ALGEBRAIC METHODS IN LOGIC AND IN COMPUTER SCIENCE
BANACH CENTER PUBLICATIONS, VOLUME 28
INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES
WARSZAWA 1993

GENERALIZED PASCAL TRIANGLES:
OVERVIEW OF NEW RESULTS

IVAN KOREC

Mathematical Institute, Slovak Academy of Sciences
Stefdnikova 49, 81473 Bratislava, Slovakia

1. Introduction and definitions. The present paper deals with an alge-
braical generalization of the Pascal triangle. In this sense it differs from most fre-
quently studied various arithmetical generalizations; see e.g. Bondarenko’s book
[1] with many of more than 400 items in its bibliography. The classification is nei-
ther exclusive nor sharp; Pascal triangles modulo n belong both to arithmetical
generalizations and the algebraical generalization presented here. The immedi-
ate motivation for introducing the latter was the study of structure of real-time
systolic trellis automata (see [4], [5], later also [7], [8], [9]). However, the al-
gebraic generalization presented is also suitable for describing computations of
one-dimensional cellular automata.

The previous overview was [13], where [10] and [11] were summarized. The
present paper mainly summarizes [16] and [17]. [14] deals directly with a kind
of systolic trellis automata. In [15] it is shown that Pascal triangle modulo n
is modular or strictly modular if and only if n is a prime power or a prime,
respectively. Modularity and strict modularity of trellises were introduced in [2]
and [3].

Let N denote the set of nonnegative integers and for every n € N let

D, ={(z,y) e NxN:z+y>n—1}.
The operators DIV, MOD will denote the quotient and the remainder by the
integer division (like in the programming language PASCAL).

If A is an alphabet (i.e., a finite nonempty set) then A™ will denote the set of
all nonempty words in the alphabet A. The length of a word w will be denoted
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by |wl; it must be distinguished from the absolute value of a real by the context.
The ith symbol of w will be denoted by w(7); the starting symbol is w(0) and
hence the last symbol is w(|w| — 1). Also some further usual notations from the
theory of formal languages will be used.

By an algebra we shall always understand an algebra A = (A;x,0) of signa-
ture (2,0) and satisfying the identity o * o = o. We shall usually consider finite
algebras; the exceptions will be explicitly mentioned.

DEFINITION 1.1.  With every algebra A = (A;*,0) and every w € AT we
associate the function G = GPT(A,w) with the domain D, by the formulae

w(z) if z+y=|wl —1,
) oxG0,y—1) ifx=0, y>|wl|,

Glx—-1,y)*xGx,y—1) ifx+y>|w, x>0, y>0.

The functions of the form GPT(A, w) for a finite algebra A and a word w € AT
will be called generalized Pascal triangles (abbreviation: GPT).

When displaying a GPT we shall always assume the corresponding coordinate
system in the plane: the axis z is directed left-down and the axis y is directed right-
down. Nice (and very often studied) examples of GPT are Pascal triangles modulo
n, particularly if n is a prime or a prime power. The value G(z,y) = (ziy) MODn
is always written into the unit square (z,y). We can express these GPT in the
form GPT(N,,, 1), where N, = ({0,1,...,n—1};+,0) and + denotes the addition
modulo n.

DEFINITION 1.2. Let A = (A;*,0) be an algebra, w € AT and t € N.

a) The t-th row of G = GPT(A,w), notation: R(A,w;t), will be the word
consisting of

G(Oat + |w‘ - 1)7 G(lat + ’1U| - 2)a SRR G(t + |’LU| -2, 1)7 G(t + |w| - 170)

b) The substantial part SP(A,w;t) of the tth row of G = GPT(A,w) will be
the empty word if G(z,t —x) = o for all x € Z; otherwise SP(A, w;t) will be the
word consisting of

Glu,t+|w—u—1),Glu+ 1, t+ |w| —u—2),...,G(v,t + |w| —v—1),
where u is the least and v is the greatest integer such that G(u, t+|w|—u—1) # o
and G(v,t + |lw| —v —1) #o.

¢) Imarg(.A, w; t) and rmarg (A, w; ) will denote the number of (occurrences of)
o in R(A, w;t) before and after SP(A, w;t), respectively; if SP(A,w;t) is empty
then lmarg(A, w;t) = |w| + ¢t and rmarg(A, w;t) = 0.

In other words, SP(A, w;t) is the least (connected) subword of the tth row of
GPT(A, w) which contains all its symbols distinct from o. Further, always

PL(.A, w; t) _ Olmarg(A,w;t)SP(A7 w; t)ormarg(A,w;t)'
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Remark 1.3. Originally (for example, in [11] or [13]), generalized Pascal
triangles were associated with the algebras of signature (0,1,1,2) (but the ap-
proach introduced above was also mentioned). The algebra corresponding now to
the original algebra B = (B; K,1,r, .) can be A = (A;x*,0), where A = B U {o},
o¢ B and

rxy=uwxy, x*xo=r(x), oxy=I1y), oxo=o

for all z,y € B. The constant K (which was used to define GPT(B)=GPT (B, K))
has no analogy here; therefore GPT(A) is not defined now. Notice also that
sometimes it is more suitable to choose o € B; e.g. if we consider the Pascal
triangle modulo a positive integer n, the choice o = 0 is suitable. There are also
further small technical modifications, but none of them is substantial.

2. Nilpotent and semilinear GPT

DErFINITION 2.1. A GPT G will be called nilpotent if G(z,y) = o for all
but finitely many pairs (x,y) € D. An algebra A = (A;x*,0) will be called nilpo-
tent if for every w € AT, GPT(A,w) is nilpotent.

To avoid possible misunderstanding, notice that all configurations are usually
considered in the definition of nilpotent cellular automata; the above definition
deals with finite configurations (i.e., those with finite supports).

DEFINITION 2.2. A language L will be called a simple linear language of degree
at most k if there are words wug, v1, u1,va, ..., Uk_1, Vg, U sSuch that

(2.2.1) L = {ugviuyvus . . . up_1viug : i > 0}.

A language L will be called a simple semilinear language (abbreviated: SSL
language) of degree at most k if L is a disjoint union of finitely many simple linear
languages of degree at most k.

L will be called an SSL language of degree k if L is an SSL language of degree
at most k but it is not an SSL language of degree at most k — 1. L will be called
an SSL language if it is an SSL language of degree at most k for some k& € N.

A GPT G will be called an SSL GPT (of degree [at most] k) if the set of its
rows is an SSL language (of degree [at most] k).

An algebra A = (A;*,0) will be called an SSL algebra (of degree at most k)
if for very w € AT, GPT(A, w) is SSL (of degree at most k). It will be called an
SSL algebra of degree k if it is of degree at most k but it is not of degree at most
k—1.

Notice that an SSL algebra need not be SSL of a (finite) degree because the
degrees of its GPT can be arbitrarily large. Every nilpotent algebra is an SSL
algebra of degree 1 but the converse does not hold.

Some of the above defined properties can be characterized as follows. G =
GPT(A,w) is an SSL GPT if and only if for every ¢ € A the set G~1{c} is
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definable in Presburger arithmetic. G is an SSL GPT of degree at most 2 if and
only if the set of its rows is a context-free language.

3. Simple semilinear GPT and the 3x + 1 problem. For every y € N

define

3 1
T(y) = y2+ if yisodd, T(y)=
Further, write 7%(y) = y and T""(y) = T(T"(y)) for every n,y € N. The
sequence (T°(y), T (y), T?(y), ...) will be called the T-trajectory of y. There are
several unsolved hypotheses connected with the iterations of T'; for example:

if y is even.

N

~—

3x+1 CONJECTURE. For every positive integer y there is n such that T™(y)=1.

DIVERGENT TRAJECTORY CONJECTURE (ON N). There is no y€N such that
lim,, 00 T™(y) = 0.

FINITE CYCLES CONJECTURE (ON N). There are only finitely many y € N
such that there is n > 0 such that T"(y) = y.

Of course, the first hypothesis (called also the Syracuse problem, Collatz—
Kakutani problem, etc.) implies the second and the third ones. All three hypothe-
ses seem to be very hard. For references and history see [18] (where, however, the
second and the third hypotheses are formulated for the set Z of all integers instead
of N).

Here some algebras (consisting of 7 or 8 elements) will be constructed and
some structural questions about their GPT will be shown equivalent to the above
hypotheses. So we can conclude that these questions about GPT are also hard.
On the other hand, GPT can help us to visualize some results concerning the
3z + 1 problem.

DEFINITION 3.1. Let A; = (Aq;%,0), where A; = {0,0,1,2,3,4,5} and the
operation x is defined by
(3x) MOD 6 + (3y) DIV6 if 2 # 0, y # o,

0 if =0, y € {0,0,1},
xxy =< (3y)DIV6 ifx =0, y€{2,3,4,5},

4 if z € {1,3,5}, y = o,

0 if x € {0,2,4}, y =o.

The algebra A; and one of its GPT are displayed in Figure 1. Assume that
the substantial part of a row of a GPT(A;,w) does not contain any o. (This
assumption is not satisfied in Figure 1; however, any maximal segment of a row
not containing any o can be considered as well.) If we understand o as a blank then
the way how a row of a GPT(A;,w) is formed from the previous row resembles
multiplying by 3 in the number system with base 6. The difference is at the right
end, where:

either 4 arises instead of 3 (so 3u + 1 is obtained instead of 3u),
or the rightmost zero is lost (so 3u is divided by 6 and 1u is obtained).
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* 0012345
Algebra Aj:
& 1 olooo1122
0lo001122
1 4 3344505
2 o 001122
3|1433445T©5
410001122
543344565
Initial word w = ‘22200333000440031241’
GPT(A1,w), rows 0..56, columns —45..31, with ‘.” instead of ‘0’
0t 222 . 333 . 44, .31241
1717177 .717474747 . 7272777173742 0 4
334. 522 .°.7171 . .45102.
.'1745 ‘27471 . 374°.7.727273°3°1°.".
. 524 .°17204 .7.7175 .7.717171747374" ..
5F 274t 402 . . 54 . .33515 ..
17271 ‘201 .27 . 145354 . .
4°0°4°.°17004 .7 .717274".". 52455 ..
‘2702, 302...42..242254 ..
o101 .'17301 . 21 121125 . .
10 304 . 47374°.7.71704°.7.74°0 374 274",
'1°3°27.7.'27175 . 32..201512.
L4 47.7.717054°.7.71747.7.7170 05 34",
e e e 2.2 0. 325 . 5 . ..30245 . .
LT T T T 1At 274 T T3 127274
15 e e e . .34 L. 512 . 12 43412
LT e T 27374 .. 4. . ..21504.
L5477 . 1715 T T 27 T 1T0 s 3 2.
.25 .. 3654 . .1. 3244
S - . B -0 - P S, I i 3
20 | Y U0~ R -0 - 2 S R - S S
21°.7.".'256 5 .7 ."10 ... 7. 273737 4",
1504771525477 T4T " T T101T4 5 L
.32 ... 4725 27,0 T3 5247,
S S T D0 S . By - 2 N
25 L. s 1042 e T s s 1L
A S ST 10 S I S Sy - B N S
12T T T 1At 0aT 1T T T T T 2TaTs L
B T S0 D5~ B S U B B
T~ B < L2000 2112,
30F . . . . . . .1 171737477177 7070717003747
F Y- 345 .4 ... .315 ..
R -0~ S~ B R M 0 S
S A 542 .1 . ... .455 ..
L e T 2Ts .4 ... . 2254 . .
<130 S » B N~ - S R B S~ 0 - S
B 415 1. ... .3424.
B R S - A S - S B
L et T 10 278 2. ... .534.
e 3.17274°1 ... .,245 .
o T S < S S S - T N B
e e e e e 20 45102 .. o412,
S S S~ < T TG A I B
R S B S - I S B¢ D B
e e e e 20 33515 . ... .31..
45 F . T T T T o1Ta 537547, T84 .
P 52455 . ... .45 ..
- R B - 3 - I S B N S
R P N~ B B - 2 - S R R B
P 403424. .. .34.
50F ... T 2T T 2015 1T T T s L.
L T o1T00573°47 . T T TBA.
L4708 0.2048 LT T T 2T
S R N6< 20 -0~ S B 30 S
R P/ - N7 Rt R > R
-1 S’ SRS b T -3 S SRR S B
S T 0 - 2> SRR, B N
| | | | | | | |
-40 -30 -20 -10 0 10 20 30
Fig. 1

For every w € (A — {0})" denote by valg(w) the integer represented by w in
the number system with base 6 (leading zeros are allowed).

LEMMA 3.2. Let w € (A — {o})™", w(0) # 0 and ¢ = liminf,, . T" (valg(w)).
Then

1 it
(3.2.1) ]| = lim Imarg(A, w; t)

t
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exists and

() lwll =1/3 if ¢ = 1;
(ii) logg2 — 0.072/q < |Jw| <logg2 if 1< g < o0;
(i) [[w] = loge2 if q= oo,

LEMMA 3.3. For every w € (A — {o})* and ¢,d € N, GPT (A, o®wo?) is
simple semilinear if and only if the T-trajectory of valg(w) is ultimately periodic.

THEOREM 3.4. The algebra Ay is an SSL algebra of degree 2 if and only if the
3z + 1 conjecture holds.

The algebra Ay is an SSL algebra if and only if the divergent trajectory con-
jecture (on N) holds.

The algebra A; is an SSL algebra of a finite degree if and only if both the
divergent trajectory conjecture (on N) and the finite cycles conjecture (on N)

hold.

Remark 3.5. Since the 3z + 1 conjecture was verified up to 24°, Lemma 3.2
leaves only an interval of length less than 10713 for possible values of ||w|| distinct
from % and 1. (Jlw| =1 corresponds to some w not considered in Lemma 3.2.)

The nilpotency of GPT is a simpler and more transparent property than their
simple semilinearity. Therefore it would be nice to replace the SSL algebra in
Theorem 3.4 by a nilpotent algebra. We shall do it for the first part of Theorem
3.4, but the cardinality of the algebra will increase to 8.

DEFINITION 3.6. Let Ay = (Ag;®,0), where Ay = {0,0,1,2,3,4,5,1} and
the operation @ is defined by
o ifx=1 y=o,
x@y:{l ifr=o0, y=2,
x' xy  otherwise,
where 2/ =z ifx #Tand I' = 1.
The algebra As and one of its GPT are displayed in Figure 2. If we compare

this with Figure 1, the main difference is that periodic “tails” (consisting of 4,2, 1)
have been cut off.

LEMMA 3.7. For every w € (A —{o})", GPT(Asz, w) is nilpotent if and only
if there is n such that T™(valg(w)) = 1.

THEOREM 3.8. The algebra As is nilpotent if and only if the 3z +1 conjecture
holds.

Just as 1 was split into two elements 1, I in the above construction of As, also
the other elements of the periodic tails can be used. We shall formulate the result
for the element 4.

THEOREM 3.9. Let A3 = (A3;®,0), where Az = {0,0,1,2,3,4,5,F} and the
operation ® is defined by
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rTRY =

0 if t=o0, y=F,
F if =1, y=o,
' xy  otherwise,

where ' = x if ©t #F and F' = 4. Then the algebra As is nilpotent if and only
if the 3x + 1 conjecture holds

AlebraA: EB o012345T1
& 2 o oooI1l220o0
0 o0011220
1 4 3344553
2 o 0011220
3 4 3344553
4 o0011220
5 4 33445053
I 033445153
Initial word w = ‘0011220053540142500133’
GPT(A2,w), rows 0..55, columns —40..36, with ‘.” instead of ‘0’
0 F 001122. 5354.1425 133
. 00341 ‘27455 51274, 4 4 4
L.01°504.'T722654°.'2734 2.7 ./272727,
. . 0532. 471725 .'171°5°1 I 11 ..
2 4 4 . '2°0°47274°.73°53°4". 334 . .
5F . VIT2727.7.'17021727.717574°5 1745700,
4 1 3.104 . 5524, 524 .
. .. ‘2°0°4°.7.'173°3 2", ‘27574727, 274727,
. L1002, 444..I251 10271 .
.o .. 3.1 Ul272727 4°27374°. 404", .
10 . R R I S i | L.271717s ‘2°02°.". .
.o .. .45 .737374°.".'170354°.'IT'0 1 . .o
. . 224 145 3155 3.04".". .
.o .. I 12 524", "1°3'5554°.7173 2.7, ..
. .o 3 4 Ll2vaTor, 4 555 4 4 . . . .o
15 .o . .15 . I 21 . '2°2°5°54°.'2°2 .o ..
. .. .54 404 . .'1 1727675 "I 17000, ..
.o . ..25 U270 2700. 374°2°5°4°.734°.".". ..
.. . CLIT274aT . 'TT 01 P T - 0 - ST B - S ..
. .o .. 42 304 . 53424 .54 ... ..
20 | . . . 21 ‘173277727486 17271275 0T, ..
.. 10 4” 44 ., . .12234.124. .. ..
32 R - B S B - S 4 2 . .o ..
. .. L1747, IT1T 027003547027 .o
.. 5 34°.".".'IT0 1755 .'1704". .o ..
25 F . .. L2740, 1°5°.7.7.7.73055 4 32 . .. ..
. oo I 20, 54°.°.7.'1°3° 255 .71°4". .o ..
.. .4 . 2750, 4 4 25 4 5 .. .o
.. e L2 IT2T4T. T 272717275 T27a .o ..
. PR .42 . IT1T07 4274 T2 . .. P
30 . . 21 . . 3321204. .o ..
.. 170747, 174747074027, .. R
. 32 . 520201 . .o ..
.. 1747, L2740 17004 . .. .
P . 5 . .'I270 0730 2. P .o
35 .. L2740, 400131 . .. .
P Lo I2. .7.J270004°34°. .o ..
.o .. 4. L'IT000 215 . .. ..
.. .2, . 3001054, .o ..
.o I. ."173°0032°5 . .. ..
40 .. 473°01°4°2°4". .. ..
.o . ‘2717305 1°2°. .. ..
.. .'170°473 273747, .o ..
.o 321415 . . ..
.. 17470505 4. .. ..
45 .o . 502325 . . ..
.. . 12133131541224 . .o ..
.. .. 344534, .. .o
.o 152245 . .. ..
50 .. 54°1°2274", .. ..
.o Ll27507471727. .. ..
.. . 123204. .o ..
.o 41402. .. ..
. .o L.J2705°01 . .o ..
55 .. .'I702°3074°. .o .. ..
| | | | | | | |
-40 -30 -20 -10 0 10 20 30

Fig. 2
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4. Speeds of configuration growth in GPT — Definition. Generalized
Pascal triangles can be considered as computations of one-dimensional cellular
automata from finite initial configurations. (The quieting state will be o or an
n-tuple consisting of o, where n is determined by the type of neighbourhood.)
Cellular automata are often used to simulate some physical processes. Imagine
for example waves spreading on a water surface (in a narrow and very long reser-
voir for the one-dimensional case). If we throw several stones into water the waves
will spread on the water surface. The size and the form of the waves will depend
on the number of stones thrown, their weights etc., but the speed of the wave head
will usually be independent of these circumstances. Hence it is natural to require
that a cellular automaton used to simulate these waves has the following property:

In every computation with finite nonempty initial configuration, the length
of the support is (asymptotically) a linear function of time, and the speed of its
growth does not depend on the initial configuration.

These considerations motivate the following definition:
DEFINITION 4.1. Let A = (A;*,0) be a finite algebra and « be a real.

(i) We shall say that « is the speed of configuration growth of A, and write
SpGr(A) = a, if there is a constant ¢ such that for every w € At — {o}* and
every t € N

(4.1.1) |[[SP(A,w;t)| — (|SP(A, w;0)| + at)| < c.

(i) We shall write SpGr,(A) = « if for every w € AT — {0} there is a
constant ¢ such that (4.1.1) holds.

If SpGr(.A) is defined then SpGr, (A) is also defined and SpGr; (A) = SpGr(A).
The converse is not true: it may happen that SpGr;(.A) is defined and SpGr(.A)
does not exist. Analogously, it may happen that

lim |SP(A, w;t)|

t—o00 t
exists for every w € AT — {o}" and does not depend on w, and, despite this,
SpGr; (A) does not exist. Hence the condition (i) in Definition 4.1 is rather strong.
It requires that the configuration growth is “as linear as possible” and simulta-
neously “as uniform as possible”. This makes existence results about SpGr also
rather strong, e.g. stronger than those about SpGr;. In the next section it is
shown how to meet this condition in a nontrivial way.

5. Irrational speeds of configuration growth. It is very easy to find
an algebra A such that SpGr(A) = 1; also lower rational speeds can easily be
obtained. On the other hand, by the simulation of a suitable Turing machine
also irrational speeds can be obtained; however, in this case the speed of growth
usually depends on the initial configuration (and it does not necessarily exist for
all initial configurations). So the conditions of Definition 4.1 need not be satisfied.
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We shall present a method to obtain irrational speeds based on a number-
theoretical idea. For this purpose, we shall generalize the notion of positional
number system and introduce an auxiliary set K.

DEFINITION 5.1. (i) A positional number system is an ordered triple
(A'? Val? b) 9

where A is an alphabet (of digits), val is a mapping of A into the set of nonneg-
ative reals and the real b > 1 is the basis.
(ii) The function val is extended to the set AT by the formula

val(Uptp—1 ... ujug) = Zval(ui).bi
i=0

for every n € N and all u,, tp_1,...,u1,uy € A.

Generally speaking, the above definition gives neither the existence nor the
uniqueness of representations of nonnegative reals; we do not investigate any
details not concerning our main goal.

DEFINITION 5.2. K is the set of all reals « for which there are positive reals
Y1,792; - - -» Yk and nonnegative integers ¢;, d;; (4,7 € {1,2,...,k}) such that

a=ciy +coye ... +cpy  and

7% din diz ... dig st
V3 B dor doo ... dog V2
vz de1 drg2 ... dik o

The parameters in the main theorem of this section (Theorem 5.4) will run
over K. Therefore the following theorem is presented which shows how rich (items
a, b, ¢) and how poor (items d, e) the set K is:

THEOREM 5.3. a) The set K contains all nonnegative integers.

b) The set K is closed under addition, multiplication and taking k-th roots
(k=2,3,4,...).

c) If aw,a1,...,an—1 € K and 7 is a positive real such that
(5.3.1) A=Y L ary+ag
then v € K.

d) The set K contains no negative real and no real x such that 0 < x < 1.
e) All elements of K are algebraic integers.

THEOREM 5.4. If o, € K, b € N and 0 < «a.8 < b then there is a finite
algebra A = (Aj;x,0) such that

B log
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Idea of proof. Substantial parts of rows of GPT(A, w) are understood

as numbers written in a positional number system with the base § = b/3, and
forming a new row will correspond to multiplication by a. This adds logs a to
the length of the substantial part on the average. The positional number system
must be chosen so that multiplying by « is possible without “long carries”. (They
occur in the usual decimal system e.g. for a = 3 but do not occur for @ = 2,5.)
Moreover, o = 0 in the constructed algebra, and we must arrange that no new
zeros arise at the ends of substantial parts.
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