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1. Introduction. In the last years the relational calculus of Tarski has widely
been used by computer scientists who view it as a convenient formalism for de-
scribing fundamental concepts of programming languages. In this paper, abstract
relation algebra is proposed as a practical means for specification of data types
and programs. We demonstrate that the relational calculus allows also a com-
pletely formal treatment of this topic. Furthermore, as it is based on a small set
of axioms, a supporting (of course not an automatic) computer system can be
implemented (cf. [Kern 87], [Brethauer 91]) and, hence, the manipulations can
even be checked with computer assistance.

The idea itself of characterizing data types by relational axioms is not new.
The paper [de Bakker–de Roever 73] seems to be the first one containing re-
lational specifications of data types. Further examples can be found in, e.g.,
[de Roever 74], [Zierer 83], [Schmidt 84], [Berghammer–Zierer 86], [Desharnais
89] and [Desharnais–Madhavji 90]. However, all those papers have in common
that they present only specific examples of relational specifications and do not
treat this topic in a more general manner.

The first objective of this paper is to define the concept of a relational speci-
fication by transferring some fundamental notions of the algebraic specification
approach (see, e.g., [Ehrig–Mahr 85], or [Wirsing 90]) to the relational case. This
is done in Section 3 after a short introduction to abstract relation algebra in
Section 2. The second and main objective of the paper is to demonstrate the
usefulness of the relational approach and to convey an idea of relational cal-
culations in the field of specifications. This is done in the remainder of the
paper.
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2. Relation algebraic preliminaries. In the following we briefly recall some
fundamental concepts of abstract relation algebra. Further details can be found
in textbooks about relation algebra, e.g. in [Schmidt–Ströhlein 89].

2.1. Abstract relation algebra. A (heterogeneous) relation algebra is an alge-
braic structure (B,∪,∩, , ·,T) over a nonempty set B of elements, called (het-
erogeneous) relations. Every relation R belongs to a subset BR of B such that
these sets form a partition of B and the following holds:

(1) The structure (BR,∪,∩, ) is a complete atomistic Boolean algebra with
join ∪, meet ∩, negation , inclusion ⊂, null (or least) element O, and universal
(or greatest) element L.

(2) Multiplication (or composition) of relations—in the remainder of the paper
simply indicated by juxtaposition—is a partial associative operation and the exist-
ence of a product RS implies that QS is defined for all relations Q ∈ BR. There
exist right and left identities for every set BR of relations, which, for simplicity,
are all denoted by I.

(3) For each R, there exist the transposed relation RT and the products RTR
and RRT.

(4) The Schröder equivalences QR ⊂ S ⇔ QTS ⊂ R ⇔ SRT ⊂ Q are valid
whenever one of the three inclusions is defined.

(5) For every relation R 6= O the equation LRL = L is satisfied (the Tarski
rule).

If the product RR ∈ BR exists, then R is called homogeneous. An immediate
consequence of the Schröder equivalences is the Dedekind rule stating that for all
relations Q, R, S

(QR ∩ S) ⊂ (Q ∩ SRT)(R ∩QTS)
holds, whenever one of the three parenthesized expressions is defined. With the
help of the Schröder equivalences and/or the Dedekind rule the well-known rules
of the relation calculus can be derived by elementary reasoning (see, e.g., [Chin–
Tarski 51], [Schmidt–Ströhlein 89]).

According to the above definition, elements of an abstract relation algebra
are not endowed with a domain and a range. In the case of a concrete relation,
however, we find it useful to mention these sets. Since we consider a concrete
relation as a Boolean matrix, we write BX×Y for the set of all subsets of X × Y .
(This matrix interpretation is well suited for a graphical representation and also
used within the RELVIEW system; see [Berghammer–Schmidt 91].)

2.2. Partial functions and mappings. A relation R is said to be a (partial)
function (or univalent or functional) if RTR ⊂ I. In the case RL = L (or equiva-
lently I ⊂ RRT), the relation R will be called total . A total function (also called
a mapping) may be characterized by RI = R (or equivalently by RS = RS for
arbitrary relations S). A relation R is injective if RT is a partial function (i.e.,
RRT ⊂ I) and surjective if RT is total (i.e., RTL = L). Usually, an injective and
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surjective relation is said to be bijective. Note that these notions are defined for
arbitrary relations, not only for mappings.

2.3. Vectors and points. A relation v with v = vL is called row constant . In
the case v ∈ BX×Y this condition means: Whatever set Z and universal relation
L ∈ BY×Z we choose, an element x ∈ X is either in relation vL to none of the
elements z ∈ Z or to all elements z ∈ Z. Relations of this kind may be considered
as subsets of the set X, predicates on X, or vectors. As for a vector v from BX×Y
the set Y is irrelevant, we denote by V(X) the set of all vectors with domain X.

A point (element) is a subset containing exactly one element. Hence, a vector
is a point if and only if it is bijective: surjectivity means that it describes a
set containing at least one element and injectivity means that it describes a set
containing at most one element. If p is a point, then p 6= O, p ∩ pT = ppT, and
pTp = L. P(X) denotes the set of all points with domain X.

Sometimes, the Tarski rule is not part of the axioms for a relation algebra.
In this case a bijective vector does not have the given meaning that it describes
a set containing exactly one element. To describe without the Tarski rule such a
set by a vector v, instead of surjectivity of v it has to be postulated that vvT is
an atom (see [Gritzner 89]).

2.4. Homomorphisms and isomorphisms. Let R and S be relations. A pair
(Ψ, Φ) of relations is called a homomorphism from R to S if Ψ and Φ are map-
pings and R ⊂ ΨSΦT holds. An equivalent version of this postulate is RΦ ⊂ ΨS,
which is equivalent to ΨTRΦ ⊂ S and to ΨTR ⊂ SΦT. Clearly, the composition
(Ψ1Ψ2, Φ1Φ2) of two homomorphisms (Ψ1, Φ1) and (Ψ2, Φ2) is also a homomor-
phism.

A homomorphism (Ψ, Φ) from R to S is called an isomorphism between R and
S if the pair (ΨT, ΦT) is also a homomorphism (from S to R). An isomorphism
(Ψ,Φ) between R and S is thus characterized by the conditions of Ψ and Φ being
bijective mappings and the equation RΦ = ΨS to hold.

2.5. Closures. AssumeR to be a homogeneous relation. Then the least transit-
ive relation containing R is called its transitive closure R+ and the least reflexive
and transitive relation containing R is called its reflexive-transitive closure R∗.
Obviously, R+ =

⋃
n≥1R

n and R∗ =
⋃
n≥0R

n.

3. Relational specifications. In this section we transfer some fundamental
notions of the algebraic specification approach to the relational case. For reasons
of brevity, we confine ourselves to the non-hierarchical case.

3.1. Syntactic aspects: signatures and axioms. A (relational) signature Σ =
(T, F ) consists of a non-empty set T of types and a set F of relation symbols.
Both sets are disjoint and the set F is the union of the pairwise disjoint sets

• Km, the set of constant symbols of type m ∈ T , and
• Fm,n, the set of (proper) relation symbols with functionality (m,n) ∈ T ×T .
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The set Km will always include Om and Lm and the set Fm,n will always include
Om,n and Lm,n and, in the case of m = n, also Im,m. In the sequel subscripts are
omitted from these distinguished symbols to enhance readability, provided there
is no risk of confusion.

Let Σ = (T, F ) be a signature. Then a relational Σ-term is constructed from
the relation symbols of F and certain variables (for relations) using relational
operator symbols for the five operations (join, meet, negation, multiplication, and
transposition) from Section 2.1. Every Σ-term is endowed with a functionality
(m,n) ∈ T × T or a type m ∈ T . (The typing rules are obvious and, thus,
omitted.) Now, an atomic relational Σ-formula is an inclusion t1 ⊂ t2 or an
equation t1 = t2, where t1 and t2 are relational Σ-terms of the same functionality
resp. type. From atomic formulae we obtain relational Σ-formulae in the usual
way using the logical symbols of predicate calculus. Finally, a (heterogeneous)
relational specification (Σ,A) consists of a signature Σ and a set A of closed
relational Σ-formulae (called axioms or laws).

For reasons of simplicity, the difference between syntax and semantics will not
be made explicit, i.e., no difference in notation will be made between a relational
operator symbol (as part of the syntax) and its corresponding relational operation
(as part of the semantics). In the remainder of the paper we use the following
syntactical representation:

spec �identifier� ≡
types �list of types�
rels �list of constant/relation symbols each with a type/functionality�
laws �list of relational formulae�

Furthermore, we use the notation r : m (resp. r : m→ n) to indicate that m is
the type of the constant symbol r (resp. (m,n) is the functionality of the relation
symbol r). To enhance readability, in the sequel we will sometimes also use English
sentences as axioms.

3.2. Semantic aspects: relational structures and models. Assume Σ=(T, F ) to
be a signature. Then a relational Σ-structure S is given by two families (mS)m∈T
and (rS)r∈F , where the mS are non-empty sets (called base sets or domains) and
the rS are (concrete) relations such that

• rS ∈ V(mS) if and only if r is a constant symbol of type m,
• rS ∈ BmS×nS if and only if r is a relation symbol with functionality (m,n).

In the remainder of this paper we consider only relational Σ-structures S in
which the interpretation of the special relation symbols O,L, and I agrees with
the intuition, i.e., is given by OS := O, LS := L, and IS := I.

The value vS,v(t) of a relational Σ-term t in a given relational Σ-structure
S w.r.t. a valuation v of the variables in S is inductively defined as follows:
The induction base is given by vS,v(r) = rS and vS,v(x) = v(x) for all relation



RELATIONAL SPECIFICATIONS 171

symbols r and all variables x. For composed terms the value is defined by

vS,v(t1t2) = vS,v(t1)vS,v(t2) , vS,v(t1 ∪ t2) = vS,v(t1) ∪ vS,v(t2) ,

vS,v(t1 ∩ t2) = vS,v(t1) ∩ vS,v(t2) , vS,v(tT) = (vS,v(t))T , vS,v(t) = vS,v(t) .

Note that vS,v(t) is a relation from BmS×nS if (m,n) is the functionality of
t and a vector from V(mS) if m is the type of t. If t is a closed relational term,
then vS,v(t) does not depend on the valuation v. In this case we use the notation
vS(t) instead.

Let S be a relational Σ-structure and v a valuation of the variables in S. Then
we define the validity of atomic formulae by

t1 ⊂ t2 is valid in S w.r.t. v if and only if vS,v(t1) ⊂ vS,v(t2),
t1 = t2 is valid in S w.r.t. v if and only if vS,v(t1) = vS,v(t2)

and, based on this definition, the validity of general relational formulae in S
w.r.t. v as usual. Now, a model of the specification (Σ,A) is a relational Σ-
structure which satisfies all Σ-formulae from the set A for all valuations. The
(loose) semantics of a specification is the class of all models. Note that we do
not restrict ourselves to those models which are term-generated (in contrast with
some approaches in the case of algebraic specifications; see [Wirsing 90]).

Assume S and S′ to be two relationalΣ-structures. Furthermore, let (Φm)m∈T
be a family of relations (the index set is the set of types of Σ) such that mS and
mS′ are the domain resp. the range of each Φm. Then the family is called a
Σ-homomorphism from S to S′ if each member is a mapping and if the inclusions

(i) cS ⊂ ΦmcS′ , (ii) rSΦn ⊂ ΦmrS′

hold for all constant symbols c of type m and all relation symbols r of functionality
(m,n). This notion corresponds exactly to what is called a loose element-valued
Σ-homomorphism in the algebraic approach (see, e.g., [Hussmann 89]).

If, in addition, each member of a Σ-homomorphism is a bijective mapping and
if equality holds in (i) and (ii), then the family is called a Σ-isomorphism between
S and S′. Two relational Σ-structures are called isomorphic if there exists a
Σ-isomorphism between them. A specification is said to be monomorphic if any
pair of models is isomorphic.

Because of the totality of Φn and of the vector property of cS′ , c ∈ Km, we
have

cS ⊂ ΦmcS′ ⇔ cS ⊂ ΦmcS′(ΦnL)T ⇔ cS ⊂ ΦmcS′LΦT
n ⇔ cSΦn ⊂ ΦmcS′ .

Thus, the family (Φm)m∈T is a Σ-homomorphism from S to S′ if and only if
for each pair m,n ∈ T and all r ∈ F of type m resp. functionality (m,n) the
pair (Φm, Φn) is a relational homomorphism from rS to rS′ . In the same way one
shows that (Φm)m∈T is a Σ-isomorphism between S and S′ if and only if for all
m,n, and r as above the pair (Φm, Φn) is a relational isomorphism between the
relations rS and rS′ .
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3.3. Extensions of relational specifications. A signature Σ′ is called a sub-
signature of a signature Σ if every type of Σ′ is also a type of Σ and the same
holds for the relation symbols. A relational specification (Σ′, A′) is called a sub-
specification of the relational specification (Σ,A) if Σ′ is a sub-signature of Σ
and A′ is contained in A. (Σ,A) is said to be an extension of (Σ′, A′). In our
syntactical representation, for extensions of specifications we use the notation

spec �identifier� ≡�identifier′�⊕
�types, constant/relation symbols, and relational formulae of the rest�

where �identifier′� is the name of the representation of the sub-specification.

3.4. Parameterized relational specifications. Using the concept of sub-speci-
fication, we can also define what it means for a specification to be parameterized:
A parameterized relational specification is a relational specification (Σ,A) a sub-
specification (ΣP , AP ) of which is marked as the formal parameter specification.
It is called monomorphic if any pair S and S′ of models is isomorphic provided
their reductions to the parameter signature ΣP are (as models of the parameter
part) isomorphic.

In the remainder of the paper we use the key words param and target in
our syntactical representation in order to distinguish between the parameter and
the non-parameter part. Furthermore, instantiation of the parameters of a speci-
fication in combination with a renaming of the types and the constant/relation
symbols of the non-parameter part is denoted by

include �identifier�[�argument list�] as [�list of new names�]

Semantically, this notation is explained by textual substitution of the non-para-
meter part of �identifier� with the name of each parameter replaced by the
name of the respective argument and each non-parameter renamed according
to the list of new names (call-by-specification parameter passing mechanism; cf.
[Wirsing–Broy 82]). In particular, for a specification M in which an instantiation
include N [. . . ] as [. . . ] occurs we require that the formulae of the parameter part
of N (with the parameters replaced by the arguments) hold in all models of M .

3.5. Second-order formulae vs. second-order terms. Let txt′ denote the replace-
ment of the variable x by the term t′ in the term t. Generally, a relational ax-
iomatization of the fact that every model of a specification is finitely generated
is expressed by a formula like

txL = L ∧ ∀y (txy = y → L ⊂ y) ,

where x is the only variable in t and every of its occurrences is contained only
within an even number of subterms of the form t′. Provided (m,n) is the func-
tionality of the relational term t, this formula is valid in a relational structure
S w.r.t. a valuation v if and only if the least fixed point µτ of the monotonic
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functional corresponding to t, i.e., the functional

τ : BmS×nS → BmS×nS , τ(X) := vS,v(x|X)(t) ,

equals the universal relation L on mS . (Here v(x|X) is the function which is
exactly like the valuation v except for one variable. At x it assumes the value X.)
Due to this fact, in the sequel we will use the more readable version L = inf{x :
t = x}. In general, we use the expression r = inf{x : t = x} as a shorthand for

txr = r ∧ ∀y (txy = y → r ⊂ y) .

A different approach is taken in [de Bakker 71]. In that paper, second-order terms,
the so-called µ-terms, are introduced which model recursive procedures. Using
our notation, a µ-term is of the form inf{x : t = x}, where x and t are as above.
Its value is the least fixed point of the functional τ defined as above. Thus, in
de Bakker’s approach it often (but not always, cf. the relational description of
the powerset given in Section 4.4) suffices for the axioms of a specification to be
of the form t1 ⊂ t2 or t1 = t2, where t1 and t2 are relational terms in the sense of
3.1 or µ-terms.

4. Relational calculations in the field of specifications. In this section
we present some relational specifications. By means of these examples we also
want to exhibit some advantages of the relational approach and to convey an idea
of relational calculations in the field of specifications. In particular, we want to
demonstrate the usefulness of second-order formulae as axioms.

4.1. Proofs of monomorphy and totality . Consider the following relational
specification NAT:

spec NAT ≡
types nat
rels z : nat

s, p : nat→ nat
laws (N1) z is a point

(N2) s is injective
(N3) s is a mapping
(N4) sz = O

(N5) p = sT

(N6) L = inf{x : z ∪ px = x}
Clearly, the natural numbers with zero, the successor function, and the (par-

tial) predecessor function—considered as a point from P(N) resp. as relations
from BN×N—are a model of the specification NAT. The axioms (N2), (N4) and
(N6) of NAT can be regarded as a relational variant of the well-known Peano
axioms. In particular, (N6) corresponds to the induction axiom since it says that
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every natural number is reducible to zero by finitely many applications of the
predecessor function: In a relational structure S for the signature of NAT axiom
(N6) holds if and only if L is the least fixed point of

τN : BnatS×natS → BnatS×natS , τN (X) := zS ∪ pSX ,

and the fixed point theorem for continuous functions on complete lattices shows
that this fixed point coincides with p∗SzS .

The above specification of natural numbers also shows that partially defined
operations present no problems when using relations.

Now, we prove that the specification NAT is monomorphic. The proof of the
following proposition shows a typical pattern for a proof of monomorphy in the
relational case.

4.1.1. Proposition. The specification NAT is monomorphic.

P r o o f. Let S and S′ be two models of NAT. Furthermore, define the relation Φ
to be the least fixed point µσ of the continuous functional σ(X) := zSz

T
S′∪pSXsS′ .

We show first that Φ is a mapping. For the proof of ΦTΦ ⊂ I we apply
computational induction with XTX⊂I as an admissible predicate P (X). Clearly,
P (O) holds. For the induction step we use (N2), (N4), (N5), and zT

S zS = L and
obtain

σ(X)Tσ(X) = zS′zT
S′ ∪ pS′XTsSpSXsS′ ⊂ I ∪ pS′XTXsS′ ⊂ I .

For the proof of totality, ΦL = L, we use the fact that the point zS′ is surjective
and that the relation sS′ is total (which follows from (N3)) and get

ΦL = σ(Φ)L = zSz
T
S′L ∪ pSΦsS′L = zSL ∪ pSΦL = τN (ΦL) ,

where τN is as above. Hence, (N6) (resp. L = µτN
) shows the desired result.

Analogously it can be shown that ΦT is a mapping.
Finally, the equations zS = ΦzS′ , sSΦ = ΦsS′ , and pSΦ = ΦpS′ remain to be

shown. From (N4), zT
S′zS′ = L, and Φ = σ(Φ) we obtain

zS = zSz
T
S′zS′ = (zSzT

S′ ∪ pSΦsS′)zS′ = ΦzS′ ,

i.e., the first equation. For the proof of the second equation we use (N4), sSpS = I
(which follows from totality and injectivity of sS in conjunction with (N5)), and
Φ = σ(Φ):

sSΦ = sS(zSzT
S′ ∪ pSΦsS′) = sSpSΦsS′ = ΦsS′ .

The third equation is proved in the same way.

At this place it should be pointed out that only the proofs of totality of Φ and
ΦT require axiom (N6). With the usual function notation for univalent relations
this fact is illustrated by viewing Φ as least solution of the recursion

f(u) =
{
zS′ if u = zS ,
sS′(f(pS(u))) if u 6= zS ,
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and ΦT as least solution of the recursion

g(v) =
{
zS if v = zS′ ,
sS(g(pS′(v))) if v 6= zS′ .

Now, totality of Φ (resp. ΦT) means that the first (second) recursion has to
terminate and termination requires that the domain natS (resp. natS′) has to be
finitely generated.

Next, we show by means of an example that in the relational case it is pos-
sible to prove totality by computational induction if the generation principle is
described by a functional as in the case of (N6). In the usual algebraic approach
such totality proofs are impossible or rather complicated. (Cf. also the remarks
on p. 397 of [Manna 74].) We deal with a specification of stacks. Translating the
usual algebraic description into the relational framework, we are able to drop
the append operation, because the “tupling” of the projection symbols w.r.t. the
operations top and rest produces the same result as append (see also [Desharnais
89]).

spec STACK ≡
param types m

target types stack
rels e : stack

t : stack→ m

r : stack→ stack
laws (S1) e is a point

(S2) tTe = O

(S3) rTe = O

(S4) tTt = I

(S5) rTr = I

(S6) rTt = L

(S7) ttT ∩ rrT ⊂ I
(S8) L = inf{x : e ∪ rx = x}

For an arbitrary interpretation of m the stacks over this interpretation with the
empty stack (considered as a point), the top operation, and the rest operation
(both considered as relations) form a model of STACK. E.g., (S2) and (S3) postu-
late that an application of top resp. rest to the empty stack is undefined. Axiom
(S8) corresponds to the generation principle. In a relational structure S for the
signature of STACK it holds if and only if the least fixed point of

τS : BstackS×stackS → BstackS×stackS , τS(X) := eS ∪ rXS ,

coincides with the universal relation or, equivalently, if L = r∗SeS . In this form,
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(S8) postulates that every stack is reducible to the empty stack by n-fold appli-
cation of the rest operation.

4.1.2. Proposition. The parameterized specification STACK is monomor-
phic.

S k e t c h o f p r o o f. Let S and S′ be two models of STACK. Furthermore,
assume a bijective mapping Φm ∈ BmS×mS′ . As in the case of NAT it can be
verified that the least fixed point Φ of the continuous functional σ(X) := eSe

T
S′ ∪

(tSΦmtTS′ ∩ rSXrTS′) is also a bijective mapping, and fulfills eS = ΦeS′ , tSΦm =
ΦtS′ , and rSΦ = ΦrS′ . Thus, the pair Ω = (Ωstack, Ωm), where Ωstack := Φ and
Ωm := Φm, is an isomorphism between S and S′.

The next specification, firstly, extends STACK by NAT and, secondly, extends
the result by adding an operation for computing the length of a stack:

spec LSTACK ≡ STACK ⊕ NAT ⊕
rels l : stack→ nat

laws (L1) l = inf{x : ezT ∪ rxs = x}
The proof of the following proposition demonstrates that by relation algebraic
techniques totality of operations may elegantly be shown by using computational
induction.

4.1.3. Proposition. Let S be a model of LSTACK. Then lS is a mapping.

P r o o f. lS is the least fixed point µλl
of the continuous functional λl(X) :=

eSzST ∪ rSXsS .
Firstly, we show that the least fixed point of λl is univalent. We apply compu-

tational induction with XTX ⊂ I as admissible predicate P (X). The induction
base P (O) is obvious. For the induction step we use (N3), (S3), (S5), and eTSeS=L
and obtain

λl(X)Tλl(X) = zSz
T
S ∪ sTSXTrTS rSXsS = zSz

T
S ∪ sTSXTXsS ⊂ I ∪ sTSsS = I .

Now, we prove that the least fixed point of λl is total. To this end, we define
the admissible predicate P (X,Y, Z) as the inclusion Y L ⊂ XZ and show that
P (µλl

, µτS
, µτN

) holds. Since NAT and STACK are finitely generated, this implies
L = LL ⊂ µλl

L, i.e., the desired result. Again the induction base is obvious. For
the induction step we use zT

S zS = L, sSpS = I, and formula (N4) and calculate

λl(X)τN (Z) = eSz
T
S zS ∪ eSzT

S pSZ ∪ rSXsSzS ∪ rSXsSpSZ
= eSL ∪ eSzT

S pSZ ∪ rSXZ .

On the other hand (we use axioms (N4) and (N5)),

τS(Y )L = (eS ∪ rSY )L = eSL ∪ rSY L = eSL ∪ eSzT
S pSZ ∪ rSY L .

Hence, the induction hypothesis applies.
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4.2. Transition into algorithmic form. Let (Σ,A) be a relational specification
and r a relation symbol from the signature Σ. We call a relational Σ-formula an
explicit equation for r if it is of the form r = t, where t is a closed relational Σ-
term, or a second-order formula r = inf{x : t = x}. A relational specification the
non-parameter part of which includes only explicit definitions as axioms is called
explicit equational . If the parameter part has a model, then such a specification
also has one, provided the following two conditions hold:

a) For each relation symbol of the non-parameter part there exists precisely
one explicit equation.

b) The explicit equations of the non-parameter part can be arranged in such
a way that in the right-hand side of equation n at most the left-hand sides of
equations i, i < n, occur. (“The equations can be sequentialized.”)

In this case, a model S of the parameter part can be extended to a model S′

of the entire specification, if for a relation symbol r of the non-parameter part,
rS′ is defined as

• rS′ = vS′(t) if the explicit equation for r is r = t,
• rS′ = µτ if the explicit equation for r is r = inf{x : t = x} and τ is the

monotonic functional corresponding to t.

Obviously, the first case provides an algorithmic solution for the symbol r. The
same holds also for the second case, if the functional τ is moreover continuous
(e.g., since the variable x occurs in no subterm of the form t′ or if the base sets
of the model are finite). Then the least fixed point µτ of τ can be iteratively
computed according to the fixed point theorem for continuous functions.

For many graph-theoretic problems a useful way to obtain an algorithmic
solution is to turn them into a relational formulation and then apply the well-
developed apparatus of abstract relational algebra. Our next aim is to demon-
strate that this exactly fits into our framework. We present two examples of
relational specifications each of which describes a problem on directed graphs
without certain paths of infinite lengths. Then we transform the specifications
into explicit equational ones which provide algorithmic solutions.

Firstly, we concentrate on regressively finite graphs, that is, directed graphs
in which all paths ending in a point have finite lengths. We consider the problem
of computing for such a graph a minimal (w.r.t. inclusion) set of points from
which every point can be reached via a path, a so-called point base. Turning the
point base problem on regressively finite graphs into our framework, we get the
following relational specification:

spec BASE ≡
param types m

rels r : m→ m
laws (B1) ∀x (x ⊂ rTx→ x = O)
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target rels b : m
laws (B2) L = inf{x : b ∪ rTx = x}

(B3) ∀c (L = inf{x : c ∪ rTx = x} ∧ c ⊂ b→ c = b)

Let S be a model of this specification. Then axiom (B1) is the relational
version of the law that the interpretation rS is regressively finite. In the case of
mS being finite, the axiom holds if and only if rS is cycle-free. Furthermore, the
two axioms (B2) and (B3) define the interpretation bS to be minimal in the set
{v ∈ V(mS) : L = rT∗S v}. In terms of concrete relations, the property L = rT∗S v
describes that each element of mS can be reached from the set v.

Since the symbol r is a parameter of the relational specification BASE, it
suffices to derive an “algorithmic” explicit equation for the constant symbol b. As
we will see in the following, this can be done without auxiliary symbols. The key
idea of the algorithm is given by

4.2.1. Lemma. For all R and v, from L = RT∗v it follows that RTL ⊂ v.

P r o o f. Firstly, we have RTL ⊂ L = RT∗v = (I ∪RT+)v = v ∪RT+v, which
in turn implies RTL ∩ RT+v ⊂ v. In conjunction with the equation RT+v =
RTRT∗v = RTL this yields the result.

Now, we use axiom (B2) and deduce from this lemma that in each model
S of BASE the inclusion rTSL ⊂ bS is valid. This fact suggests considering the
relational specification

spec BASE′ ≡
param � identical to BASE �
target rels b : m

laws (B4) b = rTL

containing an algorithmic solution for the symbol b. In the concrete case, the
vector rTL describes the set of initial points (or sources). In terms of graphs,
therefore, the following proposition shows that the only point base of a regressively
finite graph is the set of all points without predecessor.

4.2.2. Proposition. Each model of BASE′ is also a model of BASE.

P r o o f. Let S be a model of BASE′. From axiom (B4) and Lemma 4.2.1 we
find that bS is a lower bound of the set {v ∈ V(mS) : L = rT∗S v}. Since least
elements are also minimal, it remains to show that bS is an element of this set.
To do this, we use (B4) and calculate

rT∗S bS ∪ rTS rT∗S bS = (I ∪ rTS rT∗S )bS ∪ rTS rT∗S bS

= bS ∪ rTS rT∗S bS ∪ rTS rT∗S bS = bS ∪ rTS (rT∗S bS ∪ rT∗S bS)

= bS ∪ bS = L ,
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which in turn implies rT∗S bS ⊂ rTS r
T∗
S bS . Now, (B1) shows rT∗S bS = O, i.e.,

L = rT∗S bS .

Now, we concentrate on progressively finite graphs, that is, directed graphs in
which all paths starting from a point have finite lengths. We consider the problem
of computing a kernel of such a graph, that is, a set c of points such that from
every point outside of c there is an arc leading into c and no two points of c are
connected via an arc. When specifying this problem relationally we get

spec KERNEL ≡
param types m

rels r : m→ m

laws (K1) ∀x (x ⊂ rx→ x = O)
target rels c : m

laws (K2) c = rc

Let S be a model of this specification. For κ(X) := rSX, axiom (K2) holds if
and only if cS is a fixed point of the functional κ. This functional is antitonic, so
the fixed point theorem for monotonic functions cannot be applied. The situation
can be mended by considering κ2 := κ ◦ κ instead of κ, which is monotonic.
Clearly, every fixed point of κ is a fixed point of κ2 as well. But, conversely, not
every fixed point of κ2 is one of κ. Here one needs additional properties. E.g., it
suffices to demand that κ2 has precisely one fixed point. This will be shown now.

4.2.3. Proposition (Fixed point theorem for antitone mappings). Let (V,≤)
be a complete lattice and f : V → V be antitonic. Furthermore, let m and M
be the least fixed point resp. greatest fixed point of f2. Then f(m) = M and
f(M) = m. Thus, if f2 has precisely one fixed point , this is also the only fixed
point of f .

P r o o f. From m = f2(m) we obtain f(m) = f2(f(m)). Hence, f(m) is a fixed
point of f2, which implies f(m) ≤ M . In the same way m ≤ f(M) is obtained
from M = f2(M), since this implies that f(M) is also a fixed point of f2.

Using these two estimates, we obtain m ≤ f(M) ≤ f2(m) = m and M =
f2(M) ≤ f(m) ≤M from the fact that f is an antitone mapping.

Now, we consider the relational specification

spec KERNEL′ ≡
param �identical to KERNEL�
target rels c : m

laws (K3) c = inf{x : rrx = x}
and show that it also specifies the problem of computing a kernel.

4.2.4. Proposition. Each model of KERNEL′ is also a model of KERNEL.
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P r o o f. Let S be a model of KERNEL′. Since (K2) holds if and only if cS is
a fixed point of κ and (K3) holds if and only if cS is the least fixed point of κ2,
it suffices to show that the latter functional has precisely one fixed point. Then
Proposition 4.2.3 shows the desired result.

Let M denote the greatest fixed point of κ2. We use the Schröder equivalences
and get rTSM ⊂ rSM from M ⊂ κ2(M). Now, the Dedekind rule yields

rSM ∧M ⊂ (rS ∧MMT)(M ∧ rTSM) ⊂ rS(M ∧ rTSM) ⊂ rS(M ∧ rSM)

and in combination with axiom (K1) we obtain rSM ∧M = O, i.e., M ⊂ κ(M).
Due to Proposition 4.2.3 the relation κ(M) is the least fixed point of κ2. Hence,
this functional has precisely one fixed point.

Thus, the only kernel of a progressively finite graph can be computed as
follows: One starts with c0 as the empty set or the set of all terminal points
(or sinks) and collects iteratively in ci+1 the points having all their successors in
the set of predecessors of ci. If the graph is finite (in this case it is progressively
finite if and only if it is cycle-free), then the exhaustion process is also finite.

4.3. Construction of implementations from type equations. Following the al-
gebraic specification approach (see, e.g., [Wirsing 90]), we call a relational speci-
fication (Σ′, A′) an implementation of the relational specification (Σ,A) if Σ is a
sub-signature of Σ′ and each formula of A holds in each model of (Σ′, A′). In the
case of parameterized specifications we demand additionally the two parameter
parts to be identical. Transition into algorithmic form, therefore, is only a very
special case of proceeding from a relational specification to an implementation.

In [Berghammer et al. 89] and [Zierer 91] it is shown that relation algebra
is an appropriate technical means for describing all domain constructions used
in denotational semantics. All these descriptions can immediately be translated
into (parameterized) relational specifications and those can be used as a basis
for constructing implementations from data type equations. Generally, such a
construction proceeds in three steps, where for the first two steps a graphical rep-
resentation of the equation (with the types as vertices and the canonical functions
like projections and injections as arcs) is very profitable. Firstly, the (recursive)
data type equation is translated into a sequence of instantiations of the just men-
tioned kind of specifications. In doing so, in combination with an appropriate
renaming, all the types (also the auxiliary ones) and the first part of the op-
erations are implemented. Next, the remaining operations are defined in terms
of the already present ones. Here transposition of the injection symbols plays a
prominent role. And, finally, the generation principle is formulated if it holds also
for the original specification.

The use of this procedure is now illustrated by means of the example NAT.
For natural numbers we have the equation N = 1 + N, where “=” means “is
isomorphic to”, 1 is a single-element set, and the operator “+” produces the direct
sum (disjoint union) of two sets. Since only in a single-element set the universal
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and identity relations coincide, we get for such sets the following monomorphic
relational specification:

spec UNIT ≡
types unit
laws (U1) I = L

For a relational specification of the direct sum it is natural to use symbols for the
two injections. Then one obtains

spec DSUM ≡
param types m,n

target types sum
rels ι : m→ sum

κ : n→ sum

laws (D1) ιιT = I

(D2) κκT = I

(D3) ιTι ∪ κTκ = I

(D4) ικT = O

By equations (D1) through (D4) the direct sum is uniquely determined up to
isomorphism. If S and S′ are two models of DSUM and Φm ∈ BmS×mS′ and
Φn ∈ BnS×nS′ are two bijective mappings, the isomorphism from S to S′ is given
by Φ := ιTΦmι∪κTΦnκ. Furthermore, the interpretations of the injection symbols
ι and κ are injective mappings.

Since the successor operation s equals the injection κ from the second variant
nat, the first step of the above procedure yields the instantiation

include DSUM[unit, nat] as [nat, ι, s]

In the second step we define z and p in terms of ι and s by z = ιTL and p = sT.
And, finally, we have to formulate the generation principle since it holds also for
the original specification NAT. Altogether, we have

spec NAT′ ≡
include DSUM[unit, nat] as [nat, ι, s]
rels z : nat

p : nat→ nat

laws (N7) z = ιTL

(N5) p = sT

(N6) L = inf{x : z ∪ px = x}

4.3.1. Proposition. The specification NAT′ is an implementation of NAT.
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P r o o f. Let S be a model of NAT′. We only have to show (N1) and (N4),
i.e., that zS is a point and sSzS = O is valid.

To prove injectivity of the vector zS , we use the laws (N7) and (U1) and the
fact that ιS is univalent and get zSzT

S = ιTSL(ιTSL)T = ιTSLιS = ιTSIιS ⊂ I.
Surjectivity of zS follows from (N7) and Tarski’s rule: zT

SL = (ιTSL)TL = LιSL
= L. And, finally, sSzS = sSι

T
SL = O is a consequence of axiom (D4).

4.4. Finiteness of base sets. For termination considerations it is often neces-
sary to specify the interpretation of a sort of a specification to be a finite set. In
the following we shall discuss a method for solving this problem in our relational
approach.

We use the fact that a set X is finite if and only if the irreflexive part ⊂
of the subset ordering ⊆ on the powerset 2X is a progressively finite relation.
Hence, we need a relational specification of the structure (X, 2X ,⊆). As shown
in [Berghammer et al. 89], this can conveniently be done using the is-element-of-
relation ∈ and the so-called symmetric quotient of two relations R ∈ BX×Y and
S ∈ BX×Z , which is a relation from BY×Z and associates y ∈ Y with z ∈ Z if and
only if the predecessor sets of y w.r.t. R and of z w.r.t. S coincide. Translating the
characterization of [Berghammer et al. 89] into our notation, we get the following
parameterized relational specification:

spec POWER ≡
param types m

target types set
rels E : m→ set

Ω : set→ set
laws (P1) syq(E,E) ⊂ I

(P2) ∀x (L = syq(E, x)TL)

(P3) Ω = ETE

Here we use syq(t1, t2) as a shorthand for the relational term tT1 t2 ∩ t1 Tt2. The
value of the term tT1 t2 ∩ t1 Tt2 is exactly the symmetric quotient of the values of
t1 and t2 in the sense of [Berghammer et al. 89].

Now, assume the concrete case of ES being the is-element-of-relation ∈ be-
tween a set X := mS and its powerset 2X := setS . Then axiom (P1) states that
two elements M,N of 2X are equal provided that every element of X is contained
in M if and only if it is contained in N . Condition (P2) corresponds to set com-
prehension saying that every column of a relation R ∈ BX×X (which is a vector
v ∈ V(X) describing a subset of X) is represented by the symmetric quotient of
∈ and v (which is a point in P(2X) describing an element of the powerset 2X).
And, finally, (P3) is a component-free definition of the subset ordering using the
is-element-of-relation.
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By using the fact mentioned at the beginning of this section in combination
with the parameterized relational specification POWER, it is now very easy to
specify the interpretation of a sort m of a relational specification to be finite.
Firstly, we use the instantiation

include POWER[m] as [set, E,Ω]

and then we specify the irreflexive part of the subset orderingΩ to be progressively
finite using the axiom

∀x (x ⊂ (Ω ∩ I)x→ x = O) .

5. Nondeterminism. In this section we show that relational specifications
can easily deal with angelic and demonic nondeterminism within a single context.
By means of two examples we demonstrate some similarities and some differences
between these two kinds of nondeterminism.

5.1. Angelic nondeterminism. Since relations may be one-to-many, they im-
mediately provide a means for handling nondeterminism. Join plays the role of
nondeterministic choice. We obtain the specific kind of angelic nondeterminism
in that a possibility of a defined result is equivalent to the guarantee of a defined
result. This is also mirrored by the neutrality of the null relation O w.r.t. join,
since this relation stands for the least element ⊥ as known from denotational
semantics (cf. [Schmidt 86]).

5.2. Demonic nondeterminism. In sharp contrast to angelic nondeterminism
is demonic nondeterminism. Here a possibility of an undefined result is equivalent
to the guarantee of an undefined result.

For an integration of demonic nondeterminism we need two additional rela-
tional constructs. Implicitly, they have already been used in [Berghammer–Zierer
86] to describe relationally the semantics of nondeterministic functional programs;
in a component-wise notation they are employed in [Nguyen 91]. The first con-
struct R•S is called demonic composition; the second one R S is called demonic
join. They are defined by

R • S := RS ∩RSL , R S := (R ∪ S) ∩RL ∩ SL .
Both constructs reflect the essence of demonic nondeterminism, viz. that an eval-
uation is guaranteed to yield a defined result if and only if any of the choices
yields a defined result. The operation corresponds exactly to Dijkstra’s demonic
nondeterministic branching operator (see [Dijkstra 75]).

The demonic variants of composition and join obey some nice algebraic laws
(see also [Nguyen 91]). For example: Demonic composition and join are associative
operations, the latter is commutative, and the former is distributive w.r.t. the
second one. As we have defined both operations in terms of abstract relation
algebra, the proofs are also given in this fashion. We will give an example:

5.2.1. Proposition. Demonic composition is an associative operation.
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P r o o f. Firstly, we use some fundamental properties of vectors (see, e.g.,
[Schmidt–Ströhlein 89]) and get

(Q •R) • S = (QR ∩QRL) • S

= (QR ∩QRL)S ∩ (QR ∩QRL)SL

= QRS ∩QRL ∩QRSL ∩QRL

= QRS ∩QRL ∩ (QRSL ∪QRL)

= QRS ∩QRL ∩QRSL ,

Q • (R • S) = Q(R • S) ∩Q(R • S)L

= Q(RS ∩RSL) ∩Q(RS ∩RSL)L

= Q(RS ∩RSL) ∩Q(RSL ∩RSL)

= Q(RS ∩RSL) ∩Q(RSL ∪RSL)

= Q(RS ∩RSL) ∩QRSL ∩QRSL .

From these two equations it immediately follows that Q • (R • S) ⊂ (Q •R) • S.
For the proof of (Q •R) • S ⊂ Q • (R • S) we show that QRS ∩QRL ∩QRSL is
contained in the three relations Q(RS ∩RSL), QRSL, and QRSL.

In order to prove the first inclusion, we start with QRSL ⊂ Q(RL ∪RSL) =

QRL ∩QRSL and obtain with the help of the Schröder equivalences QT(QRL∩
QRSL) ⊂ RSL. Now, we use Dedekind’s rule and get

QRS ∩QRL ∩QRSL ⊂ (Q ∩ . . .)(RS ∩QT(QRL ∩QRSL))

⊂ Q(RS ∩RSL) .

In the second case we use L = R(SL ∪ SL) ∪ RL = RSL ∪ RSL ∪ RL. This
equation implies RSL ⊂ RSL ∪RL. As a consequence, we have

QRS ∩QRSL ⊂ Q(RSL ∪RL) = QRSL ∪QRL

from which the desired inclusion follows. The proof of the third inclusion is obvi-
ous.

In the following proposition we list some sufficient conditions for the usual
operations and their demonic variants to coincide. Proofs are trivial and, thus,
omitted.

5.2.2. Proposition. (i) R • S = RS provided R is univalent , S is total , or
R • S is total.

(ii) R S = R ∪ S provided both R and S are total or R S is total.
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The proof of the following proposition is also trivial. However, the stated
result is essential, since it often allows the symbol r of a second-order formula
r = inf{x : t = x} to be interpreted as the least fixed point of the monotonic
functional corresponding to t.

5.2.3. Proposition. Demonic composition of relations is monotonic w.r.t.
the second argument and demonic join of relations is monotonic w.r.t. both argu-
ments.

With the help of demonic composition and join it is very easy to introduce
demonic nondeterminism, too. Firstly, it seems to be natural to replace in the
inductive definition of the value vS,v(t) of the relational term t the usual com-
position resp. join of relations by their demonic variants. This leads to a frame-
work which contains demonic nondeterminism only. However, this approach has
a serious drawback: If one uses only demonic composition and join, then some-
times specifications may become quite unnatural and complicated. Furthermore,
it seems that for an explicit formulation of the generation principle the usual
composition and join are absolutely necessary.

Therefore, we prefer to introduce besides usual composition and join also
their demonic variants as “term-forming” operator symbols. I.e., we also admit
relational terms of the form t1 • t2 resp. t1 t2. The definition of the value of a
term is extended as follows:

vS,v(t1 • t2) = vS,v(t1) • vS,v(t2) , vS,v(t1 t2) = vS,v(t1) vS,v(t2) ,

Thereby, we obtain a mixed system which supports both forms of nondeterminism.

5.3. Examples. In the following two examples we want to demonstrate some
similarities and some differences between angelic and demonic nondeterminism.

Firstly, we extend the specification NAT of Section 4.1 by an operation r
which assigns to a given natural number n an arbitrary natural number less then
or equal to n. Using the “classical” algebraic approach with functions instead
of relations (see, e.g., [Ehrig–Mahr 85], [Wirsing 90]), the nondeterminism of r is
expressed by the fact that the extended specification is non-monomorphic. In each
model the operation yields an arbitrary element but every call yields the same
element. In the relational approach, it is possible to specify the interpretation of
r as a total but non-univalent relation monomorphically as follows:

spec RNAT ≡ NAT ⊕
types None
rels r : nat→ nat
laws (R1) r = inf{x : I ∪ px = x}

Assume the relational structure S to be a model of RNAT. Then (R1) holds in S
if and only if rS is the least fixed point µλr

of the functional

λr : BnatS×natS → BnatS×natS , λr(X) := I ∪ pSX ,
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and in conjunction with the fixed point theorem for continuous functions on
complete lattices we obtain µλr

as the reflexive-transitive closure p∗S of pS . I.e.,
the interpretation of the relation symbol r behaves exactly as expected.

In the above relational specification RNAT we are in the case of angelic non-
determinism. Therefore, in the recursion specifying the meaning of r there is no
termination case needed. This becomes apparent if one represents relations as
set-valued functions. Then formula (R1) of RNAT expresses the fact that the
interpretation of r is the least solution of the recursion f(x) = {x} ∪ f(x− 1).

If in axiom (R1) of RNAT composition and join are replaced by their demonic
variants, then it can easily be shown that rS = O for each model S of the resulting
specification. To specify the meaning of r also in the demonic case “correctly”, an
additional termination case is needed saying that for the argument 0 the operation
returns 0 as the only result. This leads to the relational specification

spec RNAT′ ≡ NAT ⊕
rels r : nat→ nat

laws (R2) r = inf{x : zzT ∪ (I (p • x)) = x}

Now, assume S to be a model of this specification. Then Proposition 5.2.3
implies that the functional

γr : BnatS×natS → BnatS×natS , γr(X) := zSz
T
S ∪ (I (pS •X)) ,

is monotonic and axiom (R2) specifies rS as its least fixed point µγr
. Since the

relation pS is univalent, Proposition 5.2.2 shows pS •X = pSX and in conjunction
with zSz

T
S = I ∩ zS we obtain the equation

γr(X) = (I ∩ zS) ∪ (I ∩ pSXL) ∪ (pSX ∩ pSXL) = (I ∪ pSX) ∩ (zS ∪ pSXL) .

I.e., the functional is even continuous. The next theorem shows that the two
(monomorphic) specifications RNAT and RNAT′ have the same class of
models.

5.3.1. Proposition. Let S be a model of the specification RNAT′. Then
rS = p∗S.

P r o o f. We define Pn :=
⋃n−1
i=0 p

i
S and prove by induction γnr (O) = Pn∩PnzS

for all n ≥ 1.
The induction base n = 1 is trivial. For the induction step we calculate

γn+1(O) = (I ∪ pS(Pn ∩ PnzS)) ∩ (zS ∪ pS(Pn ∩ PnzS)L)
= (I ∪ pSPn) ∩ (I ∪ pSPnzS) ∩ (zS ∪ pSPnL) ∩ (zS ∪ pSPnzS)
= Pn+1 ∩ (I ∪ pSPnzS) ∩ Pn+1zS

= Pn+1 ∩ Pn+1zS

because (Pn∩PnzS)L = PnL∩PnzS , and from pSPn∩zS ⊂ pSL∩zS ⊂ zS∩zS = O
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we get

Pn+1 ∩ Pn+1zS = (I ∪ pSPn) ∩ (zS ∪ pSPnzS)
= (I ∩ zS) ∪ (I ∩ pSPnzS) ∪ (pSPn ∩ zS) ∪ (pSPn ∩ pSPnzS) ⊂ I ∪ pSPnzS .

Now, the fixed point theorem for continuous functions yields rS = µγr = p∗S∩p∗SzS
and, finally, the result follows from p∗SzS = L, i.e., from the fact that NAT is
finitely generated.

As a second example, we consider the following nondeterministic specification,
where the set of values of the constant symbol c contains zero and for each of its
elements also the successor (cf. also [Hussmann 89], Example 1.12).

spec CNAT ≡ NAT ⊕
types None
rels c : nat
laws (C1) z ⊂ c

(C2) pc ⊂ c

Let S be a model of CNAT and let the predicate P (X) be defined by X ⊂ cS .
Then P is admissible for computational induction. With the help of this principle
it can easily be shown that P holds for the least fixed point of the functional
τN of Section 4.1. The induction base is trivial; the induction step uses (C1) and
(C2). Thus, axiom (N6) of NAT implies cS = L, i.e., the interpretation of c yields
an arbitrary natural number.

Obviously, the class of models of CNAT remains unchanged if (C1) and (C2)
are replaced by the single formula z ∪ pc ⊂ c. However, the same is not true
in the case of demonic nondeterminism. If in the formula (C2) composition is
replaced by its demonic variant, then we also have cS = L for each model S of
the resulting specification. This follows from the univalence of pS . But, for the
relational specification

spec CNAT′ ≡ NAT ⊕
rels c : nat
laws (C3) z (p • c) ⊂ c

the following property holds:

5.3.2. Proposition. The specification CNAT′ possesses infinitely many non-
isomorphic models.

P r o o f. Let S be a model of the specification NAT. We define for every natural
number n a model Sn of CNAT′ by zSn

:= zS , sSn
:= sS , pSn

:= pS , and
cSn

:= pnSL. Only axiom (C3) needs a proof:

zSn
(pSn

• pnSL) = (zSn
∪ pSn

pnSL) ∩ zSn
L ∩ pSn

pnSL = zS ∩ pn+1
S L ⊂ pnSL .
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If m and n are two different natural numbers, then the models Sm and Sn are
non-isomorphic. This can be shown as follows: Suppose Φ is an isomorphism
between the models Sm and Sn. If m < n, then cSm

= ΦcSn
equals pmS L = ΦpnSL

and by using sSpS = I this implies L = smS Φp
n
SL = smS p

n
SΦL = pn−mS L ⊂ pSL.

However, this is a contradiction since the relation pS is non-total. The remaining
case n < m is proved in exactly the same way.

The interpretation of c in Sn yields an arbitrary natural number greater than
or equal to n and the model S0 of the relational specification CNAT′ is—up to
isomorphism—the only model of CNAT. Hence, CNAT is an implementation of
CNAT′.

6. Concluding remarks. In the preceding sections we have proposed abstract
relation algebra as a means for specification of data types and programs. We have
also demonstrated the usefulness of the relational approach by providing many
examples. By means of the examples, among other things we have exhibited a few
advantages of second-order formulae as axioms and have shown that a relational
specification of data types and programs allows a very natural treatment of angelic
and demonic nondeterminism.

When compared to algebraic specifications, dealing with relations can some-
times lead to a heavy notation, in particular, if we have to describe operations
with more than one argument. These difficulties, however, can be compensated by
defining abbreviations for relational terms of specific form occurring frequently.
Then one can often formulate the axioms of a relational specification in an
FP-like form. If we also introduce the semantic counterparts of the abbrevia-
tions as operations on relations, these obey many nice algebraic laws which can
be used to simplify proofs of properties. Examples can be found in [Berghammer
91].

In the paper only the basic concepts for a theory of relational specifications
have been presented. There are still a number of open problems that are subject of
current and future research. In particular, to answer the question “how powerful
is the approach for the treatment of practical problems” further experiments
in specifying and proving relational specifications need to be conducted. The
two examples of Section 4.2 indicate that the relational approach could be very
useful for the development of graph-theoretic algorithms. It should also be useful
in the case of relationships between (the domains of) two structures (examples
are homomorphisms, simulations [Nipkow 86], or refinements [Desharnais 89],
[Desharnais et al . 92]). As our notion of homomorphisms shows, the relational
calculus is a convenient formalism for dealing with such concepts.
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