |||al|||t,1+τ‖(ux, θ)‖t,0,L}

≤ C(1 + Y (t))L−1Y (t)2 for l = 1, 2.

Since B = a(θ)(Qθx)x+T−1
∞ (Q1θx)x, and since both a(θ)(Qθx)x and (Q1θx)x are

O(|(ux, uxx, θ, θx, θxx)|2), we may write symbolically B = b(W )W where W =
(ux, uxx, θ, θx, θxx) and b(W ) = O(|W |). Noting that [(L− 1)/2]≤ [L/2] + 1 and
employing the same arguments as in (3.40) (L should be replaced by L−1), by (2)
and (3) of Lemma 3.3, (3.32) and (3.33), we have

(3.41) ‖B‖t,1+τ,L−1 ≤ C(1 + Y (t))L−2Y (t)2 .

Combining (3.40) and (3.41), we have

(3.42) I3(t) ≤ C(1 + Y (t))L−1Y (t)2 .

Since we can write the estimate of the term ‖∂L−1
t A1(0)‖ symbolically as follows:

‖∂L−1
t A1(0)‖ ≤ C

{
‖(ux(0, ·), θ(0, ·))‖

+
L−1∑
j=1

∑
αj

‖(utx(0, ·), θt(0, ·))α
1
j . . . (∂jt ux(0, ·), ∂jt θ(0, ·))

αj
j‖
}

where αj = (α1
j , . . . , α

j
j) and αkj are multi-indices satisfying

j∑
k=1

k|αkj | = j and
j∑

k=1

|αkj | ≤ j ,
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applying Lemma 3.3(4), we have

(3.43) ‖∂L−1
t A1(0)‖ ≤ C(1 + E1)L−2E1 .

In the same manner, we see that

(3.44) ‖F 1
L(0)‖ ≤ C(1 + E1)L−2E1 .

Since E1 ≤ 1, combining (3.43), (3.44), (3.42), (3.39), (3.34) and (3.31), we have

(3.45) Y2(t) ≤ C{expCY (t)}{E1 + (1 + Y (t))L−1Y (t)2} .

Now, we estimate Y1(t). Since Y1(t) ≤ 2(1+τ)Y (t) for t ≤ 1, we consider the
case where t ≥ 1 below. Applying Theorem 2.1 to (3.20)–(3.22), we have

(3.46) ‖αux − δθ‖t,K,1 + ‖(θx, θxx, θtx, θtxx)‖t,K,0 ≤ CI5(t)

where I5(t) = E1+‖(∂1
xA

1, A2
t , B)‖t,K+τ+1,4K+7. Here, we have used the fact that

4K + 8 ≤ L, which follows from (1.12) and the fact that |v(t, l)| ≤ C‖∂1
xv(t, ·)‖

for l = 0 and 1.
Now, let us prove the decay property of uxx, utx, utt, ut, ux, θ and θt. By the

identity uxx = α−1(αuxx − δθx) + δα−1θx, we have ‖uxx‖t,K,0 ≤ CI5(t). Since
(β+δ2α−1)θt = γθxx−δα−1(αuxt−δθt)−A2

t +B as follows from (3.21), we have
‖θt‖t,K,0 ≤ CI5(t). Now, the identity utx=δ−1(γθxx−βθt−A2

t+B), which follows
also from (3.21), implies that ‖utx‖t,K,0 ≤ CI5(t). Moreover, by (3.20) we see that
‖utt‖t,K,0 ≤ CI5(t). Integrating (3.1) on Ω and using (3.3) and (1.13), we have

(3.47)
1∫

0

ut(t, x) dx =
1∫

0

ut(0, x) dx =
1∫

0

u1(x) dx = 0 for t ∈ [0, t0] .

Let us recall the well-known Poincaré inequality:

(3.48) ‖v‖ ≤ C
{
‖v′‖+

∣∣∣ 1∫
0

v(x) dx
∣∣∣} for v ∈ H1 .

Combining (3.47) and (3.48) with v = ut(t, ·), we have ‖ut(t, ·)‖ ≤ CI5(t). To
deal with the decay property of ux and θ, we use the following form of Poincaré’s
inequality:

(3.49) ‖v‖+ ‖w‖

≤ C
{
‖v′‖+ ‖w′‖+

∣∣∣ 1∫
0

(δv(x) + βw(x)) dx
∣∣∣+
∣∣∣ 1∫

0

(αv(x)− δw(x)) dx
∣∣∣}

for v, w ∈ H1. In fact, if we put p = δv + βw and q = αv − δw, noting that
v = (αβ+ δ2)−1(δp+βq) and w = (αβ+ δ2)−1(αp− δq) and applying (3.48) to p
and q, we have (3.49) immediately. Applying (3.49) to v = ux(t, ·) and w = θ(t, ·),
we have

(3.50) ‖ux(t, ·)‖+ ‖θ(t, ·)‖ ≤ C
{
‖uxx(t, ·)‖+ ‖θx(t, ·)‖
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+
∣∣∣ 1∫

0

(δux(t, x) + βθ(t, x)) dx
∣∣∣+
∣∣∣ 1∫

0

(αux(t, ·)− δθ(t, x)) dx
∣∣∣} .

By (1.5) and (1.6.a), we see that

ε(X∞, T∞) =
1∫

0

ε(X∞ + ux(t, x), T∞ + θ(t, x)) dx(3.51)

+
1
2

1∫
0

ut(t, x)2 dx .

By Taylor expansion, (3.23), (1.6.b), (1.7) and (A.2), we have

ε(X∞ + ux, T∞ + θ) = ε(X∞, T∞) + T∞(δux + βθ) + ε′(ux, θ) ,

where ε′(ux, θ) = O(|(ux, θ)|2). Since |V (t, x)| ≤ σ, by (3.51) we have

(3.52)
∣∣∣ 1∫

0

(δux(t, x) + βθ(t, x)) dx
∣∣∣

≤ Cσ(‖ux(t, ·)‖+ ‖θ(t, ·)‖) + (σ/2T∞)‖ut(t, ·)‖ .

Combining (3.50) and (3.52) and choosing σ > 0 small enough, we infer that
‖ux‖t,K,0, ‖θ‖t,K,0 ≤ CI5(t). Hence

(3.53) Y1(t) ≤ CI5(t)

provided that σ > 0 is small enough and |V (t, x)| ≤ σ for all (t, x) ∈ [0, t0]× [0, 1].
Finally, we estimate I5(t). First, we show that

(3.54) ‖V ‖t,(K+τ+1)/2,4K+7 ≤ CY (t) .

Since 4K + 7 ≤ L− 1, (3.54) is valid for t ≤ 1. By Lemma 3.3(1), we have

‖V ‖t,(K+τ+1)/2,4K+7 ≤ C‖V ‖αt,(K+τ+1)/2α,0‖V ‖
1−α
t,0,L−1

where α = 1 − (4K + 7)(L − 1)−1. Since (K + τ + 1)/(2α) ≤ K as follows
from (1.12), we have (3.54). Recall that Al = al(ux, θ)(ux, θ) and B = b(W )W
where W = (ux, uxx, θ, θx, θxx), al(ux, θ) = O(|(ux, θ)|) and b(W ) = O(|W |).
Applying Lemma 3.3(2) to A1, A2 and B, noting that 4K + 7 ≤ L − 1 and
using (3.54), we have

‖(∂1
xA

1, A2
t , B)‖t,K+τ+1,4K+7

≤ C{‖(a1, a2)‖t,(K+τ+1)/2,4K+8‖(ux, θ)‖t,(K+τ+1)/2,4K+8

+ ‖b‖t,(K+τ+1)/2,4K+7‖W‖t,(K+τ+1)/2,4K+7}

≤ C(1 + Y (t))L−1Y (t)2 .

Thus, we have

(3.55) Y1(t) ≤ C{E1 + (1 + Y (t))L−1Y (t)2} .
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Since expCY (t) ≤ 1, combining (3.54) and (3.55) completes the proof of Theo-
rem 3.2.

4. Proof of Theorem 1.1. To prove Theorem 1.1, first of all we shall quote
the local existence theorem for the following problem:

Xtt = S(Xx, T )x in [t1, t1 + t2]×Ω ,(4.1)
TN(Xx, T )t = (Q(Xx, T )Tx)x in [t1, t1 + t2]×Ω ,(4.2)
S(Xx, T ) = Tx = 0 on [t1, t1 + t2]× ∂Ω ,(4.3)
X(0, x) = v0(x) , Xt(0, x) = v1(x) , T (0, x) = ξ0(x) in Ω .(4.4)

To state the regularity of initial data and the compatibility condition, for a mo-
ment we assume the existence of solutions X and T to (4.1)–(4.4) satisfying the
conditions

(4.5)

X ∈
L+2⋂
j=0

Cj([t1, t1 + t2], HL+2−j) ,

T ∈ CL+1([t1, t1 + t2], L2) ∩
L⋂
j=0

Cj([t1, t1 + t2], HL+2−j) ,

(4.6) (Xx(t, x), T (t, x)) ∈ G(B) for (t, x) ∈ [t1, t1 + t2]× [0, 1] .

Put

(4.7) vj+2(x) = ∂j+2
t X(t1, x) and ξj+1(x) = ∂j+1

t T (t1, x) for 0 ≤ j ≤ L .
As stated in §1, vj+1 and ξj+1 are determined successively from v0, v1 and ξ0 by
differentiating (4.1) and (4.2) j times with respect to t at t = t1. Next, differen-
tiating (4.3) with respect to t at t = t1, we have the conditions at t = t1 on ∂Ω
for v0, v1 and ξ0 through v2, v3, . . . , vL+1 and ξ1, . . . , ξL, namely,

(4.8) ∂jtS(Xx, T )|t=t1 = ξjx = 0 for x ∈ ∂Ω and j = 0, 1, . . . , L .

We shall say that v0, v1 and ξ0 satisfy the compatibility condition of order L
at t = t1.

Theorem 4.1 (cf. Shibata [5]). Assume that

(4.9) vj ∈ HL+2−j (0 ≤ j ≤ L+ 1) , ξj ∈ HL+2−j (0 ≤ j ≤ L) ,
(4.10) (v′0(x), ξ0(x)) ∈ G(B) for x ∈ [0, 1] ,

and that v0, v1 and ξ0 satisfy the compatibility condition of order L− 2 at t = t1.
Let B′ > 0 be a constant such that

(4.11)
2∑
j=0

‖vj‖3−j +
1∑
j=0

‖ξj‖3−j ≤ B′ .

Then there exists a t2 depending on B′ but independent of t1 such that the problem
(4.1)–(4.4) admits a unique solution X, T satisfying (4.5) and (4.6).
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Now, by using Theorems 3.1 and 4.1, we prove Theorem 1.1. Let t be the
supremum of the numbers t0 such that solutions X and T in [0, t0] exist. Suppose
that t <∞. In view of Theorem 4.1, we know that t > 0. Let t0 be any number
in (0, t). Let X, T be the solution in [0, t0]. Below we use the same notation
as in §3. Consider the continuation of X and T by using Theorem 4.1. To do
this, let us give the initial data for the problem (4.1)–(4.4) with t1 = t0 by
v0(x) = X(t0, x), v1(x) = ∂tX(t0, x) and ξ0(x) = T (t0, x). Since X and T satisfy
(3.1) and (3.2), differentiating (3.1) and (3.2) with respect to t at t = t0, we see
that ∂j+2

t X(t0, x) = vj+2(x) and ∂j+1
t T (t0, x) = ξj+1(x) for 0 ≤ j ≤ L, where

vj+2 and ξj+1 are the same as the functions defined in (4.7). Then, differentiating
(3.3) with respect to t at t = t0, we also see that v0, v1 and ξ0 satisfy the
compatibility condition of order L at t = t0. Obviously, it follows from (3.5)
that (v′0(x), ξ0(x)) ∈ G(B) for all x ∈ [0, 1]. Also, it follows from (3.6) that
vj ∈ HL+2−j (0 ≤ j ≤ L+ 1) and ξj ∈ HL+2−j (0 ≤ j ≤ L). By Theorem 3.1 we
see that Y (t) ≤ 1 for t ∈ [0, t0] provided that E ≤ δ for some δ > 0. Note that
the choice of δ is independent of t0. Since

‖X(t0, ·)‖ ≤ ‖X(0, ·)‖+
t0∫
0

‖Xs(s, ·)‖ ds ≤ (1/2)1/2 + ‖u0‖+ t0Y (t0) ,

‖Xx(t0, ·)‖2 = ‖X∞ + ux(t0, ·)‖2 ≤ |X∞|+ Y (t0) ,
‖T (t0, ·)‖3 = ‖T∞ + θ(t0, ·)‖3 ≤ |T∞|+ Y (t0) ,

where we have used the fact that X(0, x) = x+u0(x), and since v1(x) = ut(t0, x),
v2(x) = utt(t0, x), ξ1(x) = θt(t0, x), t0 < t and Y (t0) ≤ 1, we have

2∑
j=0

‖vj‖3−j +
1∑
j=0

‖ξj‖3−j ≤ ‖X(t0, ·)‖+ ‖Xx(t0, ·)‖2 + ‖ut(t0, ·)‖2

+ ‖utt(t0, ·)‖1 + ‖T (t0, ·)‖3 + ‖θt(t0, ·)‖2 ≤ B′

where B′ = (1/2)1/2 + ‖u0‖+ t+ |X∞|+ |T∞|+ 6. By Theorem 4.1, we see that
there exists a t2 > 0 independent of t0 such that the problem (4.1)–(4.4) admits
a solution X ′, T ′ satisfying (4.5) and (4.6). Moreover, it follows from (4.7) that
∂j+2
t X ′(t0, x) = ∂j+2

t X(t0, x) and ∂j+1
t T ′(t0, x) = ∂j+1

t T (t0, x) for 0 ≤ j ≤ L.
If we put Z ′′(t, x) = Z(t, x) for 0 ≤ t ≤ t0 and = Z ′(t, x) for t0 ≤ t ≤ t0 + t2
where Z = X, T , we easily see that X ′′, T ′′ is a solution in [0, t0 + t2]. Since t2
is independent of t0, if we choose t0 in such a way that t0 = t − t2/2, we have
t0 + t2 = t+ t2/2 > t, which contradicts the maximality of t. Thus, t =∞, which
completes the proof of Theorem 1.1.
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