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Abstract. Asymptotic expansions at the origin with respect to the radial variable are es-
tablished for solutions to equations with smooth 2-dimensional singular Fuchsian type operators.

Introduction. This paper completes the results of paper [11] in which regu-
larity of solutions to equations with elliptic corner operators (i.e. n-dimensional
Fuchsian operators) is studied in the spaces M(Ω; %) of distributions with con-
tinuous radial asymptotics. Here we introduce subspaces Z(Ω; %) and Zd(Ω; %) of
M(Ω; %) and prove a generalized Taylor formula for elements of those subspaces.
This is preceded by preliminaries on the modified Cauchy transformation needed
to establish a Mittag-Leffler type decomposition for holomorphic functions with a
growth control along the imaginary axis. Then we study solutions to homogeneous
equations R(x1, x2, x1∂/∂x1, x2∂/∂x2)u = 0 with R(x1, x2, ζ1, ζ2) an elliptic sym-
bol, on proper cones in the positive quadrant in R2. The solutions u are shown
to belong to Zd(Ω; %).

In contrast to solutions to Fuchsian equations in the sense of Baouendi–
Goulaouic, the solutions u to Ru = 0 do not expand in discrete powers of the
radial variable. Instead, for n = 2, we have “continuous” asymptotic expansions
whose densities are distributions supported by several half lines parallel to the
real axis. The densities are equal to the boundary values of the Mellin transforms
of u times the factor (2πi)−1. Moreover, they extend to holomorphic functions
with logarithmic singularities situated in a discrete lattice in C. This is resem-
blant of the resurgence phenomenon of Jean Ecalle and is further investigated in
a forthcoming paper [12].

The paper ends with an explicit example covering the case of the operator
∆̃ = (x1∂/∂x1)2 + (x2∂/∂x2)2.

Some results of this paper appeared in [13]. The reader interested in a system-
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atic presentation of the theory of the Mellin transformation and Fuchsian PDEs
is referred to the book [7].
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Prof. H. Komatsu for the invitation and Prof. A. Kaneko for his care and kind
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manuscript.

1. Notation, definitions and preliminaries. Throughout the paper we use
the following vector notation: if a, b ∈ Rn, a = (a1, . . . , an), b = (b1, . . . , bn) then
a < b (a ≤ b, resp.) denotes aj < bj (aj ≤ bj , resp.) for j = 1, . . . , n. We write
Rn+ = {x ∈ Rn : 0 < x}, R− = {x ∈ R : x < 0}, I = (0, t] = {x ∈ Rn+ : x ≤ t}
where t ∈ Rn+. We also write 1 = (1, . . . , 1) ∈ Rn.

Z is the set of integers and N0 the set of nonnegative integers. If x ∈ Rn+ and
z = (z1, . . . , zn) ∈ Cn we write xz = xz11 . . . xznn . Vector notation is also used for
differentiations. Namely we write

∂

∂x
=
(

∂

∂x1
, . . . ,

∂

∂xn

)
, x

∂

∂x
=
(
x1

∂

∂x1
, . . . , xn

∂

∂xn

)
and if ν ∈ Nn0 then(

∂

∂x

)ν
=

∂ν1

∂xν11

. . .
∂νn

∂xνnn
,

(
x
∂

∂x

)ν
=
(
x1

∂

∂x1

)ν1
. . .

(
xn

∂

∂xn

)νn
.

For points a ∈ Rn we write a = (a1, a
′) where a1 ∈ R, a′ ∈ Rn−1, and similarly

for ζ ∈ Cn, ζ = (ζ1, ζ ′), ζ1 ∈ C, ζ ′ ∈ Cn−1. We also consider sets W ⊂ Cn of the
form W = W 1×W ′ where W 1 ⊂ C, W ′ ⊂ Cn−1. For a set W ⊂ Cn and a vector
a ∈ Rn we write W + a = {z ∈ Cn : z − a ∈W}.

For an open set V ⊂ Rn, C∞0 (V ) is the space of compactly supported C∞

functions on V , D′(V ) is the space of distributions on V.
S(Rn) denotes the Schwartz space of rapidly decreasing functions, S′(Rn) is

the space of tempered distributions. For a compact set K ⊂ Rn, S(Rn \ K) =
{σ ∈ C∞(Rn): suppσ ⊂ Rn \K, |||σ|||p <∞ for any p ∈ N0} where

(1) |||σ|||p = sup
x∈Rn

(1 + ‖x‖)p
( ∑
|α|≤p

|Dασ(x)|
)
.

For an open set W ⊂ Cn, O(W ) denotes the space of holomorphic functions
on W and if K is a compact subset of Cn then A(K) = limW⊃K O(W ). The
dual space A′(K) is called the space of analytic functionals with carrier K. By
B(R) = O(C \R)/O(C) we denote the space of hyperfunctions on R. An element
T ∈ B(R) is an equivalence class of a ψ ∈ O(C \R) modulo O(C) which we write
as T = [ψ] and verbalize as: ψ is a defining function for T . The space BK(R) of
hyperfunctions supported by a compact set K ⊂ R is isomorphic to A′(K):
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Theorem A (Martineau, Harvey [2]).

BK(R) ∼= A′(K) .

The isomorphism is given by the duality

〈[ψ], ϕ〉 = −
∫
Γ

ψ(z)ϕ(z) dz for ϕ ∈ A(K)

where [ψ] ∈ BK(R) is a hyperfunction having ψ ∈ O(C\K) as a defining function
and Γ is a curve encircling K once in the anti-clockwise direction and contained
in the set where ϕ is holomorphic.

We also recall the following characterization of distributions:

Theorem B (Painlevé [2]). Let ψ ∈ O(C \R) be of polynomial growth near R
(i.e. |ψ(a+ ib)| ≤ C|b|−p for b close to zero, with C = C(a) > 0, p = p(a) ∈ Z
locally bounded in a ∈ R). Then in the sense of distributional convergence in R
the limit

b(ψ) def= lim
b→0+

ψ(·+ ib)− lim
b→0+

ψ(· − ib)

exists and b(ψ) ∈ D′(R). Moreover , b(ψ) = [ψ] under the inclusion D′(R)⊂B(R)
derived from the isomorphism of Theorem A.

We call b(ψ) the boundary value or the jump of ψ across R.
Sometimes, it will be convenient to consider the above spaces transformed

to an imaginary line N ⊂ C by means of a linear parametrization of N. More
specifically, we consider the spaces B(N) ∩ S′(N \ K) where K is a compact
subset of the imaginary line N = r + iR for some fixed r ∈ R. Observe that if
Kε = {ζ ∈ N : dist(K, ζ) ≤ ε} then

(2) B(N) ∩ S′(N \K) =
⋂
ε>0

(A′(Kε) + S′(N)) ,

where the sign “+” denotes the sum of analytic functionals.
More generally, A(Rn−1;S′(R)) (O(Cn−1;S′(R)), resp.) denotes the space of

analytic (holomorphic, resp.) functions on Rn−1 (Cn−1, resp.) with values in
S′(Rn), i.e. functions Rn−1 3 x 7→ T (x) ∈ S′(R) such that for any σ ∈ S(R)
the function Rn−1 3 x 7→ T (x)[σ] ∈ C is analytic, and similarly for the other
case. We also make use of the isomorphism S′(Rn) ' S′(Rn−1;S′(R)) where the
right-hand side is the space of continuous linear mappings on S(Rn−1) with values
in S′(R). Similarly, we use S′(Rn) ' S′(R;S′(Rn−1)). Both isomorphisms can be
regarded as S′ versions of the Schwartz kernel theorem ([1], [7]).

For the sake of completeness, below we briefly review the main facts on the
Mellin transformation which are used in this paper (for details cf. [6], [7], [9]).

Fix t ∈ Rn+. Let I = (0, t]. We denote by C∞(I) the set of complex functions
on I which are restrictions to I of smooth functions on Rn+.
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Let α ∈ Rn. We denote by Mα = Mα(I) the space of all ϕ ∈ C∞(I) such that
for every ν ∈ Nn0

%α,ν(ϕ) = sup
x∈I

∣∣∣∣xα+1

(
x
∂

∂x

)ν
ϕ(x)

∣∣∣∣
is finite, with the topology given by the seminorms %α,ν , ν ∈ Nn0 . The space
M(ω) = M(ω)(I) for ω ∈ (R ∪ {∞})n is the inductive limit

M(ω) =
⋃
→
α<ω

Mα(I) .

The space M ′ =
⋃
ω∈RnM

′
(ω) ⊂ D′(Rn+), where M ′(ω) is the dual of M(ω), is

called the space of Mellin (transformable) distributions. We now define the Mellin
transform of u ∈M ′(ω). Set

Mu(z) = u[x−z−1] for z ∈ Cn, Re z < ω .

Then Mu is holomorphic for Re z < ω. The Mellin transform of u is any holo-
morphic extension of the function defined above.

We introduce a scale M ′s(ω) ⊂ M ′(ω) for s ∈ R (see [10] and [4]) as follows:
u ∈M ′s(ω) if for every α < ω there exists a constant C = C(α) such that

|Mu(α+ iβ)| ≤ C(1 + ‖β‖)s for β ∈ Rn .

The Mellin transformation introduced above satisfies the following operational
identities. If u ∈M ′(ω), a ∈ Cn then

M(xau)(z) =Mu(z − a) for Re z < ω + Re a .

If ν ∈ Nn0 , |ν| = 1, then

M
((

∂

∂x

)ν
u

)
(z) = (zν + 1)Mu(z + ν) for Re z < ω − ν .

Since we also consider distributions in D′(Rn+) with unbounded support we
introduce the following spaces (see [6], Section 5).

Let α ∈ Rn and let µ : Rn → Rn+ be the exponential mapping µ(s) =
(e−s1 , . . . , e−sn). We define the space M′α = M′α(Rn+) as the dual of the space

Mα = Mα(Rn+) = {σ ∈ C∞(Rn+) : (xα+1σ) ◦ µ ∈ S(Rn)}
with the natural topology induced from S(Rn). Note that u ∈M′α if and only if
eαs(u ◦ µ) ∈ S′(Rn).

The Mellin Mα transform of u ∈M′α is defined as

Mαu = (2π)nF−1(eαs(u ◦ µ)) ∈ S′(Rn)

where the inverse Fourier transform F−1 is defined as

F−1ψ(b) =
1

(2π)n
∫

Rn
eisbψ(s)ds for ψ ∈ S(Rn) .
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Mα is compatible with M in the sense that if u ∈ M(ω)(I) then for every
α < ω, we have u ∈M′α, the tempered distribution Mαu is actually a function,
and Mαu(β) =Mu(α+ iβ) for β ∈ Rn.

Restrictions of distributions in M′α to compact sets are inM ′(α). More precisely,
if u ∈M′α then ϕu ∈M ′(α)(I) for every ϕ ∈ C∞0 (Rn) with suppϕ ∩ Rn+ ⊂ I.

To recall the definition of the space M(Ω; %) of distributions with continuous
radial asymptotics we need some additional notation:

Let A : Cn → Cn be the linear transformation defined by Az = ζ where

ζ1 = z1 + . . .+ zn,

ζj = zj for j = 2, . . . , n .

The formula

(Mu) ◦A−1(ζ) =M(u ◦ S)(ζ)

for u ∈ M ′, suppu ⊂ Γ , a proper cone in Rn+ (i.e. Γ ∩ Rn+ = {0} where overbar
denotes closure in Rn), relates this transformation (see Proposition 1 in [11]) to
the passage to the “radial” coordinates x = S(y), with S : Rn+ → Rn+, given by

(3) x1 = y1, xj = y1yj for j = 2, . . . , n .

Definition A (see Def. 1 in [11]). Let Ω1 be an R−-connected open subset
of C, i.e. a subset which together with any point ζ

◦

1 ∈ Ω1 contains the half-line
ζ
◦

1 + R−. Also suppose that for any r ∈ ReΩ1 def= {Re ζ1 : ζ1 ∈ Ω1} the set
Λr = {ζ1 ∈ C \ Ω1 : Re ζ1 ≤ r} is compact in C. Let % : ReΩ1 → R be
a nondecreasing function. We say that a Mellin distribution u supported by a
proper cone Γ belongs to M(Ω; %) where

Ω = A−1(Ω1 × Cn−1)

if the function H =Mu ◦A−1 satisfies the following conditions:

(i) H ∈ O(Ω1 × Cn−1).
(ii) For any open neighbourhood W of Λ = C \Ω1

|H(a+ ib)| ≤ C(1 + ‖b‖)%(a1) for a+ ib ∈ (C \W )× Cn−1

where C = C(W,a) is locally bounded in a ∈ Re(C \W )× Rn−1.

Definition B. Let δx◦ ∈ Rn+. A conical cut-off function at (0, δx◦) is any
function κ ∈ C∞(Rn+) of the form

κ = ϕ · κ̃

where ϕ ∈ C∞0 (Rn+), ϕ ≡ 1 in a neighbourhood of zero, κ̃ ∈ C∞(Rn+) is homoge-
neous of order zero, κ̃(δx◦) 6= 0 and κ̃ is supported in a proper cone in Rn+.

Finally, for a compact set K ⊂ C and a constant function %(r) ≡ s ∈ R we
denote by A′(K;M(Cn−1; s)) the space of M(Cn−1; s)-valued continuous analytic
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functionals T with carrier K such that for any compact U ⊂ C with K ⊂ IntU

|M′T [ϕ](a′ + ib′)| ≤ C(1 + ‖b′‖)s sup
θ∈U
|ϕ(θ)| for ϕ ∈ A(U) and b′ ∈ Rn−1

locally uniformly in a′ ∈ Rn−1. Here M′ is the partial Mellin transform in the
variables ζ ′ ∈ Cn−1. Similarly, T ∈ D′(R;M(Cn−1; s)) if for any compact K ⊂ R

|M′T [ϕ](a′ + ib′)| ≤ C(1 + ‖b′‖)s
∑
|α|≤m

sup
b1∈R

∣∣∣∣( ∂

∂b1

)α
ϕ(b1)

∣∣∣∣ for b′ ∈ Rn−1 ,

ϕ ∈ C∞0 (R), suppϕ ⊂ K, with C = C(K, a′), m = m(K, a′) locally bounded in
a′ ∈ Rn−1.

2. The spaces Z(Ω; %), Zd(Ω; s). We introduce subspaces Z(Ω; %) and
Zd(Ω; s) of M(Ω; %) which contain information on the behaviour of Mellin trans-
forms near the boundary of Ω.

Definition 1. Let Ω and % be as in Definition A. We say that a Mellin
distribution u with support in a proper cone Γ ⊂ Rn+ belongs to Z(Ω; %) if the
function H(ζ) =Mu ◦A−1(ζ) satisfies the following conditions for all r ∈ ReΩ1:

(i) H ∈ O(Ω1 × Cn−1).
(ii) For any open neighbourhood W of Λ = C \Ω1

|H(a+ ib)| ≤ C(1 + ‖b‖)%(a1) for a+ ib ∈ (C \W )× Cn−1

where C = C(W,a) is locally bounded with respect to a ∈ ReΩ1 × Rn−1.
(iii) There exists a B(r+ iR)∩S′((r+ iR) \Kr)-valued holomorphic function

Cn−1 3 ζ ′ 7→ Hr,ζ′ ∈ B(r + iR) ∩ S′((r + iR) \Kr)

where Kr = Λ ∩ {Re ζ1 = r}, which is an extension of the function

(r + iR) \Kr 3 ζ1 7→ H(ζ1, ζ ′) .

(iv) For every 0 < ε < ε
◦, if

χε(ζ1) =
{

1 for ζ1 ∈ Kr
ε ,

0 for ζ1 ∈ (r + iR) \Kr
ε ,

where Kr
ε = {ζ1 ∈ r + iR : dist(ζ1,Kr) ≤ ε}, then

|χεHr,ζ′ [ϕ]| ≤ C(1 + ‖b′‖)%(r) sup
θ∈V
|ϕ(θ)| for b′ ∈ Rn−1

(note that Hr,ζ′ is analytic outside Kr and hence χεHr,ζ′ makes sense) where
V ⊂ C is any compact set such that Kr

ε ⊂ IntV , ϕ ∈ A(V ), and C = C(V, ε, a′)
is locally bounded in a′ ∈ Rn−1.

Next we define a subspace of Z(Ω; %) which appears frequently in applications
and is much easier to deal with. We consider a special case of Ω1 = C \

⋃k
j=1 Lj

where Lj are closed half lines parallel to the real axis. We write B = {B1, . . . , Bk}
where Bj = ImLj .
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Definition 2. Let Ω = A−1(Ω1 × Cn−1) with Ω1 as above, and % ≡ s ∈ R
a constant. We write u ∈ Zd(Ω; s) if u is a Mellin distribution supported by a
proper cone Γ ⊂ Rn+ and the function H(ζ) =Mu◦A−1(ζ) satisfies the following
conditions:

(i) H ∈ O(Ω1 × Cn−1).
(ii) For every open neighbourhood W of

⋃k
j=1 Lj

|H(a+ ib)| ≤ C(1 + ‖b‖)s for a+ ib ∈ (C \W )× Cn−1

locally uniformly with respect to a ∈ Rn.
(iii) |H(a+ ib)| ≤ C̃(1 + ‖b′‖)s/(dist(b1,B))m for b1 close to B and a′ + ib′ ∈

Cn−1, for some constants 0 < C̃ = C̃(a), m = m(a) ∈ R locally bounded for
a ∈ Rn.

We also set Zd(Ω;−∞) =
⋂
s∈R Zd(Ω; s).

To see that Zd(Ω; s) ⊂ Z(Ω; s) we note the following simple

Lemma 1. If H ∈ O(Ω1 × Cn−1) satisfies (ii) and (iii) of Definition 2 then
there exists a holomorphic S′-valued function

Cn−1 3 ζ ′ 7→ Hr,ζ′ ∈ S′(r + iR)

extending the function

r + i(R \B) 3 ζ1 7→ H(ζ1, ζ ′)

and such that for any ϕ ∈ C∞0 (r + iR) with support in a compact set E ⊂ r + iR

|Hr,ζ′ [ϕ]| ≤ C(1 + ‖b′‖)s
(m+1∑

j=0

sup
ζ1∈E

∣∣∣∣( ∂

∂b1

)∣∣∣∣jϕ(ζ1)
)

with a constant C = C(E) independent of ζ ′ ∈ Cn−1.

P r o o f. The proof is standard and the desired extension is constructed by
means of the m + 1-th order primitive of the function b1 7→ H(r + ib1, ζ

′) near
the points of B.

3. Modified Cauchy transformation in dimension 1. In this section we
present in a slightly generalized setting certain results of Section 1 of [10]. The
reader is directed to [10] for a more detailed exposition.

Let χ ∈ C∞0 (R) with χ ≡ 1 on (0, t0]. A modified Cauchy kernel (determined
by χ) is the function

G(z) =Mχ(z) .
It has the following properties (see Proposition 7.5 of [7]):

(i) G ∈ O(C \ {0}),
(ii) G(z) = −1/z + G̃(z) with G̃ ∈ O(C),
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(iii) the function R 3 β 7→ (α+ iβ)G(α+ iβ) is in S(R) locally uniformly with
respect to α ∈ R,

(iv) for every ε > 0 and m > 0 there exists a constant C = C(ε,m) such that

|G(α+ iβ)| ≤ Ct−α0 (1 + |β|)−m for α > ε .

Let r ∈ R, let K ⊂ r + iR be a compact set and define N = r + iR.

Definition 3. Let T ∈ B(N) ∩ S′(N \K). The functions

C±T (ζ) =
1

2πi
T [G(ζ − θ)] for ± Re ζ > ±r

are called the right and the left (modified) Cauchy transforms of T .

Note that, since for every ζ with Re ζ 6= r the function r+iR 3 θ 7→ G(ζ−θ) is
analytic and rapidly decreasing, T [G(ζ − θ)] is well-defined and is a holomorphic
function of ζ.

Theorem 1. Let T ∈ B(N) ∩ S′(N \ K). Then under the isomorphism of
Theorems A and B

T = [C−T, C+T ]
where the right-hand side is a Fourier hyperfunction on N , with a defining func-
tion

Ψ(ζ) =
{
C−T (ζ) for Re ζ < r,
C+T (ζ) for Re ζ > r.

P r o o f. By (2) write T = T1 + T2 where T1 ∈ A′(Kε) (for some ε > 0) and
T2 ∈ S′(N). For T2 the theorem coincides with Theorem 1 of [10]. In the case of
T1 we define for ζ 6∈ Kε

ΨG1 (ζ) =
1

2πi
T1[G(ζ − θ)] .

In view of (ii) we have

ΨG1 (ζ) =
−1
2πi

T1

[
1

ζ − θ

]
+

1
2πi

T1[G̃(ζ − θ)] .

Observe that the first summand is a standard defining function of T1 and the
second is entire on C. Hence [ΨG1 ] = T1, which ends the proof.

4. Mittag-Leffler decomposition. Before stating the version of the Mittag-
Leffler theorem which we need we prepare a suitable notation: Let H ∈ O(Ω1)
where Ω1 is as in Definition A. Fix r ∈ ReΩ1 and suppose that for some m̃ ∈ N0

and t1 ∈ R+

(4) |H(a1 + ib1)| ≤ Ct−a1
1 (1 + |b1|)m̃ for a1 + ib1 ∈ C \W, a1 ≤ r ,

with C = C(W ), where W is an open neighbourhood of Λ = C \Ω1. Denote by
H̃r an extension to B(r + iR) ∩ S′((r + iR) \Kr) of the function

(r + iR) \Kr 3 ζ1 7→ H(ζ1)
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where Kr = Λ∩ {Re ζ1 = r}. As usual, set Kr
ε = {r+ ib1 : dist(r+ ib1,K

r) ≤ ε}
and

Λr = Λ ∩ {Re ζ1 ≤ r} .
Let Γ be a smooth curve in Ω1 with end points at the end points of Kr

ε , having
Λr on its right. Define an analytic functional Ξr ∈ A′(Λr) by

Ξr[ϕ] = −χεH̃r[ϕ]−
∫
Γ

H(θ)ϕ(θ) dθ for ϕ ∈ A(Λr)

where χε is defined as in Definition 1(iv).

Theorem 2. Assume that t0 > t1 (see the beginning of Section 3 and (4)).
Define

ΨG(ζ1) =
1

2πi
Ξr[G(ζ1 − θ)] for ζ1 ∈ C \ Λr ,

C−H(ζ1) =
1

2πi
H̃r[G(ζ1 − θ)] for Re ζ1 < r .

Then ΨG ∈ O(C\Λr), C−H extends to a holomorphic function on Ω1∪{Re ζ1 < r}
and

(5) H(ζ1) = C−H(ζ1) + ΨG(ζ1) for ζ1 ∈ Ω1 .

P r o o f. It is clear that ΨG ∈ O(C \ Λr), while Theorem 1 implies that C−H
extends holomorphically to Ω1 ∪ {Re ζ1 < r}. We shall prove that (5) holds for
ζ1 ∈ Ω1

r = Ω1 ∩ {Re ζ1 < r}. To this end take ζ
◦

1 ∈ Ω1
r and a curve Γ 1 consisting

of the intervals (r+ iR) \Kr
ε and of a curve Γ such that ζ

◦

1 remains to the left of
Γ 1. Then

C−H(ζ
◦

1) + ΨG(ζ
◦

1) =
1

2πi

∫
Γ 1

H(θ)G(ζ
◦

1 − θ) dθ .

Since H is polynomially bounded in Im θ and G is rapidly decreasing in Im θ
locally uniformly in Re θ, it follows from the residue theorem that for any ã
sufficiently large negative

1
2πi

∫
Γ 1

H(θ)G(ζ
◦

1 − θ) dθ = H(ζ
◦

1) +
1

2πi

∫
Re θ=ã

H(θ)G(ζ
◦

1 − θ) dθ .

Now it follows from (4), (iv) and easy estimates that∣∣∣ ∫
Re θ=ã

H(θ)G(ζ
◦

1 − θ) dθ
∣∣∣ ≤ Ct−ã1 t−Re ζ

◦
+ã

0 = C̃

(
t1
t0

)−ã
.

Since we assumed that t1 < t0 we see that the integral can be made arbitrarily
small by letting ã→ −∞. This ends the proof.

5. Generalized Taylor formula for distributions in Z(Ω; %). Now we
are back in Cn and consider holomorphic functions H satisfying (i)–(iv) of Defi-
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nition 1. We define the left Cauchy transform C−ζ′(ζ1) by

(6) C−ζ′(ζ1) =
1

2πi
Hr,ζ′ [G(ζ1 − θ)] for Re ζ1 < r

where ζ ′ ∈ Cn−1 is a holomorphic parameter.

Lemma 2. Suppose H ∈ O(Ω1 ×Cn−1) satisfies (ii)–(iv) of Definition 1 for a
fixed a1 = r ∈ ReΩ1. Then

|C−a′+ib′(a1 + ib1)| ≤ C(1 + ‖b‖)%(r) for a1 < r, a′ + ib′ ∈ Cn−1 ,

locally uniformly in a = (a1, a
′) for a1 < r, a′ ∈ Rn−1.

We omit the proof since it does not differ essentially from that of Lemma 2
in [11].

Lemma 3. Let Ξ ∈ A′(K) where K ⊂ C is compact. If

ΨG(ζ1) =
1

2πi
Ξ[G(ζ1 − θ)] for ζ1 ∈ C \K

then

M(Ξ[yθχ(y)])(ζ1) = 2πiΨG(ζ1) .

P r o o f. In view of the isomorphism of Theorem A (see the proof of Theo-
rem A), Ξ can be represented as

Ξ[ϕ] = −
∫
Γ

Ψ(θ)ϕ(θ) dθ for ϕ ∈ A(K)

where Γ is a curve encircling K once in the anti-clockwise direction contained in
the set of holomorphy of ϕ, and Ψ ∈ O(C \K). We thus have

M(Ξ[yθχ(y)])(ζ1) = −
∫
Γ

Ψ(θ)M(yθχ(y))(ζ1) dθ

= −
∫
Γ

Ψ(θ)G(ζ1 − θ) dθ = 2πiΨG(ζ1)

since M(yθχ(y))(ζ1) = G(ζ1 − θ).

Theorem 3. A Mellin distribution u belongs to Z(Ω; %) if and only if for
any r ∈ ReΩ1 there exist Tr ∈ A′(Λr;M(Cn−1; %(r))) and a distribution Rr ∈
M(Ωr; max(%, %(r))) where Ωr = A−1((Ω1 ∪ {Re ζ1 < r})× Cn−1) such that

(7) u ◦ S = Tr ◦ S′[yθ1χ(y1)] +Rr ◦ S (S and S′ are defined by (3))

where χ is in C∞0 (R), χ ≡ 1 in a neighbourhood of zero and for every fixed y1 > 0,
yθ1 denotes the test function C 3 θ 7→ yθ1 ∈ C (note that Tr is regarded as an
analytic functional in the variable θ). The Tr is unique up to an M(Cn−1; %(r))-
valued analytic functional with carrier in Kr = Λr ∩ {Re ζ1 = r}.
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P r o o f. Let u ∈ Z(Ω; %) and H(ζ) =Mu ◦A−1(ζ). Then by Proposition 1 of
[11], u ◦ S is a Mellin distribution supported by a cube (0,

∼
t ] for some

∼
t ∈ Rn+

(actually by (0,
∼
t1]× [

≈
t ′,
∼
t ′] for some

≈
t ′ ∈ Rn−1

+ ) and

H(ζ) =M(u ◦ S)(ζ).

Choose r ∈ ReΩ1 and let Cn−1 3 ζ ′ 7→ Hr,ζ′ be the B(r + iR) ∩ S′((r + iR) \
Kr)-valued holomorphic function given by Definition 1(iii). Define a holomorphic
family of analytic functionals Ξr,ζ′ as in Section 4:

Ξr,ζ′ [ϕ] = −
∫
Γ

H(θ, ζ ′)ϕ(θ) dθ − (χεHr,ζ′)[ϕ]

where ϕ ∈ A(U) and U ⊂ C is a compact set such that Γ ∪Kr
ε ⊂ IntU . Then it

follows from (ii) and (iv) of Definition 1 that

(8) |Ξr,a′+ib′ [ϕ]| ≤ C sup
θ∈U
|ϕ(θ)|(1 + ‖b′‖)%(r) for b′ ∈ Rn−1

locally uniformly in a′∈Rn−1. It is also clear that for any ϕ∈A(Λr) the function
Cn−1 3 ζ ′ 7→ Ξr,ζ′ [ϕ] is the Mellin transform of a Mellin distribution in M ′((0,

∼
t ′])

with support in [
≈
t ′,
∼
t ′].

As in Section 4, let

ΨGζ′ (ζ1) =
1

2πi
Ξr,ζ′ [G(ζ1 − θ)] for ζ1 ∈ C \ Λr, ζ ′ ∈ Cn−1 ,

whereG is a modified Cauchy kernel and satisfies (i)–(iv) of Section 3 with t0 >
∼
t1.

Again it follows from Definition 1(ii), (iv) that for any open neighbourhood W of
Λr we have

(9) |ΨGa′+ib′(a1 + ib1)| ≤ C(1 + ‖b‖)%(r) for a1 + ib1 ∈ C \W, b′ ∈ Rn−1

where C = C(W,a) is locally bounded for a ∈ Rn.
Since H is the Mellin transform of u ◦ S it follows that (see [9]) for any t >

∼
t

and a < 0 small enough

|H(a+ ib)| ≤ Ct−a(1 + ‖b‖)m for b ∈ Rn

for some constants C, m. This together with Definition 1(ii) shows that condi-
tion (4) holds. Thus by Theorem 2 (we take t1 < t0)

(10) H(ζ) = C−ζ′(ζ1) + ΨGζ′ (ζ1) for ζ1 ∈ Ω1, ζ ′ ∈ Cn−1

where C−ζ′(ζ1) is given by (6). In view of Lemma 3 we have

(11) M1(Ξr,ζ′ [yθ1χ(y1)])(ζ1) = 2πiΨGζ′ (ζ1)

where M1 is the partial Mellin transform in the first variable. Applying to (10)
the inverse Mellin transformation (M1)−1 we find in view of (11)

(12) (M1)−1H(·, ζ ′)(y1) =
1

2πi
Ξr,ζ′ [yθ1χ] + (M1)−1C−ζ′(y1) .
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Now applying (M′)−1 to both sides of (12) we get (7) with

Tr =
1

2πi
(M′)−1(Ξr,·) and Rr ◦ S = (M′)−1(C−· (y1)) .

Formula (8) implies that for any ϕ ∈ A(Λr), Tr[ϕ] ∈ M(Cn−1; %(r)) and the
assignment A(Λr) 3 ϕ 7→ Tr[ϕ] ∈ M(Cn−1; %(r)) is continuous. Concerning Rr,
observe that clearly

M(Rr ◦ S) = C− ∈ O(Ω1
r × Cn−1), Ω1

r
def= Ω1 ∪ {Re ζ1 < r} ,

and in view of (10), Definition 1(ii) and (9)

(13) |M(Rr ◦ S)(a+ ib)| ≤ C(1 + ‖b‖)%̃(a1) for a+ ib ∈ (C \W )× Cn−1

where W is an open neighbourhood of Ω1
r and %̃(a1) = max(%(a1), %(r)). This

shows that Rr is in the desired space.
Conversely, suppose that the decomposition (7) holds for some Tr and Rr as

in the statement of the theorem. Then (13) holds locally uniformly with respect
to a ∈ ReΩ1

r ×Rn−1. We construct a holomorphic family of extensions to B(r+
iR) ∩ S′((r + iR) \Kr) of the function

(r + iR) \Kr 3 ζ1 7→ H1(ζ1, ζ ′) =M(Rr ◦ S)(ζ1, ζ ′)

for ζ ′ ∈ Cn−1 as follows: Fix ε > 0, take a compact V ⊂ C such that Kr
ε ⊂ IntV ,

and ϕ ∈ A(V ). Let Γ1 be a continuous curve obtained by modifying the line
(r + iR) ∩ V inside Kr

ε to a curve contained in V and having Kr on its right.
Choose a complex neighbourhood W of C \Ω1

r so that Γ1 ⊂ C \W . Define

χεH
1
r,ζ′ [ϕ] =

∫
Γ1

ϕ(θ)χε(r + i Im θ)H1(θ, ζ ′) dθ.

Then it follows from (13) that

|χεH1
r,ζ′ [ϕ]| ≤ C1 sup

θ∈V
|ϕ(θ)|(1 + ‖b′‖)%(r).

Next, let Tr ∈ A′(Λr;M(Cn−1; %(r))). Then by definition for any compact U ⊂ C
such that Λr ⊂ IntU and ϕ ∈ A(U)

(14) |M′(Tr[ϕ])(a′ + ib′)| ≤ C sup
θ∈U
|ϕ(θ)|(1 + |b′|)%(r) for b′ ∈ Rn−1

with C = C(U, a′) locally bounded in a′ ∈ Rn−1. Define

H2(ζ) =M(Tr[yθ1χ(y1)])(ζ) =M′(Tr[G(ζ1 − θ)])(ζ ′)
for ζ ∈ (C \Λr)×Cn−1. Then for any U as above by (14) and property (iii) of G
in Section 3

(15) |H2(α+ iβ)| ≤ C2
(1 + ‖b′‖)%(r)

(1 + |b1|)|%(r)|
≤ C2(1 + ‖b‖)%(r)

for a + ib ∈ (C \ U) × Cn−1 with C2 = C2(U, a′) locally bounded in a′ ∈ Rn−1.
Let ε and V be as for H1. Let Γ2 be a continuous curve obtained by modifying
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the line (r + iR) ∩ V inside Kr
ε to a curve contained in V and having Kr on its

left. Choose U so that Γ2 ⊂ C \ U . For ϕ ∈ A(V ), define

χεH
2
r,ζ′ [ϕ] =

∫
Γ2

ϕ(θ)χε(r + i Im θ)H2(θ, ζ ′) dθ.

Then from (15)

|χεH2
r,ζ′ [ϕ]| ≤ C2 sup

θ∈V
|ϕ(θ)|(1 + ‖b′‖)%(r).

Finally, defining

Hr,ζ′ =
{
χεH

1
r,ζ′ + χεH

2
r,ζ′ on {ζ1 = r + ib : dist(ζ1,Kr) < ε},

H(ζ1, ζ ′) for ζ1 ∈ (r + iR) \Kr,

we get the desired extension satisfying (iii) and (iv) of Definition 1. Consequently,
u ∈ Z(Ω; max(%, %(r))) and since r is arbitrary it follows that u ∈ Z(Ω; %).

Concerning the uniqueness of (7) assume that

(16) u ◦ S = T̃r[yθ1χ(y1)] + R̃r ◦ S

with T̃r, R̃r having the same properties as Tr and Rr. Then clearly Tr − T̃r is in
A′(Λr;M(Cn−1; %(r))) and by subtracting the Mellin transforms M1 of (7) and
(16) we get

(Tr − T̃r)[G(ζ1 − θ)] =M1(Rr ◦ S)(ζ1)−M1(R̃ ◦ S)(ζ1).

Since the left-hand side is holomorphic on C \ Λr and the right-hand side on
Ω1
r it follows that (Tr − T̃r)[G(ζ1 − θ)] is holomorphic outside Kr. But

ΨG(ζ1) =
1

2πi
(Tr − T̃r)[G(ζ1 − θ)]

is a defining function for Tr− T̃r (see Theorem 1). Thus Tr− T̃r has carrier in Kr.

We now consider Theorem 3 in the setting of the spaces Zd(Ω; s) where
Ω1 = C \

⋃k
j=1 Lj . For a fixed ζ ′ ∈ Cn−1 and every j = 1, . . . , k define Ξjζ′

as a hyperfunction on the line R + iBj whose defining function is H(·, ζ ′) consid-
ered as a function in a complex vicinity of R + iBj . Since H satisfies condition
(iii) of Definition 2 it follows from Theorem B that Ξjζ′ is in fact a distribution
on R + iBj with support in Lj and can be expressed as

(17) Ξjζ′ = lim
b1→ImBj
b1>ImBj

H(·+ ib1, ζ
′)− lim

b1→ImBj
b1<ImBj

H(·+ ib1, ζ
′)

where the limit is taken in the sense of distributional convergence in D′(R+ iBj).
Moreover,∣∣Ξja′+ib′ [ϕ]

∣∣ ≤ C sup
|α|≤m

∣∣∣∣( ∂

∂a1

)α
ϕ

∣∣∣∣(1 + ‖b′‖)s for ϕ ∈ C∞0 (R + iBj) .
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Define

(18) T j =
1

2πi
(M′)−1Ξj

where (M′)−1 is the inverse Mellin transformation in the variables ζ ′. Then it
follows from the above that

T j ∈ D′(Lj ;M(Cn−1; s)) .

Write Ljr = Lj ∩ {Re ζ1 ≤ r} (r ∈ R) and let T jr be any distribution in
D′(R+iBj ;M(Cn−1; s)) with support in Ljr which coincides with T j on Bj+{a ∈
R : a < r}. Finally, as usual, set

Ωr = A−1({Re ζ1 < r} ∪Ω1 × Cn−1) .

Under the above notation we have the following variant of Theorem 3.

Theorem 3′. Let u∈Zd(Ω; s). Then for any r ∈ R there exists Rr∈M(Ωr; s)
such that

(19) u ◦ S =
k∑
j=1

T jr [yθ1χ(y1)] +Rr ◦ S .

Conversely , if for any r ∈ R formula (19) holds for some T jr ∈ D′
Ljr

(R + iBj ;
M(Cn−1; s)) (j = 1, . . . , k) and Rr ∈M({

∑n
j=1 Re zj < r}; s) then u ∈ Zd(Ω; s).

Moreover , if (19) holds for some r◦ ∈ R then it holds for every r ≤ r◦.

P r o o f. The first part of the theorem follows immediately from Theorem 3.
The proof of the converse implication follows from the lemma below:

Lemma 4. Let T ∈ D′K(R;M(Cn−1; s)) with K a bounded interval in R.
Define

ΨGζ′ (ζ1) =
1

2πi
M′(T [G(θ − ζ1)])(ζ ′) for ζ1 ∈ C \K, ζ ′ ∈ Cn−1 .

Then there exist constants C = C(a′), p = p(a′) locally bounded in a′ ∈ Rn−1

such that

(20) |ΨGζ′ (ζ1)| ≤ C (1 + ‖b′‖)s

|b1|p
for b1 close to 0 and b′ ∈ Rn−1 .

P r o o f. By definition, for Ξζ′ =M′T (ζ ′) ∈ D′K(R) we have

|Ξζ′ [ϕ]| ≤ C̃
( p̃∑
l=0

sup
t∈K

∣∣∣∣( d

dt

)l
ϕ(t)

∣∣∣∣)(1 + ‖b′‖)s for ϕ ∈ C∞(R)

where C̃ = C̃(a′), p̃ = p̃(a′) are locally bounded. Thus, putting ϕ(t) = G(t− ζ1)
for ζ1 = a1 + ib1 with b1 6= 0, in view of property (ii) of G, we get (20) with
p = p̃+ 1.
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Returning to the proof of the theorem we note that the final statement can
easily be derived from the above lemma and Lemma 1.

R e m a r k s. 1. Observe that the condition Rr ∈M(Ωr; max(%, %(r))) in The-
orem 3 can be replaced by a weaker one:

|M(Rr ◦ S)(ζ)| < C(1 + ‖b‖)%(r) for ζ ∈ ({Re ζ1 ≤ r} \ V )× Cn−1 ,

where V is an open neighbourhood of Kr in C and C = C(V, a) is locally bounded
in a.

2. If estimates in the supremum norm in Definitions 1 and 2 are replaced by
those in L2 norm we obtain an analogue of Theorems 3 and 3′ in terms of the
weighted Sobolev spaces SP (s, s′) (see [14]).

3. Different variants of the decompositions (7) and (19) can be used to extend
the classical concept of differentiability.

Corollary 1. The spaces Z(Ω; %) and Zd(Ω; %) are 2-local , i.e. for any
conical cut-off function κ, if u ∈ Z(Ω; %) (Zd(Ω; %), resp.) then κu ∈ Z(Ω; %)
(Zd(Ω; %), resp.).

This follows from Theorems 3 and 3′ and Theorem 2 of [11].

6. The radial characteristic set charα◦ P of a polynomial. This section
extends the results of Section 3 of [11]. We start with the following property of
the classical Cauchy transformation.

Proposition 1. Let T be a distribution in E′(R) of order p̃ with bounded sup-
port. Suppose T restricted to an interval (0, b

◦
), b
◦
> 0, is a differentiable function

such that for j = 0, 1

(21)
∣∣∣∣( ∂

∂γ

)j
T (γ)

∣∣∣∣ ≤ C

γp
for γ ∈ (0, b

◦
)

where C > 0, p ≥ 0 are some constants. Then the (classical ) left Cauchy trans-
form

C−T (z) = − 1
2π
T

[
1

z − iγ

]
defined and holomorphic for Re z < 0 extends to a continuous function on the set
{z ∈ C : Re z ≤ 0, 0 < Im z < b

◦
} and for every α

◦
< 0 there exists C̃ > 0 such

that

|C−T (α+ iβ)| ≤ C̃

βp̂
for α◦ ≤ α < 0 and small β > 0 ,

where p̂ = max(p, p̃+ 1).

P r o o f. Let ψ ∈ C∞0 (R) be such that ψ ≡ 0 on R\(−2/3, 2/3), |ψ| ≤ 1, ψ ≡ 1
on (−1/2, 1/2) and ψ(−γ) = ψ(γ) for γ ∈ R. Let β > 0 be so small that T is a
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differentiable function T (γ) on suppψβ where ψβ(γ) = ψ((γ − β)/β). Write

T

[
1

z − γ

]
= I1(z) + I2(z)

where

I1(α+ iβ) =
∫
R

T (γ)ψβ(γ)
α+ i(β − γ)

dγ, I2(α+ iβ) = (1− ψβ)T
[

1
α+ i(β − γ)

]
.

We first estimate I1. To this end, for γ ∈ R we write

ψβ(γ)T (γ) = ψβ(γ)T (β) + ψβ(γ)(γ − β)
1∫

0

T ′(β + θ(γ − β)) dθ .

Observe that since ψ is even we have for α < 0∫
R

ψβ(γ)
α+ i(β − γ)

dγ =
∫
R

ψ(δ/β)
α+ iδ

dδ =
∫
R

(α− iδ)ψ(δ/β)
α2 + δ2

dδ

= α
∫
R

ψ(δ/β)
α2 + δ2

dδ =
∫
R

ψ(α%/β)
1 + %2

d% .

For fixed β and α→ 0−, the last integral tends to
∫

1
1+%2 d% = π. Since |ψ(α%/β)|

≤ 1, together with (24) for j = 0 this gives∣∣∣∣T (β)
∫
R

ψβ(γ)
α+ i(β − γ)

dγ

∣∣∣∣ ≤ C1
1
|β|p

for α◦ ≤ α < 0 and small β > 0 .

Next for α◦ ≤ α < 0 and small β > 0 we have in view of (24) for j = 1∣∣∣∣ ∫
R

(γ − β)ψ((γ − β)/β)
∫ 1

0
T ′(β + θ(γ − β)) dθ

α+ i(β − γ)
dγ

∣∣∣∣
≤ C1

∫
R

1∫
0

|T ′(β + θ(γ − β))| dθ ψ((γ − β)/β) dγ

≤ C2

∫
R

1∫
0

ψ((γ − β)/β)
|β + θ(γ − β)|p

dθ dγ ≤ C2

1∫
0

2β/3∫
−2β/3

dδ dθ

|β + θδ|p
≤ C3

1
|β|p

.

Now, consider I2(z) for α◦ ≤ α < 0 and β small. Let suppT ⊂ K, a bounded
interval in R. Since supp(1−ψβ)T ⊂ K \ (β/2, 3β/2) and T is of order p̃, we have

|I2(α+ iβ)| ≤
p̃∑
j=0

sup
γ∈K\(β/2,3β/2)

∣∣∣∣ djdγj 1
α+ i(β − γ)

∣∣∣∣
≤ C1 sup

γ∈K\(β/2,3β/2)

1
|β − γ|p̃+1

≤ C2
1

|β|p̃+1
.

We shall also need the following parameter version of Proposition 1:
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Corollary 2. Let Cn−1 3 ζ ′ 7→ Tζ′ ∈ E′(R) be a distribution-valued holo-
morphic function which is rapidly decreasing as a function of Im ζ ′, locally uni-
formly in Re ζ ′. Suppose that Tζ′ restricted to an interval (0, b

◦
), b
◦
> 0, is a

differentiable function Tζ′(γ1) for ζ ′ ∈ Cn−1, and for j = 0, 1 and some l ∈ N0∣∣∣∣∣∣∣∣∣∣∣∣ ∂j∂γj1 Ta′+i·(γ1)
∣∣∣∣∣∣∣∣∣∣∣∣
l

≤ Cl
γp1
, γ ∈ (0, b

◦
) ,

locally uniformly with respect to a′ ∈ Rn−1, where

|||σ|||l = sup
x∈Rn−1

〈x〉l
∑
|α|≤l

|Dασ(x)|

for σ ∈ S(Rn−1). Then for a◦1 ≤ a1 < 0 and small b1 > 0

|||C−Ta′+i·(a1 + ib1)|||l ≤
C̃l

γp̂1

locally uniformly in a′ ∈ Rn−1, where p̂ = max(p, 1 + p̃), p̃ = supζ′∈Cn−1 ordTζ′
and

C−Tζ′(ζ1) = − 1
2π
Tζ′

[
1

ζ1 − iγ

]
for ζ ′ ∈ Cn−1, Re ζ1 < 0 .

The corollary follows easily from Proposition 1 since C− commutes with dif-
ferentiations in the variable b′.

Before passing to the definition of the radial characteristic set of a polynomial
we recall some properties of the Mellin transforms of conical cut-off functions and
of the related Cauchy transforms. Details and proofs are found in [11].

Proposition A. Let κ be a conical cut-off function of Definition B. Define

(22) κ′(y′) = κ̃(1, y′) ,
(23) K ′(ζ ′) =M′(κ′)(ζ ′) for ζ ′ ∈ Cn−1 ,

(24) K(ζ) = (Mκ) ◦A−1(ζ) for ζ ∈ (C \ {0})× Cn−1 .

Then

(i) K ∈ O((C \ {0})× Cn−1),
(ii) for every a ∈ R the function Rn 3 b 7→ (a1 + ib1)K(a + ib) is in S(Rn)

locally uniformly with respect to a ∈ Rn,
(iii) K(ζ) = −K ′(ζ ′)/ζ1 + K̃(ζ) with K̃ ∈ O(Cn).

Moreover , κ′ ∈ C∞0 (Rn−1
+ ) and

(i′) K ′ ∈ O(Cn−1),
(ii′) for every a′ ∈ Rn−1 the function Rn−1 3 b′ 7→ K ′(a′ + ib′) is in S(Rn−1)

locally uniformly with respect to a′ ∈ Rn−1.

Theorem C. Let T ∈ S′(Rn) and fix
∗
a ∈ Rn. Fix a conical cut-off function

κ as in Definition B, and let κ′, K ′ and K be defined by (22), (23) and (24)
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respectively. Define

C̃±(ζ) = C̃±T (ζ) =
1

(2π)n
T [K(ζ − ∗a− iγ)] for ± Re ζ1 > ±

∗
a1, ζ

′ ∈ Cn−1,

and

C̃′∗
a1

(ζ ′) = (C̃′T )∗
a1

(ζ ′)(25)

=
1

(2π)n−1
T [K ′(ζ ′ − ∗a′ − iγ′)] ∈ S′(R) for ζ ′ ∈ Cn−1

(in (25), T is regarded as an element of S′(Rn−1;S′(R)) under the canonical
isomorphism S′(Rn) ' S′(Rn−1;S′(R))). Then

C̃±T ∈ O({±Re ζ1 > ±
∗
a1} × Cn−1), (C̃′T )∗

a1
∈ O(Cn−1;S′(R))

and in the sense of convergence in S′(Rn)

lim
a→
∗
a,a1>

∗
a1

C̃−T (a+ i·)− lim
a→
∗
a,a1<

∗
a1

C̃+T (a+ i·) = (C̃′T )∗
a1

(
∗
a′ + i·)

(here (C̃′T )∗
a1

(
∗
a′ + i·) ∈ S′(Rn−1;S′(R)) is regarded as an element of S′(Rn)).

Corollary A. Let H be a function holomorphic on an open set U ⊂ Cn. Fix
∗
a ∈ Rn and suppose that the function b 7→ H(

∗
a+ ib), defined for b ∈ Rn such that

∗
a+ ib ∈ U , extends to a distribution in S′(Rn) which we denote by H∗

a
. Further ,

suppose that there exists an open set U1 ⊂ C such that for every ζ1 ∈ U1 the
function b′ 7→ Hζ1(

∗
a′ + ib′), defined for b′ ∈ Rn−1 such that (ζ1,

∗
a′ + ib′) ∈ U ,

extends to a distribution H
ζ1,
∗
a′

in S′(Rn−1), and the distribution-valued function

U1 3 ζ1 7→ H
ζ1,
∗
a′
∈ S′(Rn−1)

is holomorphic on U1. Finally , assume that there exists a regularization H̃∗
a1,
∗
a′
∈

S′(R;S′(Rn−1)) of the function b1 7→ H∗
a1+ib1,

∗
a′
∈ S′(Rn−1), defined for b1 ∈ R

with
∗
a1 + ib1 ∈ U1, such that H̃∗

a1,
∗
a′

= H∗
a

under the canonical isomorphism

S′(R;S′(Rn−1)) ' S′(Rn). Then the function

C̃′ζ1(ζ ′) =
1

(2π)n−1
H
ζ1,
∗
a′

[K ′(ζ ′ − ∗a′ − iγ′)], (ζ1, ζ ′) ∈ U1 × Cn−1,

is holomorphic on U1 × Cn−1, and for every fixed ζ ′ ∈ Cn−1 the distribution
C′∗
a1

(ζ ′) ∈ S′(R) is a regularization of the function

b1 7→ C̃′∗
a1+ib1

(ζ ′)
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defined for b1 ∈ R such that
∗
a1 + ib1 ∈ U1. Moreover , the function

Ψ̃(ζ) =

{
C̃−(ζ) for Re ζ1 <

∗
a1, ζ ′ ∈ Cn−1,

C̃+(ζ) + C̃′ζ1(ζ ′) for Re ζ1 >
∗
a1, ζ1 ∈ U1, ζ ′ ∈ Cn−1,

extends to a holomorphic function Ψ on ({Re ζ1 <
∗
a1}∪U1)×Cn−1 (here C̃±(ζ) =

(C̃±H∗
a
)(ζ) as in Theorem C).

We recall the definition of the radial characteristic set char∗
α
P introduced

in [11]. Let P be a polynomial in Cn, n > 1, and
∗
α ∈ Rn. Set

∗
a = A

∗
α and

P(ζ) = P ◦A−1(ζ), and let (1/P)∗
a

be a regularization to a distribution in S′(Rn)

of the function b 7→ 1/P(
∗
a+ ib), which always exists by the division theorem.

DefinitionC. Let Ω1 be the largest set (as in Definition A) such that the
function

(26) C̃−(ζ) =
1

(2π)n

(
1
P

)
∗
a

[F (a+ iγ)K(ζ− ∗a− iγ)] for Re ζ1 <
∗
a1, ζ

′ ∈ Cn−1

extends to a holomorphic function on Ω1∩ Ω̃1×Cn−1 for any F ∈ O(Ω̃1×Cn−1)
(with Ω̃1 as in Definition A) such that for any open neighbourhood W of C \ Ω̃1

there exist constants C and M such that

|F (a+ ib)| ≤ C〈b〉M for a+ ib ∈ (C \W )× Cn−1

locally uniformly in a ∈ Re Ω̃1×Rn−1. We define char∗
α
P = Cn\A−1(Ω1×Cn−1).

In Theorem 4 below we compute char∗
α
P for a class of polynomials in two

complex variables. We start with notation and preliminaries.
Let P =

∑
|%|≤m b%z

% be a polynomial in C2 with complex coefficients. We
assume that the vector γ = (−1, 1) is noncharacteristic for P, i.e. Pm(γ) 6= 0
where Pm(z) =

∑
|%|=m b%z

%.
Define P(ζ1, ζ2) = P (ζ1 − ζ2, ζ2) and write P(ζ1, ζ2) = am(ζ1)ζm2 + . . . +

a1(ζ1)ζ2 + a0(ζ1). Observe that am(ζ1) is a constant function

am = Pm((−1, 1)) =
∑
|%|=m

b%(−1)%1 6= 0 .

Represent P as

(27) P(ζ1, ζ2) = am

m∏
j=1

(ζ2 − cj(ζ1))

where c1(ζ1), . . . , cm(ζ1) are the complex roots of P with ζ1 regarded as a param-
eter. Define the discriminant of P,

∆ =
∏
j<k

(cj(ζ1)− ck(ζ1)) .
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If P has no multiple polynomial factors then it follows from Lemmas A.12 and
A.13 of [1] that ∆ is a nonzero polynomial in ζ1 and for every ζ

◦

1 such that
∆(ζ

◦

1) 6= 0 the functions cj(ζ1), j = 1, . . . ,m, are holomorphic in a neighbourhood
of ζ
◦

1. Further, in a neighbourhood of every point ζ
◦

1 such that ∆(ζ
◦

1)=0 the cj(ζ1)
have expansions in Puiseux series, i.e. series of the form

(28) cj(ζ1) =
∞∑
k=l

dk((ζ1 − ζ
◦

1)1/p)k

for some p ∈ N, l ∈ Z, and since am is a constant function we can put l = 0.
Fix

∗
a ∈ R2. Consider the functions cj , j = 1, . . . ,m, defined as follows. For

Re ζ1 >
∗
a1 close to

∗
a1, cj(ζ1) are the holomorphic functions satisfying (27) and

we choose the following extension of cj to {Re ζ1 >
∗
a1}. Let θν (ν = 1, . . . , N) be

all points in C such that ∆(θν) = 0 and for some j = 1, . . . ,m, cj has a Puiseux
expansion at θν with minimal p > 1 and Re θν >

∗
a1.

At the points θν , cj has value cj(θν). For ζ
◦

1 ∈ R+ + θν , we define

cj(ζ
◦

1) def= c+j (ζ
◦

1) = lim
ζ1→ζ

◦
1,Im ζ1>Im ζ

◦
1

cj(ζ1) .

We also define c−j (ζ
◦

1) = lim
ζ1→ζ

◦
1,Im ζ1<Im ζ

◦
1
cj(ζ1).

Denote by Bµ (µ = 1, . . . ,M) all points in R such that for some j = 1, . . . ,m

(29) Re cj(
∗
a1 + iBµ) =

∗
a2 .

For j satisfying (29) we define sgn(j;µ) = + if for a1 >
∗
a1 close to

∗
a1,

b 7→ Re cj(a1+ib1) is an increasing function in a neighbourhood of Bµ. Otherwise
we put sgn(j;µ) = −. Finally, for ζ1 ∈ C we set

I0(Bµ) = {j : formula (29) holds},
I+(θν) = {j : cj has a Puiseux expansion at θν with p > 1 and

Re cj(
∗
a1 + ib1) >

∗
a2 for b1 > Im θν close to Im θν} .

Theorem 4. Fix
∗
α ∈ R2 and let

∗
a = A

∗
α. Under the notation and assumptions

introduced above, set

Lµ = R + iBµ for µ = 1, . . . ,M ,

L̃ν = R+ + θν for ν = 1, . . . , N ,

L =
M⋃
µ=1

Lµ ∪
N⋃
ν=1

L̃ν , L∗
a

= L ∩ {Re ζ1 ≥
∗
a1} .

Then char∗
α
P = A−1(L∗

a
× C). Moreover , for any F ∈ O(Ω̃1 × C) such that the

function R 3 γ2 7→ F (ζ1, a2 + iγ2) is polynomially bounded at ∞ locally uniformly
in ζ1 and a2, the differences of the boundary values of the Cauchy transform
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(26) are distributions Ξµζ2F on the lines Lµ ∩ Ω̃1 (µ = 1, . . . ,M) with support in

Lµ∩{Re ζ1 ≥
∗
a1}, and distributions Ξ̃νζ2F on the lines {R+θν}∩Ω̃1 (ν = 1, . . . , N)

with support in L̃ν such that for any l ∈ N

(30) |||Ξµa2+i·F [ϕ] |||l ≤ Cp sup
∑
|α|≤p

|Dαϕ| for ϕ ∈ C∞0 (Lµ ∩ Ω̃1)

for some constants Cp = Cp(a2), p = p(a2) locally bounded in a2 ∈ R, and
analogous estimates hold for Ξ̃ν . Explicitly , we have

(31) Ξµζ1F (ζ2)

=
−1
am

∑
j∈I0(Bµ)

sgn(j;µ)
K ′(ζ2 − csgn(j;µ)

j (ζ1))F (ζ1, c
sgn(j;µ)
j (ζ1))∏m

q=1,q 6=j(c
sgn(j;µ)
j (ζ1)− csgn(j;µ)

q (ζ1))

for ζ1 ∈ (R+ +
∗
a1 + iBµ) ∩ Ω̃1, µ = 1, . . . ,M with ∆(ζ1) 6= 0, and

(32) Ξ̃νζ2F (ζ1) =
−1
am

∑
j∈I+(θν)

(
K ′(ζ2 − c+j (ζ1))F (ζ1, c+j (ζ1))∏m

q=1,q 6=j(c
+
j (ζ1)− c+q (ζ1))

−
K ′(ζ2 − c−j (ζ1))F (ζ1, c−j (ζ1))∏m

q=1,q 6=j(c
−
j (ζ1)− c−q (ζ1))

)
for ζ1 ∈ (R+ + θν) ∩ Ω̃1, ν = 1, . . . , N .

P r o o f. In view of Corollary A we are interested in the holomorphic extensions
in the variable ζ1 of the function

C̃′ζ1(ζ2) =
1

2πi

∫
Re θ=

∗
a2

K ′(ζ2 − θ)F (ζ1, θ)
P(ζ1, θ)

dθ

defined for ζ1 =
∗
a1 + ib1 with b1 6= Bµ for µ = 1, . . . ,M . Since the function

C 3 θ 7→ K ′(ζ2− θ)F (ζ1, θ) is rapidly decreasing along the imaginary axis locally
uniformly in ζ1 and ζ2, it follows that the integral over the line Re θ =

∗
a2 may

be replaced by an integral over Re θ = r (for large r > 0) if we add the suitable
residuum terms. To this end define for ζ1 ∈ C

I+
r (ζ1) = {j : r > Re cj(

∗
a1 + ib1) >

∗
a2 for b1 > Im ζ1, close to Im ζ1} .

In view of (27) we have

(33) C̃′ζ1(ζ2) =
−1
am

∑
j∈I+r (ζ1)

K ′(ζ2 − cj(ζ1))F (ζ1, cj(ζ1))∏m
q=1,q 6=j(cj(ζ1)− cq(ζ1))

+
1

2πiam

∫
Re θ=r

K ′(ζ2 − θ)F (ζ1, θ)∏m
j=1(θ − cj(ζ1))

dθ .
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The integral in the second summand is holomorphic (as a function of ζ1 for a
fixed ζ2) in the set Ω̂r = {ζ1 ∈ C : Re cj(ζ1) < r for j = 1, . . . ,m} and hence (33)
gives an extension of C̃′ζ1(ζ2) to Ω̂r ∩ Ω̃1 ∩ {Re ζ1 ≥

∗
a1} \ L. Since the functions

cj are locally bounded we observe (by letting r → +∞) that all singularities of
the extension are contained in the residuum terms, and the computation of the
“jumps” of C̃′ζ1(ζ2) is now simple. It follows from Corollary A that the holomor-
phic extension of C̃− is given by

(34) ψ(ζ) =

{
C̃−(ζ) for Re ζ1 <

∗
a1, ζ2 ∈ C,

C̃+(ζ) + C̃′ζ1(ζ2) for Re ζ1 >
∗
a1, ζ1 ∈ (C \ L∗

a
) ∩ Ω̃1, ζ2 ∈ C,

where C̃±(ζ) = (2π)−2(1/P)∗
a
[F (
∗
a + iγ)K(ζ − ∗a − iγ)] for ±Re ζ1 > ±

∗
a1. Thus

for Re ζ1 >
∗
a1 the jumps of ψ(·, ζ2) coincide with those of C̃′ζ1(ζ2), which gives

formulas (31) and (32).
It remains to prove that Ξµζ2F , Ξ̃νζ2F are distributions on the respective lines.

To this end we shall modify the function ψ(ζ) to a function ψ̃(ζ) which has the
same jumps as ψ but whose growth properties are easier to investigate. In view
of Proposition A(iii) we can write

K(ζ) = K ′(ζ2)K1(ζ1) + K̃(ζ)

where K1 is a modified Cauchy kernel in the variable ζ1 and K̃ ∈ O(C2) is such
that K̃(a+ i·) ∈ S(R2) locally uniformly in a ∈ R2. Then we have

C̃±(ζ) = ψ1(ζ) + ψ2(ζ)

where

ψ1(ζ) =
1

2π
C̃′∗
a1

(ζ2)[K1(ζ1 −
∗
a1 − i·)] for Re ζ1 6=

∗
a1,

ψ2(ζ) =
1

(2π)2

(
1
P

)
∗
a

[F (
∗
α+ iγ)K̃(ζ − ∗a− iγ)] for ζ ∈ C2.

Since ψ2 is an entire function on C2 we are interested in ψ1. Let χ be a C∞0 (R)
function which is 1 in a neighbourhood of the points Bµ (µ = 1, . . . ,M) and Im θν

(ν = 1, . . . , N). For Re ζ1 6=
∗
a1 write

ψ3(ζ) =
1

2π
χC̃′∗

a1
(ζ2)[K1(ζ1 −

∗
a1 − i·)] ,

ψ4(ζ) =
1

2π
(1− χ)C̃′∗

a1
(ζ2)[K1(ζ1 −

∗
a1 − i·)] .

Again ψ4(·, ζ2) is holomorphic in complex neighbourhoods of the points
∗
a1 +

iBµ (µ = 1, . . . ,M) and
∗
a1 + i Im θν (ν = 1, . . . , N) so we are left with ψ3.

Inserting
K1(ζ1) = −1/ζ1 +K(ζ1) ,
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where K ∈ O(C), in the definition of ψ3 we find that modulo a holomorphic factor
we are led to considering the function

ψ5(ζ) =
1

2π
χC̃′∗

a1
(ζ2)

[
1

ζ1 −
∗
a1 − iγ1

]
for Re ζ1 6=

∗
a1 .

Summing up we find that about the points
∗
a1 + iBµ,

∗
a1 + i Im θν the function ψ

given by (34) has the same jumps as the function

Φ(ζ1, ζ2) =


1

2π
χC̃′∗

a1
(ζ2)

[
1

ζ1 −
∗
a1 − iγ1

]
for Re ζ1 <

∗
a1, ζ2 ∈ C,

1
2π
χC̃′∗

a1
(ζ2)

[
1

ζ1 −
∗
a1 − iγ1

]
+ C̃′ζ1(ζ2) for Re ζ1 >

∗
a1, ζ2 ∈ C.

Next from (33) we find that Φ may be replaced by

Φ̃(ζ1, ζ2) =


1

2π

∫
R

χ(γ1)
E(
∗
a1 + iγ1, ζ2)

ζ1 −
∗
a1 − iγ1

dγ1 for Re ζ1 <
∗
a1,

1
2π

∫
R

χ(γ1)
E(
∗
a1 + iγ1, ζ2)

ζ1 −
∗
a1 − iγ1

dγ1 + E(ζ1, ζ2) for Re ζ1 >
∗
a1,

where

(35) E(ζ1, ζ2) =
−1
am

∑
j∈I+(ζ1)

K ′(ζ2 − cj(ζ1))F (ζ1, cj(ζ1))∏m
j=1,q 6=j(cj(ζ1)− cq(ζ1))

and

I+(ζ1) = {j : Re cj(
∗
a1 + ib1) >

∗
a 2 for b1 > Im ζ1, close to Im ζ1} .

In view of the properties of F the assertion (30) now follows from Corollary 2 and
Theorem B.

R e m a r k. Formulas (31) and (32) demonstrate the occurrence of a “coupled”
resurgence effect in the spirit of J. Ecalle [3], [4]. This phenomenon is studied in
a forthcoming paper [12].

A remarkable feature of the distributions Ξµζ2F and Ξ̃νζ2F is the following

Corollary 4. The distribution-valued holomorphic functions

C 3 ζ2 7→ Ξµζ2F, C 3 ζ2 7→ Ξ̃νζ2F

are rapidly decreasing in Im ζ2, locally uniformly in Re ζ2 even though the function
C 3 ζ2 7→ F (ζ1, ζ2) may grow polynomially in Im ζ2.

7. 2-dimensional elliptic Fuchsian operators in the spaces Z(Ω; %) and
Zd(Ω; %). This section provides a refinement of the results of Section 4 of [11].
For the sake of completeness we recall some basic definitions introduced there.
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Let

R = R

(
x1, x2, x1

∂

∂x1
, x2

∂

∂x2

)
be a linear partial differential operator of order m ∈ N0 with smooth coefficients
defined in a neighbourhood of zero in R2. Setting P (z) = R(0, z) we write R as

R = P

(
x
∂

∂x

)
−Q

(
x, x

∂

∂x

)
where

(36) Q

(
x, x

∂

∂x

)
= x1Q

1

(
x, x

∂

∂x

)
+ x2Q

2

(
x, x

∂

∂x

)
and Q1, Q2 are differential operators of order m. We suppose that P satisfies the
following ellipticity condition:

For every α◦ ∈ R2 there exist C1 <∞ and C2 > 0 such that

|P (α◦+ iβ)| > C2(1 + ‖β‖)m for ‖β‖ > C1 .

Theorem 5 (see [11]). Let w ∈ Z(Ω; s) (w ∈ Zd(Ω; s) with Ω1 = C\
⋃m
j=1 Lj ,

resp.) 2-locally at (0, δx◦). Then for every
∗
α ∈ R2 with {(z1, z2) : Re z1 + Re z2 <

∗
α1 +

∗
α2} ⊂ Ω there exists u∗

α
∈ Z(Ω \

⋃∞
j=0{char∗

α
P + j}; s −m) (u∗

α
∈ Zd(Ω \⋃∞

j=0{char∗
α
P + j}; s −m), resp.) 2-locally at (0, δx◦) with j = (j, 0, . . . , 0) ∈ Nn0

and Ru∗
α

= w 2-locally at (0, δx◦).

P r o o f. For u∗
α

we take the solution u ∈M′∗
α

of the equation

(37) Pu = Q(κu) + κw

in R2
+, which exists by Theorem 2 of [6] for a suitable cut-off function κ at (0, δx◦).

Then we proceed as in the proof of Theorem 4 of [11]: First we observe that by
Theorem 4 of [11], κu∗

α
∈M(Ω \

⋃∞
j=0{char∗

α
P + j}; s−m), thus we only have to

check that the function H(ζ) =M(κu∗
α

) ◦A−1(ζ) satisfies conditions (iii), (iv) of
Definition 1 (condition (iii) of Definition 2, resp.). Define

Ωj =
{
z ∈ Cn :

∑
Re zl <

∑ ∗
αl + j

}
for j ∈ N0 .

Clearly M(Ω0; s−m) = Zd(Ω0; s−m). Since κu∗
α
∈M(Ω0; s−m) it follows by

computing the Mellin transform M∗
α

of (37) that

M∗
α
u∗
α

(β) = F (
∗
α+ iβ)/P (

∗
α+ iβ)

where H(ζ) = F ◦ A−1(ζ) satisfies (i)–(iv) of Definition 1 on Ω̃1 = {ζ1 <∑ ∗
αj + 1} ∩ Ω1 with % ≡ s. Now M(κu∗

α
) ◦ A−1(ζ) = C̃−(ζ) and by Corol-

lary A we are interested in C̃′ζ1(ζ2) as in the proof of Theorem 4. Thus we
have the decomposition (10). The first term clearly has properties (iii), (iv) of
Definition 1 on Ω̃1 with % = −∞. To get an estimate of the second term for
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ζ1 ∈ Ω̂r ∩ Ω̃1 we apply Lemma 2. By induction we prove that (iii) and (iv) hold
on any set Ωj .

Example. Let 0 6= ∗
α ∈ R2 and denote by u∗

α
∈ M′∗

α
(R2) the solution of the

equation Pu∗
α

= δ1 on R2
+ where P (x∂/∂x) = (x1∂/∂x1)2 +(x2∂/∂x2)2 such that

M∗
α
u∗
α

(β) =
1

(
∗
α1 + iβ1)2 + (

∗
α2 + iβ2)2

∈ L1(R2) .

We have P(ζ1, ζ2) = (ζ1 − ζ2)2 + ζ 2
2 = 2(ζ2 − c1(ζ1))(ζ2 − c2(ζ1)) where

c1(ζ1) =
1 + i

2
ζ1, c2(ζ1) =

1− i
2

ζ1

and ∆ = iζ1. Further, from (29) we find

B1 =
∗
a1 − 2

∗
a2, B2 = 2

∗
a2 −

∗
a1

and since c1 and c2 are regular there are no points θν . Define

L1 = {ζ1 ∈ C : ζ1 = a1 + i(
∗
a1 − 2

∗
a2), a1 ≥

∗
a1} ,

L2 = {ζ1 ∈ C : ζ1 = a1 + i(2
∗
a2 −

∗
a1), a1 ≥

∗
a1},

L = L1 ∪ L2 .

Then it follows from Theorems 4 and 5 (see also Example 3 of [11]) and Theorem 5
of [11] that

κu∗
α
∈ Zd(Ω;−∞)

where Ω = A−1((C \ L)× C) and κ = ϕκ̃ is any proper conical cut-off function.
Moreover, by Theorem 4 and Corollary 2 the distributions Ξ1

ζ2
, Ξ2

ζ2
given by (17)

equal

Ξ1
ζ2 [ϕ] = a1(ζ2)δ

(
∗
a1,
∗
a1−2

∗
a2)

[ϕ] +
1
2i

∫
L1

K ′(ζ2 − 1+i
2 ζ1)

ζ1
ϕ(ζ1) dζ1

for ϕ ∈ C∞0 (R + iB1),

Ξ2
ζ2 [ϕ] = a2(ζ2)δ

(
∗
a1,2

∗
a2−

∗
a1)

[ϕ] +
1
2i

∫
L2

K ′(ζ2 − 1−i
2 ζ1)

ζ1
ϕ(ζ1) dζ1

for ϕ ∈ C∞0 (R + iB2)

where K ′(ζ2) =M′(κ̃(1, y2))(ζ2) and aµ(ζ2), µ = 1, 2, are some entire functions
which are the Mellin transforms of some smooth functions T̃µ(y2) vanishing for
y2 close to zero. Computing the inverse Mellin transforms of Ξµ with respect to
ζ2 and dividing the results by 2πi we find

T 1[ϕ](y2) =
1

2πi
T̃ 1(y2)δ

(
∗
a1,
∗
a1−2

∗
a2)

[ϕ]− 1
4π
κ̃(1, y2)

∫
L1

y
(1+i)ζ1/2
2

ζ1
ϕ(ζ1) dζ1

for ϕ ∈ C∞0 (R + iB1) ,
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T 2[ϕ](y2) =
1

2πi
T̃ 2(y2)δ

(
∗
a1,2

∗
a2−

∗
a1)
− 1

4π
κ̃(1, y2)

∫
L2

y
(1−i)ζ1/2
2

ζ1
ϕ(ζ1) dζ1

for ϕ ∈ C∞0 (R + iB2) .

R e m a r k. Observe that if
∗
α→ 0 then the lines L1, L2 tend towards the half-

line R+, and the distribution T 1 +T 2 for α1 > 0 tends towards the corresponding
distribution for u0 = ln((lnx1)2 + (lnx2)2). Indeed, we have

1
a1

(y(1+i)a1/2
2 + y

(1−i)a1/2
2 ) =

2
a1
y
a1/2
2 cos

(
a1

2
ln y2

)
,

which agrees with the explicit formula given in Example 1 of [11].
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