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Abstract. Asymptotic expansions at the origin with respect to the radial variable are es-
tablished for solutions to equations with smooth 2-dimensional singular Fuchsian type operators.

Introduction. This paper completes the results of paper [11] in which regu-
larity of solutions to equations with elliptic corner operators (i.e. n-dimensional
Fuchsian operators) is studied in the spaces M ({2;0) of distributions with con-
tinuous radial asymptotics. Here we introduce subspaces Z({2; o) and Z4({2; 0) of
M (£2; o) and prove a generalized Taylor formula for elements of those subspaces.
This is preceded by preliminaries on the modified Cauchy transformation needed
to establish a Mittag-Leffler type decomposition for holomorphic functions with a
growth control along the imaginary axis. Then we study solutions to homogeneous
equations R(x1,x2,210/0x1,220/0x2)u = 0 with R(z1, z2, (1, (2) an elliptic sym-
bol, on proper cones in the positive quadrant in R?. The solutions u are shown
to belong to Zq4(2;0).

In contrast to solutions to Fuchsian equations in the sense of Baouendi-
Goulaouic, the solutions u to Ru = 0 do not expand in discrete powers of the
radial variable. Instead, for n = 2, we have “continuous” asymptotic expansions
whose densities are distributions supported by several half lines parallel to the
real axis. The densities are equal to the boundary values of the Mellin transforms
of u times the factor (2mi)~!. Moreover, they extend to holomorphic functions
with logarithmic singularities situated in a discrete lattice in C. This is resem-
blant of the resurgence phenomenon of Jean Ecalle and is further investigated in
a forthcoming paper [12].

_ The paper ends with an explicit example covering the case of the operator
A= (3518/8501)2 + ($28/8x2)2.

Some results of this paper appeared in [13]. The reader interested in a system-
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atic presentation of the theory of the Mellin transformation and Fuchsian PDEs
is referred to the book [7].
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1. Notation, definitions and preliminaries. Throughout the paper we use
the following vector notation: if a,b € R",a = (a1,...,a,), b = (b1,...,b,) then
a <b(a<b,resp.) denotes a; < b; (a; < bj, resp.) for j =1,...,n. We write
R ={zeR":0<2},R.={zecR:2<0},I=(0,t]={reR} :a <t}
where ¢t € R". We also write 1 = (1,...,1) € R™.

Z is the set of integers and Ny the set of nonnegative integers. If z € R} and
z=(z1,...,2n) € C" we write * = z7' ... xZ". Vector notation is also used for
differentiations. Namely we write

o _(o o\ o _( 0 o
or  \ Oz " 0x,)’ or  \ ‘oz "oz,

and if v € Njj then

o\ _ o o (e AR
ox) — ox “oxln’ T ox Gwl T\ 0z, '

For points a € R™ we write a = (a1,a’) where a; € R, a’ € R"~1, and similarly
for € C*, ¢ = ((1,{), (1 €C, ¢’ € C* 1. We also consider sets W C C" of the
form W = W' x W’ where W! c C, W' c C"~!. For a set W C C™ and a vector
a€R" wewrite W+a={2€C":2—ac W}

For an open set V' C R"™, C§°(V) is the space of compactly supported C*°
functions on V', D’(V) is the space of distributions on V.

S(R™) denotes the Schwartz space of rapidly decreasing functions, S’'(R™) is
the space of tempered distributions. For a compact set K C R", S(R"\ K) =
{0 € C*(R™): suppo C R"\ K, |||o|||, < oo for any p € No} where

) lolly = sup (14 el ( 3 D% (@)]).

la|<p

For an open set W C C", O(W) denotes the space of holomorphic functions
on W and if K is a compact subset of C" then A(K) = limwy~x O(W). The
dual space A’(K) is called the space of analytic functionals with carrier K. By
B(R) = O(C\R)/O(C) we denote the space of hyperfunctions on R. An element
T € B(R) is an equivalence class of a ¢ € O(C\ R) modulo O(C) which we write
as T' = [¢)] and verbalize as: v is a defining function for 7. The space Bk (R) of
hyperfunctions supported by a compact set K C R is isomorphic to A’(K):
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THEOREM A (Martineau, Harvey [2]).
Bg(R) =2 A (K).

The isomorphism is given by the duality
(Wlo) =~ [ w(2)pz)dz  for p € AK)
r

where [¢] € Bi(R) is a hyperfunction having ¢» € O(C\ K) as a defining function
and I' is a curve encircling K once in the anti-clockwise direction and contained
in the set where @ is holomorphic.

We also recall the following characterization of distributions:

THEOREM B (Painlevé [2]). Let ¢p € O(C\R) be of polynomial growth near R
(i.e. |Y(a+ib)| < C|b|7P for b close to zero, with C' = C(a) > 0, p = p(a) € Z
locally bounded in a € R). Then in the sense of distributional convergence in R

the limit
def

b(v) = Jm Y(-+1ib) — i P(- —ib)
exists and b(¢) € D'(R). Moreover, b(v)) = [¢] under the inclusion D'(R) C B(R)
derived from the isomorphism of Theorem A.

We call b(v)) the boundary value or the jump of ¢ across R.

Sometimes, it will be convenient to consider the above spaces transformed
to an imaginary line N C C by means of a linear parametrization of N. More
specifically, we consider the spaces B(N) N S'(N \ K) where K is a compact
subset of the imaginary line N = r 4 ¢R for some fixed r € R. Observe that if
K. ={¢ e N :dist(K,() < e} then

(2) B(N)NS'(N\K) = (|(A(K.) + §'(N)),
e>0
where the sign “4” denotes the sum of analytic functionals.

More generally, A(R"~1; S"(R)) (O(C"~1; S’(R)), resp.) denotes the space of
analytic (holomorphic, resp.) functions on R"~! (C"~1, resp.) with values in
S'(R™), i.e. functions R*™! 5 z +— T(z) € S’(R) such that for any o € S(R)
the function R"™! 5 2 — T(x)[o] € C is analytic, and similarly for the other
case. We also make use of the isomorphism S’'(R") ~ S’(R"~!; S’(R)) where the
right-hand side is the space of continuous linear mappings on S(R"~!) with values
in §’(R). Similarly, we use S’(R") ~ S’(R; S’(R"~1)). Both isomorphisms can be
regarded as S’ versions of the Schwartz kernel theorem ([1], [7]).

For the sake of completeness, below we briefly review the main facts on the
Mellin transformation which are used in this paper (for details cf. [6], [7], [9]).

Fix t € R%. Let I = (0,¢]. We denote by C°°(I) the set of complex functions
on I which are restrictions to I of smooth functions on R’ .
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Let o € R™. We denote by M, = M,(I) the space of all ¢ € C>°(I) such that
Qa,u(%p) = sup

for every v € Njj
a v
a+1 -~
e (vae) o0

is finite, with the topology given by the seminorms o, ., ¥ € Ni. The space
M,y = M) (I) for w € (RU {oo})™ is the inductive limit

M, = Q M, (I).

a<w

The space M" = |J,er- M|, C D'(R}), where M  is the dual of M), is
called the space of Mellin (transformable) distributions. We now define the Mellin

transform of u € M (’w). Set

Mu(z) =ufz™*"Y forz€ C", Rez<w.

Then Mu is holomorphic for Rez < w. The Mellin transform of u is any holo-
morphic extension of the function defined above.
We introduce a scale M7, C M, for s € R (see [10] and [4]) as follows:

u € M(/:) if for every o < w there exists a constant C' = C(«) such that
(Mu(a +i8)] < C(1L+|BI)°  for B € R™.
The Mellin transformation introduced above satisfies the following operational
identities. If u € M(’w), a € C™ then
M(z%u)(z) = Mu(z —a) for Rez < w+ Rea.
If v € Nj, |v| =1, then
a v
M<<8> u)(z):(z”—l—l)/\/lu(z—i—y) for Rez <w —v.
x
Since we also consider distributions in D'(R’) with unbounded support we
introduce the following spaces (see [6], Section 5).

Let « € R™ and let p : R™ — R” be the exponential mapping p(s) =
(e7*1,...,e *"). We define the space M, = M, (R"}) as the dual of the space

My = M) = {0 € CF(RY) : (a"10) o p € S(R™))

with the natural topology induced from S(R™). Note that u € 9t if and only if
e (uop) e S (R").
The Mellin M, transform of u € M., is defined as

Mou = 27)"F e (uop)) € S'(R™)
where the inverse Fourier transform F~1! is defined as

F®) = oo [ eMv(s)ds  for v e SR

R™

1
(2m)"
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My, is compatible with M in the sense that if u € M, (I) then for every
a < w, we have u € MM, the tempered distribution M,u is actually a function,
and M,u(f8) = Mu(a +i3) for g € R™.

Restrictions of distributions in 9., to compact sets are in M, (/a). More precisely,
if u € M, then pu € Mj,,,(I) for every ¢ € C5°(R") with suppp NRY C I.

To recall the definition of the space M ({2; o) of distributions with continuous
radial asymptotics we need some additional notation:

Let A : C* — C" be the linear transformation defined by Az = ( where

CGL=21+...+ 2n,
(=% forj=2,....n.
The formula
(Mu) o A7H(¢) = M(uo S)(C)

for u € M', suppu C I, a proper cone in R (i.e. rn M = {0} where overbar
denotes closure in R™), relates this transformation (see Proposition 1 in [11]) to
the passage to the “radial” coordinates x = S(y), with § : R} — R, given by

(3) 1 =Y, Tj = Y1Y; forj:2,...,n.

DEFINITION A (see Def. 1 in [11]). Let £2! be an R_-connected open subset
of C, i.e. a subset which together with any point ¢; € 2! contains the half-line
Col + R_. Also suppose that for any r» € Re 2! def {Re (1 : ¢4 € 2} the set
A = {¢ € C\ 2! : Re¢y < 7} is compact in C. Let o : Ref2! — R be
a nondecreasing function. We say that a Mellin distribution u supported by a
proper cone I" belongs to M ({2; o) where

N=A"1 (2" xC"
if the function H = Mu o A~! satisfies the following conditions:
(i) H € O(2t xCn1).
(ii) For any open neighbourhood W of A = C\ !
|H(a +1ib)] < C(1+ ) for a+ibe (C\W)xCr?
where C' = C(W, a) is locally bounded in a € Re(C\ W) x R*~1.

DEFINITION B. Let 02 € R%. A conical cut-off function at (0,0z) is any

function £ € C*°(R"}) of the form
K= K
where ¢ € C§°(R%), ¢ = 1 in a neighbourhood of zero, k € C*°(R" ) is homoge-
neous of order zero, k(d2) # 0 and & is supported in a proper cone in RY.

Finally, for a compact set K C C and a constant function o(r) = s € R we
denote by A'(K; M(C"™1;s)) the space of M (C"~!; s)-valued continuous analytic



560 B. ZIEMIAN

functionals T with carrier K such that for any compact U C C with K C Int U
|IM'T[p](a" +b')| < C(1+ ||0']|)¥ sup |¢(0)|  for p € A(U) and b’ € R™*
ocU

locally uniformly in @’ € R"~1. Here M’ is the partial Mellin transform in the
variables ¢! € C*~!. Similarly, T € D'(R; M(C"~1;s)) if for any compact K C R

Py () o

v € C§°(R), suppy C K, with C = C(K,d’), m = m(K,a’) locally bounded in
a € Rn1

IM'T[e)(a + )] < C(L+[B']))* D sup for o' € R"71,

b1 €R

2. The spaces Z({2;0), Z4(£2;s). We introduce subspaces Z({2;0) and
Z4(92; s) of M(2; o) which contain information on the behaviour of Mellin trans-
forms near the boundary of (2.

DEFINITION 1. Let (2 and g be as in Definition A. We say that a Mellin
distribution u with support in a proper cone I' C R’} belongs to Z({2; o) if the
function H(¢) = Muo A71(¢) satisfies the following conditions for all r € Re 2*:

(i) H e O x C1y.
(ii) For any open neighbourhood W of A = C\ £2*
|H(a +1ib)] < C(1+ )¢ ) for a+ibe (C\W)xCr?

where C' = C(W, a) is locally bounded with respect to a € Re 2! x R*~1.
(iii) There exists a B(r +iR) N S’'((r +iR) \ K")-valued holomorphic function

C"'>(¢ w— H.c € B(r+iR)NS'((r +iR) \ K")
where K" = AN {Re(; = r}, which is an extension of the function
(r+iR)\ K" > G — H(G, ().
(iv) For every 0 < e < &, if
xe(Q) = {3 for & € (1) \ KT,
where K7 = {¢; € 7 + iR : dist((1, K") < £}, then
x-Hrolpll < O+ b)) sup o(0)]  for b e R"

(note that H, ¢ is analytic outside K" and hence x.H,: makes sense) where
V c C is any compact set such that K7 C IntV, ¢ € A(V), and C = C(V,e,d’)
is locally bounded in @’ € R*~ 1.

Next we define a subspace of Z(§2; 9) which appears frequently in applications

and is much easier to deal with. We consider a special case of 21 = C\ U§:1 L;
where L; are closed half lines parallel to the real axis. We write B = {B1,..., By}
where B; = Im L;.
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DEFINITION 2. Let 2 = A=Y(2! x C*~!) with 2! as above, and o = s € R
a constant. We write u € Z4(£2;s) if u is a Mellin distribution supported by a
proper cone I C R” and the function H(¢) = Muo A~1(() satisfies the following
conditions:

(i) H € O(2t x Cn1).
(ii) For every open neighbourhood W of U?Zl L;
|H(a +ib)] < C(1+||p|])* fora+ibe (C\W)xC" !

locally uniformly with respect to a € R".

(iii) |H (a4 ib)| < C(1 +||b'||)®/(dist(by,B))™ for by close to B and a’ +ib" €
Cn~1, for some constants 0 < C = C(a), m = m(a) € R locally bounded for
a € R™.

We also set Z4(§2; —00) = ([ er Za($2;s).

s€ER
To see that Z4(§2;s) C Z(£2;s) we note the following simple
LEMMA 1. If H € O(2' x C"~1) satisfies (ii) and (iil) of Definition 2 then
there exists a holomorphic S’-valued function
C"'>3¢ w H.c €8 (r+iR)
extending the function
r+i(R\B) > G — H(G, ()

and such that for any ¢ € C§°(r +iR) with support in a compact set E C r+ iR

Hy ool < OO+ ub’ms(nf sup | () jso<<1>>

with a constant C = C(E) independent of ¢’ € C"~1.

Proof. The proof is standard and the desired extension is constructed by
means of the m + 1-th order primitive of the function by — H(r + ib1,(’) near
the points of B.

3. Modified Cauchy transformation in dimension 1. In this section we
present in a slightly generalized setting certain results of Section 1 of [10]. The
reader is directed to [10] for a more detailed exposition.

Let x € CF(R) with x =1 on (0,%0]. A modified Cauchy kernel (determined
by x) is the function

G(z) = Mx(z).
It has the following properties (see Proposition 7.5 of [7]):
() G e O(C\ {0}), )
(ii) G(z) = —1/2 4+ G(z) with G € O(C),
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(iii) the function R 5 §+— (a+1i8)G(a+1if) is in S(R) locally uniformly with
respect to a € R,
(iv) for every € > 0 and m > 0 there exists a constant C' = C'(e,m) such that

|Gla+if)] < Cty“(1+[8])™™ fora>ce¢.
Let r € R, let K C r + iR be a compact set and define N = r + iR.
DEFINITION 3. Let T'€ B(N) N S/(N \ K). The functions

CET(() = %T[G(C —9)] for +Re(> 4r

are called the right and the left (modified) Cauchy transforms of T

Note that, since for every ¢ with Re ¢ # r the function 7+iR > 0 — G({—0) is
analytic and rapidly decreasing, T'[G(¢ — 6)] is well-defined and is a holomorphic
function of (.

THEOREM 1. Let T € B(N)N S/ (N \ K). Then under the isomorphism of
Theorems A and B

T=[CT,CT]
where the right-hand side is a Fourier hyperfunction on N, with a defining func-
tion
() = CT(C) forRe(<r,
C*tT(C¢) for Re¢ >r.

Proof. By (2) write T' = Ty + T» where Ty € A'(K.) (for some € > 0) and
Ty € S'(N). For Ty the theorem coincides with Theorem 1 of [10]. In the case of
T we define for ( &€ K.

v (Q) = 5 -TiIG(C ).

In view of (ii) we have
-1 1 1 ~
v (¢) = %Tl L — 9} + %TJG(C —0)].

Observe that the first summand is a standard defining function of 77 and the
second is entire on C. Hence [¥F] = T, which ends the proof.

4. Mittag-Lefler decomposition. Before stating the version of the Mittag-
Leffler theorem which we need we prepare a suitable notation: Let H € O(21)
where 2! is as in Definition A. Fix r € Re £2! and suppose that for some m € Ny
and t; € Ry
(4)  |H(ay +ib)| < Ct;** (1 + |b1|)™  for ag +iby € C\W, a1 <,
with C' = C(W), where W is an open neighbourhood of A = C\ £2'. Denote by
H, an extension to B(r +iR) N S’((r +iR)\ K") of the function

(r+iR)\ K" > ¢ — H(G)
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where K" = AN{Re(y = r}. As usual, set K7 = {r+iby : dist(r +ib;, K") < e}
and

A, =AN{ReG <r}.
Let I' be a smooth curve in 2! with end points at the end points of K”, having
A, on its right. Define an analytic functional =, € A’(A,) by

Erlp) = —xH, ol = [ H(0)p(0)d0  for o € A(4,)
r

where . is defined as in Definition 1(iv).
THEOREM 2. Assume that to > t1 (see the beginning of Section 3 and (4)).
Define
I _
() = 5=5,[G(G—0)]  for L eC\A4,,

21

CH(G) = %ﬁr[c;(gl _0)]  for ReGy <.

Then W% € O(C\A,),C~ H extends to a holomorphic function on 2*U{Re (3 < 7}
and

(5) H(G)=C H(G)+%5(¢)  forGe .

Proof. It is clear that ¥ € O(C\ A,.), while Theorem 1 implies that C~ H
extends holomorphically to £2' U {Re(; < r}. We shall prove that (5) holds for
(1€ 2= 2'N{Re(; < r}. To this end take Col € 2! and a curve I'! consisting
of the intervals (r 4+ iR) \ KT and of a curve I" such that ¢1 remains to the left of
I't. Then

Since H is polynomially bounded in Im# and G is rapidly decreasing in Im @
locally uniformly in Re#, it follows from the residue theorem that for any a
sufficiently large negative

o [ HOGE ~0)d0 = HE) + 5 [ HOGG ~0)do.
I—vl

Now it follows from (4), (iv) and easy estimates that

o R S T
| [ HOGG - 0)d8] < cr e =6 ()
_ to
Ref=a
Since we assumed that t; < ty we see that the integral can be made arbitrarily
small by letting @ — —oo. This ends the proof.

5. Generalized Taylor formula for distributions in Z((2; ). Now we
are back in C" and consider holomorphic functions H satisfying (i)—(iv) of Defi-
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nition 1. We define the left Cauchy transform Cg, (1) by
1

(6) Cor(Cr) = i

where ¢’ € C"1 is a holomorphic parameter.

LEMMA 2. Suppose H € O(02' x C"~ 1Y) satisfies (ii)—(iv) of Definition 1 for a
fized a1 = r € Re 2'. Then

Cor i (a1 +iby)| < C(L+ b)) fora; <7, o +ib' € C"7L,

H, [G(¢i —0)] for Rei <r

locally uniformly in a = (ay,a’) for a; <r,a’ € R*~1.

We omit the proof since it does not differ essentially from that of Lemma 2
in [11].

LEMMA 3. Let = € A'(K) where K C C is compact. If

WO(G) = 506~ 0] forG € C\K
then
MER XW)(G) = 2t (Gy).

Proof. In view of the isomorphism of Theorem A (see the proof of Theo-
rem A), = can be represented as

Elel =~ [ w(O)p(0)do  for ¢ € A(K)

where I is a curve encircling K once in the anti-clockwise direction contained in

the set of holomorphy of ¢, and ¥ € O(C \ K). We thus have

ME xW)(G) =~ [ ZOMY x(1))(G)do
r
=~ [w(O)G(¢ — 0)do = 20iwC (¢y)

since M(y”x())(G1) = G(¢1 — 0).

THEOREM 3. A Mellin distribution u belongs to Z(§2;0) if and only if for
any v € Re 2! there exist T, € A'(A.; M(C" 1 0(r))) and a distribution R, €
M (02,;max(o, o(r))) where 2, = A= ((2 U{Re(y < r}) x C*1) such that

(7) woS ="T,08x(y)]+R,0S (S and S are defined by (3))

where x is in C§°(R), x = 1 in a neighbourhood of zero and for every fixed y; > 0,
y{ denotes the test function C > 0 — 3¢ € C (note that T, is regarded as an
analytic functional in the variable 0). The T, is unique up to an M(C"~; o(r))-
valued analytic functional with carrier in K, = A, N{Re (3 = r}.
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Proof. Let u € Z(§2;0) and H(¢) = Muo A=1(¢). Then by Proposition 1 of
[11], w o S is a Mellin distribution supported by a cube (0,t ] for some ¢t € R

(actually by (0,%,] x [¢,#"] for some ¢’ € R”™!) and
H() = M(uo S)(Q).
Choose r € Re 2! and let C"! 5 ¢’ — H, ¢ be the B(r +iR) N S'((r + iR) \

K7)-valued holomorphic function given by Definition 1(iii). Define a holomorphic
family of analytic functionals =, ¢~ as in Section 4:

ET,C’ [(P] == f H(Ha </>90(0) do — (Xer,C’)[SD]
r

where ¢ € A(U) and U C C is a compact set such that I"' U KT C Int U. Then it
follows from (ii) and (iv) of Definition 1 that

(8) |Zrarriv [¢]] < Csup [(8) (L + [6']))2) for b € R
oecU

locally uniformly in @’ € R"~1. It is also clear that for any ¢ € A(A,) the function
C" 1t 3" — E, ¢[¢] is the Mellin transform of a Mellin distribution in M’((0,¢'])
with support in [t/,¢'].
As in Section 4, let
1 e
() = =—Z,0[G(G—0)] for  €C\ A, eC T,

21

where G is a modified Cauchy kernel and satisfies (i)—(iv) of Section 3 with ty > ;.
Again it follows from Definition 1(ii), (iv) that for any open neighbourhood W of
A, we have

9) WS, (ar +ib)| < OO+ b)) for ay +iby € C\W, b € R"~?

where C = C(W, a) is locally bounded for a € R™.
Since H is the Mellin transform of u o S it follows that (see [9]) for any t > ¢
and a < 0 small enough
|H(a+ib)| < Ct™*(1+||b])™ forbeR"
for some constants C, m. This together with Definition 1(ii) shows that condi-
tion (4) holds. Thus by Theorem 2 (we take t1 < tg)
(10) H(¢) =Co(G) +¥E(¢) for e, (feC

where C;,(C1) is given by (6). In view of Lemma 3 we have

(11) MM (Er e [y x (D (G) = 206 (G1)
where M1 is the partial Mellin transform in the first variable. Applying to (10)
the inverse Mellin transformation (M!)~! we find in view of (11)

(12) (MHTHH(,¢) () = LEr,C' [yix] + (M) 7ICe ().

211
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Now applying (M’)~! to both sides of (12) we get (7) with
1
T, = %(MI)_l(Er;) and R, oS = (M) C (1))

Formula (8) implies that for any ¢ € A(A,), T.[¢] € M(C"1;o(r)) and the
assignment A(A,) > ¢ — T,[p] € M(C"1;o(r)) is continuous. Concerning R,,
observe that clearly

M(R,08)=C" e O(Q2: xC"), ¥ U{Re; <7},
and in view of (10), Definition 1(ii) and (9)
(13)  |M(R, 0 S)(a+ib)] < C(1+|p])2®)  fora+ibe (C\W)xCr?
where W is an open neighbourhood of 2! and g(a;) = max(o(a1), o(r)). This
shows that R, is in the desired space.

Conversely, suppose that the decomposition (7) holds for some 7, and R, as
in the statement of the theorem. Then (13) holds locally uniformly with respect
to a € Re 2! x R"~1. We construct a holomorphic family of extensions to B(r +
iR) N S'((r+iR) \ K") of the function

(r+aR)\ K" > G H'(¢1,¢") = M(R, 0 5)(C1,¢)
for ¢’ € C"1 as follows: Fix ¢ > 0, take a compact V' C C such that K7 C Int V/,
and ¢ € A(V). Let Iy be a continuous curve obtained by modifying the line

(r +4R) NV inside K] to a curve contained in V' and having K" on its right.
Choose a complex neighbourhood W of C\ 2! so that It € C\ W. Define

LA = [ o(0)xe(r + i lm0)H(0.¢') db.
I

Then it follows from (13) that
XeH, o []] < Cusup |(0)|(1+ [[b]))7.
(4%
Next, let T, € A’(A,; M(C"~1; o(r))). Then by definition for any compact U C C
such that A, C IntU and ¢ € A(U)
(14)  |M(T ) (@ +ib')| < Csup p(@)|(1+[p])2) for b € R*
ocU

with C' = C(U,a’) locally bounded in a’ € R"~1. Define

H?(¢) = M(T:[yix(y))(¢) = M (T[G(G — 0)])(¢)
for ¢ € (C\ A,) x C"~1. Then for any U as above by (14) and property (iii) of G
in Section 3
1 v el
e < a1+ ol

for a +ib € (C\ U) x C"~! with Cy = C3(U, a’) locally bounded in o’ € R~
Let € and V be as for H'. Let I, be a continuous curve obtained by modifying

(15) |H?(a +if3)] < Oy
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the line (r 4+ iR) NV inside K to a curve contained in V' and having K" on its
left. Choose U so that Iy C C\ U. For ¢ € A(V), define

CH2ole) = [ o@)xe(r +ilm0)H*(0,C")do.
Iy

Then from (15)
XH o/ []l < Co sup [(0)](1 + Io])#).

Finally, defining

oo XeH} oo+ xHE oo on {G =7 +ib : dist(¢, K7) < ¢},
T:CI - ’ ! ’ - 7
H(¢, () for 1 € (r +iR) \ K7,
we get the desired extension satisfying (iii) and (iv) of Definition 1. Consequently,
u € Z(£2;max(p, o(r))) and since r is arbitrary it follows that u € Z(£2; o).
Concerning the uniqueness of (7) assume that

(16) woS =T, lylx(y) + R, 08

with fr, ]TZT having the same properties as T;. and R,.. Then clearly T, — T 1S in
A (A,; M(C™ Y 0(r))) and by subtracting the Mellin transforms M?! of (7) and
(16) we get

(T; = T)[G(G = 0)] = M (R, 0 5)(G1) = M* (R0 S)(G).
Since the left-hand sige is holomorphic on C \ A, and the right-hand side on
2L it follows that (T} — T}.)[G(¢1 — 0)] is holomorphic outside K,.. But

5O (G1) = g (T~ T)[C(G — 0)]

is a defining function for 7). — TVT (see Theorem 1). Thus T). — TVT has carrier in K.

We now consider Theorem 3 in the setting of the spaces Zq(f2;s) where
' =C\ U§:1 L;. For a fixed ¢/ € C"! and every j = 1,...,k define Eg,
as a hyperfunction on the line R +iB; whose defining function is H (-, (") consid-
ered as a function in a complex vicinity of R + ¢B;. Since H satisfies condition
(iii) of Definition 2 it follows from Theorem B that Eg/ is in fact a distribution
on R + 7B; with support in L; and can be expressed as

17 == H(-+iby. () — i H(-+iby, ¢’
( ) ¢ b1—>IIIrInlBj ( +1 17<) b1—>11rrlnlBj ( +1 17<)
b1 >Im Bj b1 <Im Bj

where the limit is taken in the sense of distributional convergence in D'(R+iB;).
Moreover,

—_ 8 “ s o0 .
Sl <C s | () |+ 1) for g € CR(R+i).
laj<m | \Oa1
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Define
. 1 ‘
(18) o (M)
where (M’)~1 is the inverse Mellin transformation in the variables ¢’. Then it
follows from the above that
T7 € D'(Lj; M(C" 15 5)).

Write LI = L; N{Re (4 < r} (r € R) and let 77 be any distribution in
D'(R+iBj; M(C"1; s)) with support in L7 which coincides with 77 on B;+{a €
R :a < r}. Finally, as usual, set

Q. =A({Re ¢ <r}unt xC" Y.
Under the above notation we have the following variant of Theorem 3.

THEOREM 3. Let u€ Z4(£2;s). Then for any r € R there exists R, € M ({2,; s)
such that

k
(19) woS =Y T/[x(w)l+ R oS.
j=1

Conversely, if for any r € R formula (19) holds for some TJ € D’Lj (R + iBj;
M(C"Y8) (j=1,...,k) and R, € M{>"_  Rezj <r};s) then u € Za(2;5).
Moreover, if (19) holds for some 1 € R then it holds for every r < r.

Proof. The first part of the theorem follows immediately from Theorem 3.
The proof of the converse implication follows from the lemma below:

LEMMA 4. Let T € D} (R; M(C"1;5)) with K a bounded interval in R.
Define

V() = 5 MTIGO - D) for G €C\K, ¢ eC™.

Then there exist constants C = C(a’), p = p(a’) locally bounded in a’ € R"~!
such that
(1 +[167])*

o i@ <ot T

for by close to 0 and b’ € R"™ 1.
Proof. By definition, for = = M'T({’) € D (R) we have

P l

= ~ d s oo

Zelell <& Lsup| () e Ja+ ) or e o> @)
S

where C = C(d’), p = p(a’) are locally bounded. Thus, putting ¢(t) = G(t — (1)

for ¢4 = a1 + iby with by # 0, in view of property (ii) of G, we get (20) with

p=p+1.
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Returning to the proof of the theorem we note that the final statement can
easily be derived from the above lemma and Lemma 1.

Remarks. 1. Observe that the condition R, € M ({2,; max(g, o(r))) in The-
orem 3 can be replaced by a weaker one:

IM(R, 0 S)(Q)] < C(1+[p])?") for ¢ € ({ReG <r}\ V) x C*F,

where V' is an open neighbourhood of K. in C and C' = C(V, a) is locally bounded
in a.

2. If estimates in the supremum norm in Definitions 1 and 2 are replaced by
those in L? norm we obtain an analogue of Theorems 3 and 3 in terms of the
weighted Sobolev spaces SP(s,s’) (see [14]).

3. Different variants of the decompositions (7) and (19) can be used to extend
the classical concept of differentiability.

COROLLARY 1. The spaces Z(£2;0) and Zq($2;0) are 2-local, i.e. for any
conical cut-off function k, if w € Z(§2;0) (Za($2;0), resp.) then ku € Z(§2;0)
(Za($2; 0), resp.).

This follows from Theorems 3 and 3’ and Theorem 2 of [11].

6. The radial characteristic set charg P of a polynomial. This section
extends the results of Section 3 of [11]. We start with the following property of
the classical Cauchy transformation.

PROPOSITION 1. Let T be a distribution in E'(R) of order p with bounded sup-

port. Suppose T restricted to an interval (0, l;), b> 0, is a differentiable function
such that for j = 0,1

(21) \(;)jm)\ <S praed

where C' > 0, p > 0 are some constants. Then the (classical) left Cauchy trans-
form

1 1
CT(z) = —T[ . }
2T |z — 1y
defined and holomorphic for Re z < 0 extends to a continuous function on the set
{z€C :Rez<0,0<Imz < b} and for every a < 0 there exists C > 0 such
that

IC™T(a+iB)| < fora<a<0 and small 3 >0,

ke

where p = max(p,p + 1).

Proof. Let ) € C§°(R) be such that ¢y =0 on R\ (—-2/3,2/3), |¢| <1, =1
on (—1/2,1/2) and ¢(—v) = ¢(7) for v € R. Let 8 > 0 be so small that T" is a
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differentiable function T'(y) on supp ¢g where ¥g(y) = ¥ ((y — 5)/5). Write

T[Z ! 7] — (2) + Io(2)

where

. T(M)s()
L(a+1ip) = —
H‘! a+i(6 )

We first estimate ;. To this end, for v € R we write

v, DL(a+if)=(1—-vyg)T [cwl(lﬂ—v)} :

Ya(NT(y) = ¥s(NTB) +vs(v)(y = B) [ T'(B+06(y—B))do
0

Observe that since 1/1 is even we have for oo < 0

f Yy f (0 5/5 f (v —id) (5/5)

a+zﬁ v) a+z6 a? + 02

¥(6/5) Y(ae/B) ,
_afa2_|_52d5_ f 140 14+ 02

For fixed 3 and a@ — 0_, the last integral tends to [ @ do = 7. Since | (ap/B)|
< 1, together with (24) for j = 0 this gives

‘T(B) dey' Crips
R

for « < a <0 and small 3> 0.

a+i(B—) \ﬁl

Next for @ < a < 0 and small 3 > 0 we have in view of (24) for j =1

(v = B ((y — B)/B) Jyy T'(B+ 0(y — B)) df
J a+ilf—) ‘”‘

R

IA

Gy [T (B+0(y = B))|d0¢((y — B)/8) dy
R O

(y - ﬁ/ﬁ) o dsde 1
dody < C <C .
f f\ﬁ+ B Of 2!/3\ *16

Now, consider I5(2) for @ < a < 0 and 3 small. Let suppT C K, a bounded
interval in R. Since supp(1 —W)T C K\ (8/2,38/2) and T is of order p, we have

\ /\

[Is(a +iB)| < Z

= AER\(3/2,39/2)

¢
dyi a+i(B—)
1 1
<C sup — < (Cy———.
veR\(8/2,38/2) 1B —[PH! Elas

We shall also need the following parameter version of Proposition 1:
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COROLLARY 2. Let C"! 5 (' — Ty € E'(R) be a distribution-valued holo-
morphic function which is rapidly decreasing as a function of Im(’, locally uni-

formly in Re(’. Suppose that T¢r restricted to an interval (0, 13), b > 0, is a
differentiable function Ty (v1) for ¢ € C*1 and for j = 0,1 and some l € Ny

o C 0
%Ta/—i-ﬁ(’)/l) S R Y S (07 b) )
H oy l "

locally uniformly with respect to a' € R, where

llolli = sup (z)! > [Do(a)|

-1
zeR™ o<

for o € S(R*™1). Then for a1 < ay <0 and small by > 0
_ . C
IC™ Tri(ar + b))l < =5
T
locally uniformly in o' € R"~1, where p = max(p,1+p), p = superecn—1 ord Tes
and

2 ¢ Cl — 2’}’
The corollary follows easily from Proposition 1 since C~ commutes with dif-
ferentiations in the variable b'.
Before passing to the definition of the radial characteristic set of a polynomial
we recall some properties of the Mellin transforms of conical cut-off functions and
of the related Cauchy transforms. Details and proofs are found in [11].

C_Tc'(Cl)Z—lT[ ! } for ' e C*t Re¢; < 0.

PROPOSITION A. Let k be a conical cut-off function of Definition B. Define

(22) K (y') =Ry,

(23) K'(¢")= M'(k")(¢')  foreC™

(24) K(() = (Mr)oA™'(¢) for (e (C\{0})xC" .
Then

(i) K € O((C\ {0}) x C"71),

(ii) for every a € R the function R™ 3 b — (a1 + ib1) K (a + ib) is in S(R™)
locally uniformly with respect to a € R™,

(i) K(C) = ~K'(¢')/ + K(C) with K € OC™).
Moreover, k' € Cg°(R?™") and

(') K" e O(C"),

(ii") for every a’ € R"~1 the function R"~! 3 b’ +— K'(a’ +ib') is in S(R™~1)
locally uniformly with respect to a’ € R™~ 1.

THEOREM C. Let T € S'(R™) and fix a € R". Fiz a conical cut-off function
k as in Definition B, and let ', K' and K be defined by (22), (23) and (24)
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respectively. Define

C*(¢) =C*T(¢) = (271T)nT[K<< —a—iy)] for £Re( > +ay, ('€ C
and
(25)  C. () =T, ()
1

_ WT[K’(C’ —a —in)) € S'R) for eC !

(in (25), T is regarded as an element of S'(R"~1;S8'(R)) under the canonical
isomorphism S'(R™) ~ S'(R"~1; S’(R))). Then

C*T € O({£Re¢ > +a,} xC"7Y),  (C'T). € OC";5'(R))
and in the sense of convergence in S'(R™)

lim C T(a+i)— lim CTT(a+i)=(CT)- (a'+i)
aﬂa,a1>21 aﬂa,a1<21 o

(here (C~’T)é (@' +i-) € §'(R"=1; S(R)) is regarded as an element of S'(R™)).

1

COROLLARY A. Let H be a function holomorphic on an open set U C C". Fix
acR" and suppose that the function b— H(5+ib), defined for b € R™ such that
a+ibe U, extends to a distribution in S’ (R™) which we denote by HE' Further,
suppose that there exists an open set Ul C C such that for every (i € U' the
function b — Hcl(a’ + ib'), defined for ¥’ € R"1 such that ((1,a’ + ib') € U,

extends to a distribution HC 5, in S'(R™~1Y), and the distribution-valued function
1,

Uls ¢ H_ . € SR 1)
1,

is holomorphic on U'. Finally, assume that there exists a reqularization ﬁ; s, €
1,

S'(R; S'(R™™1)) of the function by — H. s € S"(R™~1Y), defined for by € R

+1ib
with 31 +iby € U', such that H. « = H. under the canonical isomorphism
a,a a
S'(R; S"(R"1)) ~ S'(R™). Then the function
1

€6 = (i O d —iy)], (G, ¢)eUt xC,

is holomorphic on U' x C"~ ' and for every fixed ¢’ € C" 1 the distribution
C. (') € S'(R) is a regularization of the function

bl = 5/31+ib1 (C,
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defined for by € R such that Zil +iby € U'. Moreover, the function

G- [CO  jorReG i, CeC,
CH()+CL(C") forReCi > a1, G €U, (e C Y

extends to a holomorphic function ¥ on ({Re(y < a3 JUUY)xC"L (here CE(¢) =
(CiH;)(C) as in Theorem C).

We recall the definition of the radial characteristic set char&P introduced

n [11]. Let P be a polynomial in C*, n > 1, and @ € R". Set a = Aa and
P(() = PoA™1((¢), and let (1/7?) be a regularlzatlon to a distribution in S’(R"™)

of the function b +— 1/ P(a +ib), which always exists by the division theorem.
DEFINITIONC. Let 2! be the largest set (as in Definition A) such that the
function

(26) € (() =

1 * *
— (=) [Fla+i7)K((—a—iy)] for Re¢; <ap, ¢ eC!
@mn\P/;

extends to a holomorphic function on 2* N 2! x C"~! for any F € O(2* x C*~1)
(with £2! as in Definition A) such that for any open neighbourhood W of C\ £2*
there exist constants C' and M such that

|F(a+ib)| < CYM  fora+ibe (C\W)xCr !
locally uniformly in @ € Re 2! xR"~!. We define char, P = C"\A™!(2!xC"1).

In Theorem 4 below we compute Char& P for a class of polynomials in two
complex variables. We start with notation and preliminaries.

Let P = 3 < boz? be a polynomial in C? with complex coefficients. We
assume that the vector v = (—1,1) is noncharacteristic for P, i.e. Py (y) # 0
where P (2) = 3|5 j=m bo?

Define P(Cl,gg) = P(Cl — CQ,CQ) and write P(C]_,CQ) = am(Cl)G” +
a1(¢1)C2 + ap(¢1). Observe that am((l) is a constant function

m = P, Zb 1)2 #£0.
lel=

Represent P as

m

(27) ChCz H 2 —Cy Cl

where ¢1((1), ..., cm(C1) are the complex roots of P with (; regarded as a param-
eter. Define the discriminant of P,

A= H(Cj(Cl) — (1))

j<k
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If P has no multiple polynomial factors then it follows from Lemmas A.12 and
A.13 of [1] that A is a nonzero polynomial in (; and for every (; such that
A(Col) # 0 the functions ¢;((1), j = 1,...,m, are holomorphic in a neighbourhood

of Qo'l. Further, in a neighbourhood of every point Col such that A(Col) =0 the ¢;((1)
have expansions in Puiseux series, i.e. series of the form

(28) ci(G) =Y di((G — )P

k=l
for some p € N, [ € Z, and since a,, is a constant function we can put [ = 0.
Fix a € R2. Consider the functions ¢j, j = 1,...,m, defined as follows. For
Re( > ay close to a, ¢;(¢1) are the holomorphic functions satisfying (27) and

we choose the following extension of ¢; to {Re(; > él}. Let 0, (v=1,...,N) be
all points in C such that A(6,) = 0 and for some j =1,...,m, ¢; has a Puiseux
expansion at 6, with minimal p > 1 and Ref, > 51.

At the points 6, ¢; has value ¢;(6,). For (; € Ry + 6, we define

o | def 0 .
() =cf(C)=  lm  ¢(G).
¢1—¢1,Im ¢ >Im ¢y

We also define ¢; (1) = hmc1—>21,lm G<imé, ¢ (C1).

Denote by B, (1 =1,..., M) all points in R such that for some j=1,...,m

(29) Rec;(a, +iB,) = as.

For j satisfying (29) we define sgn(j;u) = + if for a1 > a, close to 51,
b — Rec;(a;+1iby) is an increasing function in a neighbourhood of B,,. Otherwise
we put sgn(j; u) = —. Finally, for (; € C we set

I°(B,) = {j : formula (29) holds},
I(0,) = {j : ¢; has a Puiseux expansion at 6, with p > 1 and
Re Cj(gbl +1iby) > ay for by > Im 6, close to ITm 0,}.
THEOREM 4. Fiz & € R? and let a = Acv. Under the notation and assumptions
introduced above, set
L,=R+:1B, foru=1,...,M,

L,=Ry+60, forv=1,...,N,
M N
L=JL,uJL, L.=Ln{Re¢ >a}.
pn=1 v=1
Then char. P = A‘l(La x C). Moreover, for any F € O(f2, x C) such that the

[e3%
function R 3 v5 — F((1, a2 +i72) is polynomially bounded at 0o locally uniformly
i (1 and az, the differences of the boundary values of the Cauchy transform
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(26) are distributions =, F on the lines L, N Q' (u=1,..., M) with support in
L,n{Re(1 > al}v, and distributions :CVQF on the lines {R+6,}N2* (v=1,...,N)
with support in L, such that for any [l € N

(30)  IZ i Flel i < Cp sup Y D] for o € Cg°(LF N Q)

la|<p

for some constants C, = Cp(az), p = p(az) locally bounded in as € R, and
analogous estimates hold for Z¥. Fxplicitly, we have

(31) ELF(G)
CI S e T GFG S G)
moetmy Tl g (S () = T (¢)

for ¢ € Ry +ay +iB,)N Q' pu=1,...,M with A(¢1) # 0, and
~ -1 K'(Go — ¢f (G))F (G, ef (G)

32) ELF(G)=— ]

32)  ELF(G) & j€§9y)< 10y gz (e (C1) — cd (C)

)
K'(G — ¢ () F (G, ¢ (Cl)))
[T 4z, (c5 (G1) = cq (C1))

forCl6(]R+—i—9,,)ﬂ(~21,yzl,...,]\/'.

Proof. In view of Corollary A we are interested in the holomorphic extensions
in the variable (; of the function

57 1 K'(G — 0)F(¢1,0)
C@O=5n T

Re 9:22
defined for ¢; = a1 + iby with by # B, for p = 1,..., M. Since the function
C260— K'((a—0)F((1,0) is rapidly decreasing along the imaginary axis locally
uniformly in {; and (s, it follows that the integral over the line Ref = as may

be replaced by an integral over Ref = r (for large r > 0) if we add the suitable
residuum terms. To this end define for (; € C

ING)={j:r> Recj(al +iby) > ZLQ for by > Im(y, close to Im (3} .

In view of (27) we have

-1 (C2 — ¢ 1, Cj\61
(3) G =g > Hq 1#3(@()) >(ch(§>))

“m erric)

1 K'(G2 — 0)F(¢1,0)

t5= ™ do .
21, Re f—r Hj:1(‘9 —¢;(C1))
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The integral in the second summand is holomorphic (as a function of (; for a
fixed (2) in the set 2, = {¢(; € C : Re¢;((1) <rforj =1,...,m} and hence (33)

gives an extension of 5&1 (¢2) to 2, N 22 N {Re¢y > a3} \ L. Since the functions
¢; are locally bounded we observe (by letting r — +o00) that all singularities of
the extension are contained in the residuum terms, and the computation of the
“jumps” of C( (¢2) is now simple. It follows from Corollary A that the holomor-

phic extension of C~ is given by

(9 for Re¢y < a1, ¢y € C,

e “C):{c”+<<>+5gl<<2> for Rey > i1, G € (C\L;)N &', G eC.

where CE(¢) = (2n)2(1/P).[F(a + iv)K (¢ — a — iv)] for +Re(; > +a;. Thus

for Re(; > a1 the jumps of (-, {2) coincide with those of 521(C2), which gives
formulas (31) and (32).

It remains to prove that = é; F, = ¢, I are distributions on the respective lines.

To this end we shall modify the function ¥(¢) to a function ¢(¢) which has the
same jumps as ¥ but whose growth properties are easier to investigate. In view
of Proposition A(iii) we can write

K(¢) = K'(&)K'(¢1) + K(Q)

where K is a modified Cauchy kernel in the variable ¢; and K € O(C?) is such
that K(a +1i-) € S(R?) locally uniformly in a € R?. Then we have

CE(¢) = 1(C) + ¥2(Q)

where

$1(Q) = 5-C. (@)K (G — i — i) for Re¢y # i,

1 1 * . = * . 2
020 = gz (3 ) G+ R == )] for e

Since 1)5 is an entire function on C? we are interested in ;. Let x be a C$°(R)
function which is 1 in a neighbourhood of the points B, (u=1,...,M) and Im ¥,

(v=1,...,N). For Re(; # a; write

9(0) = 58, (@K (G~ — )],

27
0a(0) = 5= (1= )G, (@)K (G — i — i),

Again 94(-, (2) is holomorphic in complex neighbourhoods of the points ay +
iB, (0 =1,...,M) and a1 + iImé, (v =1,...,N) so we are left with 3.
Inserting

K'(¢1) = ~1/¢+ K(G),
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where K € O(C), in the definition of 13 we find that modulo a holomorphic factor
we are led to considering the function

¥5(C) = iXC/ (¢2) [*1] for Re(y # 51.
(2941

27 a4y G —ay —

Summing up we find that about the points 221 +1iB,, 31 + ¢Im 6, the function v
given by (34) has the same jumps as the function

1 1 a
%xC; (Ca) [} for Re(; < a1, (3 € C,
B(C1,C) = Coraom
?xC; (¢2) [ +C, (¢2) for Re ¢y > ay, ¢y € C.
™ @ ¢1—a; —im

Next from (33) we find that @ may be replaced by

1 %
3 27r C1 - a1 i1
D(C1,C2) = . E(a N &)
Y1, *
5 f o) ) g B LG) for Red >,
g R C1—a; —im

K'(G2 — ¢(€1)) F(C1,¢i(C1))
(35) E(G,G) = ﬂ;{l 110 (e(C) — cq(C1))

I*(¢1) = {j : Reej(ay +iby) > ay for by > Im ¢y, close to Im ¢y}

In view of the properties of F' the assertion (30) now follows from Corollary 2 and
Theorem B.

Remark. Formulas (31) and (32) demonstrate the occurrence of a “coupled”
resurgence effect in the spirit of J. Ecalle [3], [4]. This phenomenon is studied in
a forthcoming paper [12].

A remarkable feature of the distributions = ‘ PF and = é’ F' is the following
COROLLARY 4. The distribution-valued holomorphic functions
CoGr ELF, C3G— EF

are rapidly decreasing in Im (o, locally uniformly in Re (o even though the function
C > (¢ — F((1,¢2) may grow polynomially in Tm (s.

7.2-dimensional elliptic Fuchsian operators in the spaces Z((2;9) and
Z4(92; 0). This section provides a refinement of the results of Section 4 of [11].
For the sake of completeness we recall some basic definitions introduced there.



578 B. ZIEMIAN

Let
R_R<x17$27x187 a)

T2
8.751 81‘2
be a linear partial differential operator of order m € Ny with smooth coefficients
defined in a neighbourhood of zero in R?. Setting P(z) = R(0, z) we write R as

0 0
where

(36) Q(%xai) =nQ" <x7a:aam> + 2Q? (x,xiﬂ)

and Q!, Q? are differential operators of order m. We suppose that P satisfies the
following ellipticity condition:
For every « € R? there exist C; < oo and Cy > 0 such that

|P(a+iB)| > Co(1+[IBI)™  for [|B] > Ch.

THEOREM 5 (see [11]). Let w € Z(£2;5) (w € Za(§2;5) with 2" = C\U[L, Lj,
resp.) 2-locally at (0,5%). Then for every & € R? with {(#21,22) : Rez1 + Rezs <
a1 + ay} C 12 there exists ux € Z(£2\ U;’io{char& P+ijlis—m) (us € Za(£2\
U;‘;O{Char&P +j}t;s —m), resp.) 2-locally at (0,02) with j = (4,0,...,0) € N
and Ru. = w 2-locally at (0,5d).

Proof. For U we take the solution u € 9. of the equation
(37) Pu = Q(ku) + kw

in R? , which exists by Theorem 2 of [6] for a suitable cut-off function  at (0, §2).
Then we proceed as in the proof of Theorem 4 of [11]: First we observe that by
Theorem 4 of [11], ku, € M(£2\ U;’;O{char& P +j};s—m), thus we only have to

check that the function H(() = M(kuy)o A~1(¢) satisfies conditions (iii), (iv) of
Definition 1 (condition (iii) of Definition 2, resp.). Define

Qj:{ZG(CnIZReZl<Zal+j} for j € Np.
Clearly M (£20;s —m) = Zq(f29; s —m). Since Ku: € M(£29; s —m) it follows by
computing the Mellin transform M. of (37) that
M:u- () = F(a+iB)/P(a +if)
where H(¢) = F o A71(() satisfies (i)—(iv) of Definition 1 on 2! = {{ <
Ya; +1} N 2 with ¢ = 5. Now M(ku,) o A71(¢) = C~(¢) and by Corol-

lary A we are interested in 521 ((2) as in the proof of Theorem 4. Thus we
have the decomposition (10). The first term clearly has properties (iii), (iv) of
Definition 1 on 2! with ¢ = —oco. To get an estimate of the second term for
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(1€ 2,002 we apply Lemma 2. By induction we prove that (iii) and (iv) hold
on any set {2;.

EXAMPLE. Let 0 # o € R? and denote by u- € DJT}! (R?) the solution of the
equation Pu. = 6, on R2 where P(20/0z) = (£10/0x1)? + (220/0x2)? such that

1
M. (B) = ——— . e L'(R?).
(a1 +if1)% + (g +if2)?

We have P(C1,¢2) = (C1 — ()% + ¢ = 2(¢2 — e1(G1)) (G2 — 2(G1)) where

() = 1+ZC1, ca(Cr) = 1;iC1

and A = i(¢;. Further, from (29) we find

By =a; — 24y, By =2as—a,

and since ¢; and ¢y are regular there are no points 6,,. Define

Li={¢GeC: ¢ =a +i(a —2az), a1 > a1},

Ly={G €C: {1 =ay +i(202 — a1), a1 > ar},

L=L,UL,.
Then it follows from Theorems 4 and 5 (see also Example 3 of [11]) and Theorem 5
of [11] that
Kus € Za({2; —00)

where 2 = A71((C\ L) x C) and k = ¢k is any proper conical cut-off function.

Moreover, by Theorem 4 and Corollary 2 the distributions 5412, = é given by (17)
equal

Eilel = al(G2)o

1 f K'(¢ — Y1)

i —aa P15 c o(C1) dy

Ly

for ¢ € C5°(R +iBy),
1 1
+ 5 f CQ B = T oy ac,

for ¢ € C§°(R +iBs)
where K'(¢3) = M'(K(1,y2))(¢2) and a*((2), u = 1,2, are some entire functions
which are the Mellin transforms of some smooth functions 7" (y3) vanishing for
yo close to zero. Computing the inverse Mellin transforms of = with respect to
(2 and dividing the results by 27i we find
1~ 1 _ y§1+i)61/2
T (y2)0z = eyl = M’i(lvyz)Lf T‘P(Cl)dﬁ
1

for p € C°(R+1By),

Z2, o] = a*(¢2)0

(a1 2(12 al)

T! [¢](y2) = i
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2 L = [ yélii)CI/Q
Tolel(y2) = 5 =T (W2)0 5 e = = M"é(layz)Lf Tsﬁ(Cl)dCl
for p € CFF(R +iB3) .

]?Lemar k. Observe that if & — 0 then the lines L1, Ly tend towards the half-
line R, , and the distribution T 4 T2 for a; > 0 tends towards the corresponding
distribution for ug = In((Inz1)? 4+ (Inz2)?). Indeed, we have

1 i)a —i)a 2 a
L gomsz a2y 2 g o (Cﬂlnw),
a aq 2

which agrees with the explicit formula given in Example 1 of [11].
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