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Abstract. The aim of this paper is to discuss the motivation for a new general algebraic
semantics for deductive systems, to introduce it, and to present an outline of its main features.
Some tools from the theory of abstract logics are also introduced, and two classifications of
deductive systems are analysed: one is based on the behaviour of the Leibniz congruence (the
maximum congruence of a logical matrix) and the other on the behaviour of the Frege operator
(which associates to every theory the interderivability relation modulo the theory). For protoal-
gebraic deductive systems the class of algebras associated in general turns out to be the class
of algebra reducts of reduced matrices, which is the algebraic counterpart usually considered for
this large class of deductive systems; but in the general case the new class of algebras shows a
better behaviour.

The original purpose of this talk (1) was twofold: To survey some of the ideas
that have been present in some of the research in Algebraic Logic done by some of
the people in Barcelona over the years, and to present a proposal of a very general
definition of what constitutes the algebraic counterpart of a deductive system; by
this I hoped to convey my point of view on Algebraic Logic, or at least some of
its facets, and to present a number of research problems and proposals. Actually
the first goal proved to be too ambitious for the occasion, and I decided to focus
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Verdú for their comments on a draft of this paper.

The paper is in final form and no version of it will be published elsewhere.

(1) Given on October 8th, 1991, at the Banach Center, Warsaw.

[17]



18 J. M. FONT

on the motivation for this new proposal, due to Ramon Jansana and myself, by
trying to present our first results as fitting into a broader, coherent framework,
relating them to other people’s work, as far as this is possible. To this end I have
chosen to organize this talk around one main concept, namely that of the Leibniz

congruence, a term coined by Wim Blok and Don Pigozzi in [4] to denote a rather
old concept (the greatest congruence of a logical matrix) and which I will use here
to cover also a natural extension of this notion. Hence the plural in the title.

The Leibniz operator. Let me begin by recalling some terms and fixing
some notations; detailed definitions of the most basic concepts can be found for
instance in [4], [11], [15] or [56] (but note some differences in terminology and/or
in notation).

I will deal only with deductive systems (also called propositional logics, or
simply logics), presented as S = 〈Fm,CS〉 or S = 〈Fm,⊢S〉 or 〈Fm, Th(S)〉,
where:

Fm = 〈Fm , . . . 〉 is the algebra of (propositional) formulas of some (fixed)
algebraic type; the variables (i.e., the generators of the absolutely free algebra
Fm) will be denoted by p, q, r, . . . ;

CS is a finitary and structural closure operator on Fm; traditionally the
associated relation is denoted by ⊢S , or simply by ⊢, thus Γ ⊢ ϕ means ϕ ∈
CS(Γ ); and

Th(S) is the associated closure system (the theories of S).

Any kind of algebraic models of a deductive system must be built on algebras
A = 〈A, . . .〉 similar to Fm; when dealing with any of these, we will be specially
concerned with Con(A), the set (lattice) of all congruences of A; and for any class
K of algebras of the same type, with the set of K-congruences of A, ConK(A) =
{θ ∈ Con(A) : A/θ ∈ K}. The simplest kind of algebraic models of a deductive
system one can consider on any of these algebras are the S-matrices, or matrices
for S, which are pairs 〈A, F 〉 where F ⊆ A is such that for any Γ ⊆ Fm, ϕ ∈ Fm,

Γ ⊢S ϕ ⇒ ∀h ∈ Hom(Fm,A), h(Γ ) ⊆ F ⇒ h(ϕ) ∈ F .

Then F is called an S-filter. The class of all S-matrices is denoted by Matr(S); and
for each algebra A we consider the set of S-filters on A: FiSA = {F ⊆ A : 〈A, F 〉
is a matrix for S}.

Some algebraic concepts associated with a logical matrix, however, do not
depend on it being a matrix for any particular deductive system. For instance, if
F ⊆ A, a congruence θ ∈ Con(A) is said to be compatible with F , or to be a matrix

congruence of 〈A, F 〉, when ∀a, b ∈ A, if 〈a, b〉 ∈ θ then (a ∈ F ⇔ b ∈ F ); the set
of all these congruences is denoted by Con(〈A, F 〉), and always has a maximum.
Using the terminology introduced in [4], by the Leibniz operator I understand the
mapping F 7→ ΩA(F ), where

ΩA(F ) = max Con(〈A, F 〉)
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is called the Leibniz congruence of F , or of 〈A, F 〉; the motivation for giving it
this name —related to G. W. Leibniz’s second-order definition of identity—is very
clearly explained in [4, pp. 10 ff], and is related to the following interesting (and
well-known) characterization:

(1) 〈a, b〉 ∈ ΩA(F ) ⇔ ϕA(h(a/p)) ∈ F ⇔ ϕA(h(b/p)) ∈ F

∀ϕ ∈ Fm, ∀h interpretation in A

(an interpretation in A is just an h ∈ Hom(Fm,A); and h(a/p) denotes the
interpretation obtained after modifying h by giving p the value a). Here and in
other places, when dealing with the formula algebra the subscript indicating the
algebra will be omitted, that is, Ω = ΩFm. The matrices having only one matrix
congruence are called reduced (or sometimes simple, or factorized):

Matr∗(S) = {〈A, F 〉 ∈ Matr(S) : ΩA(F ) = ∆A} .

The most usual algebraic counterpart of a deductive system is the class of algebra
reducts of the reduced matrices:

Alg∗(S) = {A : ∃F ⊆ A with 〈A, F 〉 ∈ Matr∗(S)}

(this notation is an extended use of that introduced in [40]). However, we will see
that in some cases there is another class of algebras which better deserves such
name.

The Leibniz operator, specially Ω, is very interesting. It is one of the funda-
mental tools of Blok and Pigozzi’s monographs [4]–[7], which contain some deep
results about it. It turns out that several outstanding classes of deductive sys-
tems, although originally defined in different forms, have been characterized by
the behaviour of this operator on their filters. Thus we have:

• S is protoalgebraic ⇔ ∀A, ΩA is order-preserving on FiSA, i.e., if F,G ∈ FiSA
then F ⊆ G implies ΩA(F ) ⊆ ΩA(G) [2, Theorem 2.4].

• S is equivalential (or weakly congruential [7]) ⇔ All mappings ΩA are, so to
speak, “uniformly analytically definable”, i.e., there is E(p, q) ⊆ Fm such
that ∀ 〈A, F 〉 ∈ Matr(S), ∀ a, b ∈ A, 〈a, b〉 ∈ ΩA(F ) ⇔ EA(a, b) ⊆ F [12,
Theorem I.11].

• S is finitely equivalential (or congruential [7]) ⇔ S is equivalential with a
finite E(p, q). Then it can be shown that all the possible sets of equivalence

formulas E(p, q) can be taken finite.
• S is algebraizable with respect to a quasivariety K (called its equivalent

quasivariety semantics) ⇔ ∀A, ΩA is an isomorphism between the lattices
FiSA and ConK(A) [4, Theorem 5.1].

These four classes are increasingly smaller. The deductive systems belonging to
them have been studied by several people; see specially the works by Czelakowski,
Dziobiak, Blok and Pigozzi quoted in the References section, and more particu-
larly [7], where this hierarchy is deeply analysed in a general framework. They
have interesting algebraic and syntactical characterizations, their matrices behave



20 J. M. FONT

reasonably well, and the relationship between the deductive system and the class
of matrices is good, and becomes better as the class gets smaller. The extreme
case is that of algebraizable logics, which present the strongest relationship so far
described between the deduction in S and the equational consequence �K relative
to the class K defined as follows: If Ξ⊆Fm×Fm is a set of equations and ϕ ≈ ψ
is an equation, then

Ξ �K ϕ ≈ ψ ⇔ If ξA(h) = ηA(h) for all ξ ≈ η ∈ Ξ then ϕA(h) = ψA(h) ,

for any interpretation h on any A ∈ K .

This defines a closure operator on the set of equations, which should not be con-
fused with the stronger one associated with ordinary equational logic (for more
information on �K, see [5]–[7], where it is treated as a “2-dimensional deductive
system”). In algebraizable logics the consequence relations ⊢S and �K are strongly
equivalent, namely they are so by means of two elementary definable finite trans-
lations, from formulas into equations and backwards; I am omitting the details,
as these can be found in the papers just quoted. It will however be useful to recall
here the following properties:

• If S is algebraizable with respect to a quasivariety K, then K = Alg∗(S)
[4, Corollary 5.3], and the Leibniz operator Ω is an isomorphism between
the lattices Th(S) and Th(�K).

• S is algebraizable if and only if on Th(S), Ω is injective and preserves unions
of directed families of theories [4, Theorem 4.2].

Note that the definition I used before to introduce the notion of “being al-
gebraizable with respect to K” is in fact an equivalent characterization of the
general concept, only valid if K is a quasivariety; we see that in this case K is
uniquely determined by the deductive system, namely it equals Alg∗(S). See Blok
and Pigozzi’s papers, specially [4] and [7], for the general notions and for other
nice characterizations (including a sound motivation for the alternative names of
two of the classes of deductive systems defined above).

The extended Leibniz operator and the Frege operator. Observe that
since ΩA(∅) = A × A, the only protoalgebraic logics without theorems are the
so-called almost inconsistent ones, those with Th(S) = {∅, Fm}. Thus, all in-

teresting logics without theorems fall outside these classes; this includes all logics
⊢V associated with varieties V in [41]; and there are also other interesting cases,
with or without theorems (see later). I would like to show some ways to study
them algebraically and to associate with them in a canonical way a class of alge-
bras which in some sense behaves like the equivalent quasivariety semantics for
algebraizable logics and like the class Alg∗(S) for the protoalgebraic ones.

The role played until now by the theory of logical matrices should be played
in this approach by the theory of abstract logics, begun twenty years ago by a
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group of researchers under the direction of Roman Suszko (see [9, 10]); so I will
recall the minimal definitions and notations needed here.

According to [10, Definition V.1], an abstract logic is a pair L = 〈A,C〉 or L =
〈A, C〉 where A is an arbitrary algebra (of suitable type), C is a closure operator
on A and C is its associated closure system. Given the duality between closure
operators and closure systems, I will use indistinctly both forms of expressing
an abstract logic. This concept is a generalization of the concept of a deductive
system as presented before, but at the same time it is a generalization of the
concept of logical matrix, and also covers the semantical notion of generalized
or ramified matrix (see [56]). It embodies in a single mathematical object the
algebraic or grammatical structure A and the logical (semantical or syntactical)
one, i.e., the deductive structure, given by C and/or C. By allowing arbitrary
algebras we also cover “deductive” structures of a purely algebraic nature, like
those given by the operators of filter-generation in lattices and other structures.

Two relationships between abstract logics will be used later on. The first one
is extension: Given two abstract logics L1 = 〈A,C1〉 and L2 = 〈A,C2〉 over the
same algebra A, we say that L1 is weaker or smaller than L2, or that L2 is an
extension of L1, when ∀X ⊆ A, C1(X) ⊆ C2(X); it is equivalent to say that
C2 ⊆ C1, that is, that C1 is “finer” than C2. This is an ordering relation in all
abstract logics over the same algebra, represented if necessary by L1 ≤ L2 (note
that this order is the dual of the inclusion relation among closure systems). The
second one is projective generation; here I will only mention a particular case:
Given any two abstract logics L1 = 〈A1,C1〉 and L2 = 〈A2,C2〉, we say that
h ∈ Hom(A1,A2) is a bilogical morphism from L1 to (or onto) L2 when h is an
epimorphism and C1 = {h−1(T ) : T ∈ C2}. This is a very strong relationship
between two abstract logics, since then h induces an isomorphism between the
lattices C1 and C2, and we also have C1 = h−1 ◦C2 ◦ h and C2 = h ◦ C1 ◦ h

−1.

It is very convenient to associate with any abstract logic L = 〈A,C〉 the
following relation, which I will call the Frege relation:

Λ(C) = {〈a, b〉 ∈ A×A : C(a) = C(b)}(2)

= {〈a, b〉 ∈ A×A : ∀F ∈ C, a ∈ F ⇔ b ∈ F} .

Using it, the so-called logical congruences or L-congruences, an extension of the
idea of matrix congruence, can be defined as follows:

Con(L) = {θ ∈ Con(A) : θ ⊆ Λ(C)}

= {θ ∈ Con(A) : ∀a, b ∈ A, 〈a, b〉 ∈ θ ⇒ C(a) = C(b)}

and in view of (2) it results that

(3) Con(L) =
⋂

{Con(〈A, F 〉) : F ∈ C} .

Any θ ∈ Con(A) determines the so-called logical quotient L/θ = 〈A/θ, C/θ〉,
where C/θ = {T ⊆ A/θ : π−1(T ) ∈ C} and π : A → A/θ is the canonical
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projection; if in addition θ ∈ Con(L) then C/θ = {F/θ : F ∈ C}, and π is a
bilogical morphism from L onto L/θ, by [10, Theorem VIII.6].

On the other hand, although the equivalence relation Λ(C) may not be a

congruence, the set Con(L) always has a maximum Ω̃A(L); I think it can be called
the (extended) Leibniz congruence of L because of the similarity in purpose and
in definition to the matrix case, and also because by (3) one can prove that

(4) Ω̃A(L) = max Con(L) =
⋂

{ΩA(F ) : F ∈ C} .

Since this congruence is actually associated with the closure system C as a family
of subsets of A, sometimes I will write Ω̃A(C) instead of Ω̃A(L); and Ω̃A as a
mapping can be called the (extended) Leibniz operator. From (4), (1) and (2), it
follows at once that

(5) 〈a, b〉 ∈ Ω̃A(C) ⇔ 〈ϕA(h(a/p)), ϕA(h(b/p)) 〉 ∈ Λ(C)

∀ϕ ∈ Fm, ∀h interpretation in A .

An abstract logic is called reduced or simple if and only if it has only one logical
congruence, that is, if and only if Ω̃A(L) = ∆A; they are the analog of reduced
matrices, and, as we shall see, they play a similar role in the algebraization of
non-protoalgebraic logics.

Given an abstract logic L = 〈A,C〉 we can consider the following operator on
subsets of A, which I will call the Frege operator :

F ⊆ A 7→ ΛC(F ) = {〈a, b〉 ∈ A×A : C(F, a) = C(F, b)} .

A characterization of the finitarity of C in terms of the mapping ΛC will be given
in Proposition 7. Sometimes it will be convenient to view it as a particular case
of the ordinary Frege relation; for this it suffices to associate with any F ⊆ A the
following extension of L by F :

L
F = 〈A, CF 〉 where CF = {G ∈ C : G ⊇ F or G = ∅} .

Note that if ∅ 6∈ C then L
F is an “axiomatic extension” of L in the ordinary sense,

while if ∅ ∈ C then for any F 6= ∅ , L
F is “pseudo-axiomatic” in the sense of [35,

p. 178]. It is easy to see that ΛC(F ) = Λ(CF ), and also that Λ(C) = ΛC(C(∅)).

It is interesting to note that the operators ΛC and Ω̃A are both order-preserving
(on subsets and on abstract logics, respectively), and satisfy

Ω̃A(CF ) ⊆ ΩA(F ) and Ω̃A(CF ) ⊆ ΛC(F ) for any F ∈ C .

Although the Frege operator is not strictly related to the algebraic structure,
sometimes it will be more convenient to write Λ(L) and ΛL instead of Λ(C)
and ΛC; this will happen, in particular, when the abstract logic in question is a
deductive system.

Actually, when applied to the original deductive system S = 〈Fm,⊢S〉, these
concepts take a familiar form: Λ(S) is the “interderivability relation of S” (ϕ ⊣⊢S

ψ), while for any Γ ⊆ Fm, ΛS(Γ ) is the “interderivability relation of S with
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respect to the theory axiomatized by Γ” (Γ,ϕ ⊢S ψ and Γ,ψ ⊢S ϕ). On the

other hand, it is easy to check that Ω̃(S) is the congruence relation actually used
in the most familiar cases to obtain the so-called “Tarski–Lindenbaum algebra”
(e.g., the relation ⊢ ϕ ↔ ψ for classical, intuitionistic, and modal logic, etc.). In
this case (5) takes a particularly simple form:

(6) 〈ϕ,ψ〉 ∈ Ω̃(S) ⇔ γ(ϕ) ⊣⊢S γ(ψ) for all γ(p) ∈ Fm .

It is interesting to note how the concept of protoalgebraicity of a deductive sys-
tem can be expressed in terms of the Frege operator and the (extended) Leibniz

operator Ω̃; actually the original Definition 2.1 in [2] is

(7) S is protoalgebraic ⇔ ∀Γ ∈ Th(S), Ω(Γ ) ⊆ ΛS(Γ )

and it is easy to check that the equivalent condition that ΩA be order-preserving
on S-filters (the “correspondence property”) can be expressed as

(8) ⇔ ∀A, if C ⊆ FiSA then Ω̃A(C) = ΩA(C(∅))

and also that it is equivalent to have a particular case:

⇔ ∀A, ∀F ∈ FiSA , Ω̃A((FiSA)F ) = ΩA(F ) .

Since it is enough to have the correspondence property on Fm, we can also write

(9) ⇔ ∀Γ ∈ Th(S) , Ω̃(SΓ ) = Ω(Γ ) .

We thus see that in the study of protoalgebraic logics, the extended Leibniz
congruence of a family of filters reduces to the ordinary Leibniz congruence of the
intersection of all filters in the family. This is the reason why our approach will
be specially useful for non-protoalgebraic deductive systems. In particular, note
that

(10) If S is protoalgebraic, then Ω̃(S) = Ω(C(∅)).

It is interesting to relate identity (10) with the result proved in [13] that a de-
ductive system is protoalgebraic if and only if it satisfies a very general (namely,
a parametrized and local) version of the Deduction Theorem. Both facts say,
in different senses, that protoalgebraic deductive systems are, to some extent,
determined by their theorems.

Two more classes of deductive systems can be defined in terms of the Frege
operator:

Definition 1. S is selfextensional if and only if Λ(S) ∈ Con(Fm), that is, if

and only if Λ(S) = Ω̃(S).

Selfextensional deductive systems have been studied mainly by Wójcicki, who
has shown that they are those having an adequate class of referential matrices
(see [56, Section 5.6]). A smaller class of deductive systems is the following:

Definition 2. S is Fregean if and only if ∀Γ ∈ Th(S), SΓ is selfextensional,

that is, ΛS(Γ )∈Con(Fm), or, what amounts to the same, ΛS(Γ )=Λ(SΓ )=Ω̃(SΓ ).
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Since S=SCS(∅), every Fregean deductive system is also selfextensional. From
(6) applied to SΓ it follows that

• S is Fregean if and only if for any Γ ∈ Th(S), and any ϕ,ψ ∈ Fm, if
Γ,ϕ ⊣⊢S Γ,ψ then for all γ(p) ∈ Fm we have Γ, γ(ϕ) ⊣⊢S Γ, γ(ψ),

and so we see that these deductive systems enjoy a very strong property of re-
placement of equivalents. Thus the name “Fregean” seems appropriate for such
logics. Note that this term has been applied by Don Pigozzi in [36] to varieties of
algebras; and in view of some of his results it seems that both uses are compatible.

The classification of deductive systems. So far we have two classifications
of deductive systems: one according to the behaviour of the Leibniz operator, an-
other according to the behaviour of the Frege operator. If we combine both we
get a more complicated diagram, essentially shown in Figure 1. This diagram
is very interesting, and thinking about it raises many interesting observations,
questions and PROBLEMS, some of them probably easy, but some maybe dif-
ficult.

By Theorem 2, which I will prove at the end of the talk, sectors number 4
and 7 are empty, and in sector 10 there are only the almost inconsistent deductive
systems. I have not yet found any examples in sectors 6 and 9, but I think this will
be easily solved. However, sector 2 is also empty as yet, and it would not surprise
me if someone proved it is, although I do not dare to make any conjecture. I list
below some deductive systems that I know have already been located into the
diagram:

Sector 1: The inconsistent logics, IPC→, and all its axiomatic extensions;
this includes intuitionistic and classical logics and all intermediate (propositional)
logics in the ordinary sense (i.e., axiomatic extensions of IPC).

Sector 3: All normal modal logics (understood as deductive systems extending
K and having the strong necessitation rule ϕ ⊢ �ϕ) [4, 34], relevance logics R and
RM [22, 23], BCK-logic, all many-valued logics of  Lukasiewicz [4, 46], the normal
modal four-valued logic of [45], the systems H1 and H2 of [18, 30], Rasiowa’s logic
Jν with semi-negation [56, 5.7.2].

Sectors 5 and 8 include all quasi-normal modal logics (i.e., extensions of K but
having only the weak rule of necessitation ⊢ ϕ ⇒ ⊢ �ϕ), [56, 34]; some of them
are in sector 8, like KMP and TMP , while others, like S4MP and S5MP , are in
sector 5, together with the quasi-normal four-valued modal logic studied in [21].

Sector 11: The deductive systems defined by sequent calculi G1 and G1 intro-
duced in [30] and studied in [18].

Sector 12: The deductive system defined by a sequent calculus G0 introduced
in [30].

Sector 13: The fragments of classical logic having the following connectives:
{∧}, {∨} [32], {∧,∨} [27]; the deductive system IPC∗, i.e., the {∧,∨,¬}-fragment
of intuitionistic logic [4, 44].
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Fig. 1. The calssification of deductive systems

Sector 14: Belnap’s four-valued logic [1], the weak version of R studied in [23],
the logic of lattices analyzed in [44].

Sector 15, finally, contains at least all deductive systems obtained from a
non-selfextensional one (with theorems) by adding to its theories the empty set.

It would be very interesting to find more “natural” examples in this last sector.
In general, an interesting TASK is to classify every known propositional logic into
this diagram. This would give us more insight into the algebraic properties of the
deductive systems, and into the relative strength of the properties defining these
classes of deductive systems.

Using abstract logics to characterize algebras. For protoalgebraic logics,
the standard way to establish the relationship between the logic and a class of
algebras is to use the algebras as matrices, and to determine the class of reduced
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matrices; in the extreme case of algebraizable logics this can be done by using the
equational consequence of the class of algebras. Our early experience in Barcelona
has made us think that there is another kind of relationship between logics and
algebras, which also works for non-protoalgebraic logics, and which reduces to
the old one for the protoalgebraic ones.

Roughly speaking, it consists in selecting some of the metalogical prop-
erties of the logic in a form such that the algebras in the class are char-
acterized precisely by having a closure operator with these metalogical
properties and which defines the identity in the algebra.

In some sense one can consider this approach as an extension to arbitrary algebras
of Tarski’s idea in [47] of an “axiomatic” presentation of the consequence operator
of classical sentential logic (for more information see [3, 14]). Observe that in
this early paper Tarski does not explicitly presuppose to be working on a (free)
algebra of formulas, but his 1930-style description of sentences (“Aussage”) as
“inscriptions of completely determined structure” can be considered as equivalent
to it, in the domain of sentential logics. Anyway, such “axiomatic” approach to
the consequence operator of particular deductive systems was only recovered in
[38], and later on in [31] and [39], where IPC and each of its usual fragments is
characterized (using Kripke models) as the least deductive system whose closure
operator satisfies certain metalogical properties (like PC, PDI, PDED, etc. quoted
below). See also [8] and [56, Section 2.3].

While the mentioned papers and book focus on deductive systems, and thus
deal only with closure operators on the algebra of formulas, the first papers I know
focusing on the algebras and considering abstract logics on abstract algebras are
[9] and [10], published jointly in a volume with an interesting preface by Roman
Suszko. Actually, an early result of the kind we want is implicit in [9]: As an
immediate corollary to its Theorem 3 one can prove that

A is a Boolean algebra ⇔ There is a closure operator C on A such that:

- C is finitary and L = 〈A,C〉 is reduced;

- The PRA (Reductio ad Absurdum): a ∈ C(X) ⇔ C(X,¬a) = A;
- The PDI (Disjunction): C(X,a ∨ b) = C(X,a) ∩C(X, b);

and then C is the set of all filters of the Boolean algebra A.

This line of research has been followed by some of the people in Barcelona
since the late seventies. Verdú ([50]–[54]) proved several theorems characterizing
a class K of algebras by a set of conditions P on a closure operator in the following
common form (now slightly reformulated):

(11) A ∈ K ⇔ ∃C on A such that C is finitary, the abstract

logic L = 〈A,C〉 is reduced, and satisfies properties P.

Table 1 shows a sample list including the most well-known cases appearing in
[52]. In it we find the familiar properties PDED (the Deduction Theorem) and
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PC (Conjunction) together with PPRA (Pseudo-Reductio ad Absurdum, or intu-
itionistic form of PRA) and weak versions of Disjunction (PWDI) and Reductio
ad Absurdum (PWRA), as well other conditions.

Table 1. The “K-P table”

K P

PC : C(a ∧ b) = C(a, b) +
lattice

PWDI : C(a ∨ b) = C(a) ∩C(b)

distributive lattice PC + PDI

Hilbert algebra PDED : a→ b ∈ C(X)⇔ b ∈ C(X, a)

PDED + ((a→ b)→ a)→ a ∈ C(∅)
implication algebra or

PDED + C has a basis of maximal sets

PDED + PC + PWDI +
∃ 0 ∈ A such that C(0) = A

Heyting algebra or
PDED + PC + PWDI +

PPRA : ¬a ∈ C(X)⇔ C(X,a) = A

PDED + PWRA: a ∈ C(b)⇔ C(b,¬a) = A
Boolean algebra or

PC + PWRA

Later on, in [25, 34], similar results have been obtained for many classes of
modal algebras related to normal and quasi-normal modal logics, either with a
classical or an intuitionistic base. In the modal cases the characterizations are
more involved, and one needs to combine several closure operators and several
algebraic structures on the same set; this shows the usefulness of treating abstract
logics as single mathematical objects. Also, similar works have been done for De
Morgan algebras [24, 26] (related to Belnap’s four-valued logic [1]) and several of
its subclasses related to relevance logic R [23], to a modal extension of Belnap’s
logic [21, 45], and to  Lukasiewicz’s infinite-valued logic [49]. A weakened version
of PDED, where |X| ≤ 1, was already considered in [37], where the algebras
characterized by this and Modus Ponens were found, and called “quasi-Hilbert
algebras”; this topic has been studied in detail in [18, 30]. Some other cases are
under study.

A first reading of theorems (11) could be purely algebraic: The identity in alge-
bras in K is characterized by the closure system C of all (lattice-, implicative-, . . .)
filters on the algebra, and this closure system or its associated closure operator C

is characterized by properties P. Indeed, Verdú found that for all cases appear-
ing in Table 1, and also for others, a strong link between closure operators and
congruences could be established, in the following common form:

(12) For any algebra A there is an isomorphism between the lattice of all fini-
tary closure operators on A which satisfy the properties P and the lattice
ConK(A)

(many in [53], unpublished; see also [17, Theorem 4], [25, comment on p. 1048] and
[27, Theorem 4.7]; in each of the particular cases treated, these sets were proved



28 J. M. FONT

to be lattices, and we will see that there is a general reason for this fact). This
apparently strengthens the purely algebraic reading. There is, however, another
reading, since in almost all cases appearing in Table 1 properties P characterize
a deductive system, as proved in [31, 38, 39, 56]; in general, each of the classes K

under consideration bears some relationship with a deductive system, but while
for the classes K associated with an algebraizable, or at least protoalgebraic, logic
the connection is given by the standard method, the link is not so clear in the
remaining cases. To better understand our approach it may be useful to review
more closely the case of distributive lattices, treated in detail in [27], [28] and [19].

A case study: CPC∧,∨ and distributive lattices. Now Fm = 〈Fm,∧,∨〉
is of type (2, 2); by D we denote the variety of distributive lattices, which is
generated by 2 = 〈2,∧,∨〉 where 2 = {0, 1} with 0 < 1. We call S2 the deductive
system generated by the matrix 〈2, {1}〉 in the usual way. It is obvious that S2

= CPC∧,∨, the {∧,∨}-fragment of CPC (= Classical Propositional Calculus); a
particularly useful axiomatization of S2 by a set of twelve Hilbert-style rules (and
no axioms, since this logic has no theorems) appears in [16]. The following facts
concerning this logic and this variety have been proved:

• D is not the equivalent algebraic semantics for any algebraizable logic
[27, 2.1].

• S2 is not protoalgebraic [27, 2.8], but it is Fregean (implicit in [27, 4.11]).
• The class of algebras corresponding to the reduced matrices of S2 is not, as

one might hope [55, page 162], the class D; actually:
• Alg∗(S2) = {A ∈ D : ∃ 1 = max A, and ∀ a, b ∈ A, a < b ⇒ ∃ c ∈ A with
a ∨ c 6= 1 and b ∨ c = 1} [19]; this class is not even a quasivariety.

But we can look in another direction. Two facts follow immediately from the
definitions:

• ϕ ⊣⊢S2
ψ ⇔ �D ϕ ≈ ψ for any ϕ,ψ ∈ Fm.

• {ϕ1, . . . , ϕn} ⊢S2
ψ ⇔ the inequality ϕ1 ∧ . . . ∧ ϕn 4 ψ is “satisfied” in

D ⇔ ψA(h) ∈ Filt[ϕA
1 (h), . . . , ϕA

n (h) ] for any interpretation h in any
A ∈ D, where the operator Filt means “filter-generation” in the lattice A.

So it seems that logical inference in S2 “corresponds” to filter-generation in D. In
order to make this correspondence more precise we have used the notion of model

of a Gentzen calculus, developed from a suggestion made by Wim Blok.

Definition 3. In general, if (risking some confusion) we denote a sequent by
Γ ⊢ ϕ, where Γ is a finite set of formulas, and ϕ is a formula, then we say that

L = 〈A,C〉 is a model of the Gentzen style rule
{Γi ⊢ ϕi : i ∈ I}

Γ ⊢ ϕ

if and only if for all interpretations h in A,

if ∀i ∈ I, ϕA
i (h) ∈ C(ΓA

i (h)) then ϕA(h) ∈ C(ΓA(h)) .
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In the case of S2, one sequent calculus for it consists of the ordinary structural
rules and the ordinary rules for conjunction and disjunction:

ϕ ⊢ ϕ
Γ ⊢ ϕ

Γ,ψ ⊢ ϕ

Γ ⊢ ϕ Γ,ϕ ⊢ ψ

Γ ⊢ ψ

Γ,ϕ, ψ ⊢ ξ

Γ, ϕ ∧ ψ ⊢ ξ

Γ ⊢ ϕ Γ ⊢ ψ

Γ ⊢ ϕ ∧ ψ

Γ,ϕ ⊢ ξ Γ, ψ ⊢ ξ

Γ, ϕ ∨ ψ ⊢ ξ

Γ ⊢ ϕ

Γ ⊢ ϕ ∨ ψ

Γ ⊢ ψ

Γ ⊢ ϕ ∨ ψ

Obviously any abstract logic is a model of the structural rules. And it is easy
to see that an abstract logic L is a model of this calculus if and only if it satisfies
PC and PDI. From this wide class of models we select the so-to-speak “regular”
ones:

L is distributive ⇔ C is finitary, satisfies PC, PDI, and C(∅) = ∅.

For any A we denote by D(A) the set of all distributive abstract logics on A.

This definition is slightly different from the one actually used in [27], but I need
it here in this way. In [27] distributive abstract logics are studied from several
points of view, in particular as logics projectively generated from 〈2, {1}〉 by sets
of homomorphisms. Some of the results of [27] are relevant here (if A ∈ D then
I denote by Filt(A) the closure system of all lattice filters of A plus the empty
set):

• For any A, the least abstract distributive logic on A is 〈A,FiS2

A
〉 [Theorem

3.11.2].

• L ∈ D(A) if and only if there is a bilogical morphism from L onto an abstract
logic L

′ = 〈A′,C′〉 such that A′ ∈ D and C′ = Filt(A′) [Theorem 4.2].

• L = 〈A,C〉 is a reduced distributive abstract logic if and only if A ∈ D and
C = Filt(A) [Corollary 4.4].

• An algebra (of type (2, 2), of course) is a distributive lattice if and only if it
is the algebra reduct of a reduced distributive abstract logic [Corollary 4.5].

• If L ∈ D(A) then Ω̃A(L) = Λ(L), and this mapping gives a lattice isomor-
phism between D(A) and ConD(A) [Theorem 4.7].

As a particular case we conclude that if A ∈ D then Con(A) ∼= D(A), an
interesting representation result for the congruence lattice of a distributive lattice.
Going back to our deductive system S2, by taking A = Fm we obtain:

• The least distributive abstract logic on Fm is S2 [Theorem 3.9].

• There is no other consistent distributive deductive system than S2 [Corol-
lary 4.8].

• Ω̃ : D(Fm) ∼= Th(�D) [Corollary 4.10].

• For every Γ ∈ Th(S2), SΓ
2 is distributive, and the mapping Γ 7→ Ω̃(SΓ

2 ) =
Λ(SΓ

2 ) gives an embedding of Th(S2) into Th(�D) [Proposition 4.12].



30 J. M. FONT

So we see there are new and strong links between S2 and D, going beyond the
completeness theorem, and similar to some extent to those found for algebraizable
logics. These links, however, have been obtained by using the notion of distributive
logic, which arises here as a notion of model of a particular Gentzen calculus for
S2. In general, it is easy to see that this notion of model is not an invariant of

the deductive system defined by the calculus, but depends on the calculus itself ;
actually, if we take the rules of any Hilbert-style presentation of a deductive
system and use them as “axioms” for a Gentzen-style calculus having also the
structural rules, then it is easy to see that the Gentzen calculus so obtained has
among its models all (!) abstract logics whose closed sets are filters of the deductive
system. This notion has proved to be particularly fruitful in the algebraic study of
Gentzen systems (see [18, 20, 32, 43, 48]). But if one wants to focus on the study

of deductive systems, then this dependence should be removed . In other words,
there should be a characterization of the class D(A) by its relationship with S2

without making any reference to a particular form of definition of the deductive
system.

Outline of a general theory. To end this talk I will present one proposal
for building a general theory to achieve this desire, and such that several of the
links outlined above between S2 and D, and other theorems like (11) and (12),
become particular cases of general properties. This proposal originated in Ramon
Jansana’s proof of Theorem 1, and will be dealt with in detail in [20]; here I
will only comment on the main definitions and results, and apply them to prove
Theorem 2 as announced before.

Definition 4. Let S be any deductive system. An algebra A is an S-algebra

if and only if the abstract logic 〈A,FiSA〉 is reduced, i.e., if and only if Ω̃A(FiSA) =
∆A. The class of all S-algebras will be denoted by Alg(S).

The following facts can be proved:

• Alg(S) ⊇ Alg∗(S), but both classes of algebras generate the same variety;

actually, this is the variety generated by Fm/Ω̃(S), the “Tarski–Lindenbaum
algebra of S”. (PROBLEM: Do they generate the same quasivariety?)

• If S is protoalgebraic then Alg(S) = Alg∗(S). The converse is false; exam-
ples are all logics mentioned before as belonging to sector 15 of Figure 1.
(PROBLEM: Are there any other examples?)

• If S is algebraizable then Alg(S) is the equivalent algebraic semantics for S.

The PROBLEM of definability of Alg(S) must be a hard one, since it is so
already for Alg∗(S), which can be dealt with in a first-order language; while for
an algebraizable S we know that it is a quasivariety, we have seen that Alg∗(S2)
is not (see [42] for a deeper analysis, including an example where it is not even
elementary). The treatment of similar questions for Alg(S) needs, in principle, a
second-order language.
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The term “S-algebra” is taken from [40], where it is used to refer to Alg∗(S) in
the very restricted case of “implicational logics” (see also [56, Section 3.5]). Since
these logics are algebraizable, and thus protoalgebraic, we see that our choice is
coherent with these early uses. However, to say that this class of algebras is a true
generalization of the usual algebraic semantics for protoalgebraic logics we need
a way to express them as the algebra reducts of some kind of “reduced models”
for S; the notion of “model” we propose is the following:

Definition 5. Let S be any deductive system. An abstract logic L = 〈A, C〉

is an S-logic if and only if C/Ω̃A(L) = FiS
A/Ω̃A(L)

. The class of all S-logics will be

denoted by Log(S), and the class of all S-logics on an algebra A by LogS(A).

Again the following facts can be proved:

• If L ∈ LogS(A) then A/Ω̃A(L) ∈ Alg(S).

• The reduced S-logics are 〈A,FiSA〉 for A ∈ Alg(S). That is, the S-algebras
are the algebraic reducts of the reduced S-logics, and in this sense the sit-
uation is similar to the relationship between Alg∗(S) and Matr(S).

• If L ∈ LogS(A) then C ⊆ FiSA, and as a consequence:

• The least S-logic on A is 〈A,FS
A 〉, and also:

• The least S-logic on Fm is S itself.

So S-logics are families of S-filters (that is, “generalized matrices” in the sense
of [56]) which in some sense are “saturated”: they give all S-filters in the quotient
algebra. One can also prove the following

Proposition 1 (Completeness). For any Γ ⊆ Fm and any ϕ ∈ Fm, Γ ⊢S ϕ
if and only if ϕA(h) ∈ Fi

S
A(ΓA(h)) for every interpretation h in any A ∈ Alg(S);

here Fi
S
A is the closure operator associated with the closure system FiSA.

The interest of this completeness result depends on how nice characterizations
of the class Alg(S) and of the operator Fi

S
A on that class we have. And it may

happen that we have these while having no, or not good, characterizations of
the class of reduced matrices, which is the one commonly used for completeness;
we can even have nice characterizations of algebras in Alg∗(S), but not of the
S-filters on them corresponding to the reduced matrices (see for instance [18]).
In the case of S2 dealt with before, using some of the results from [27] quoted
before, one can prove that Alg(S2) = D and that LogS2

(A) = D(A) for every A

(note that this last fact would not be true with the notion of distributive abstract
logic used in [27]).

Then a kind of PROGRAM could be formulated: Find and characterize
in a nice way the classes Alg(S) and Log(S) for all deductive systems S
known in the literature. By “nice” I mean independent, purely algebraic
definitions of Alg(S), and characterizations of Log(S) using metalogical
properties of S, especially characterizations as the models of some Gentzen



32 J. M. FONT

calculus for S (with additional “regularity” conditions such as being fini-
tary, etc.). This in turn would give us a criterion to discriminate among
different sequent calculi defining the same deductive system S.

This program is interesting even for algebraizable logics, where Alg(S) is just
the equivalent quasivariety semantics: the class Log(S) still has to be nicely char-
acterized in several cases. Note that the determination and nice characterization
of Log(S) as required before presupposes a sound knowledge of S, both in its
Hilbert-style aspect (the axioms, rules, theorems, . . .) necessary to deal with FiSA,
and in its metalogical properties, necessary to characterize Log(S) as the models
of some Gentzen calculus. Our experience shows that selfextensional deductive
systems often admit such nice characterizations, while for non-selfextensional de-
ductive systems they are usually indirect, for instance as abstract logics having
some specific relationship with those in Log(S ′) where S ′ is a selfextensional de-
ductive system closely related to S, often its “weak version” (i.e., S ′ has the same
axioms and inference rules as S, except that some of the rules are restricted to
theorems); this is the case, for instance, of normal modal logics [25, 34], of rele-
vance system R [23], and of systems H1 and H2 of [18] (their weak versions being
systems G1 and G1 respectively; see before). In many cases, however, it seems im-
possible to find a sequent calculus whose “regular” models are exactly all S-logics
(see for instance [33]).

In all cases mentioned in Table 1, it has been proved that the logics satisfying
P are the S-logics for the deductive system S usually associated with the class
K, which turns out to be the class of S-algebras. If S has some proper name
then this name is also applied to the S-logics; thus we get a new and a posteriori
justification of terms like “classical abstract logics” (already used in [9]), “intu-
itionistic (abstract) logics” [25], etc. In other cases, the S-logics have inherited
their proper name from the class of S-algebras; this is, for instance, the origin of
terms like “distributive logics” [27, 51] or “De Morgan logics” [24, 26]. And one
can find quite often in the literature that a similar procedure has been followed to
christen as “S-algebras”, for a particular S, a class of algebras related to S, even
when the relationship was not completely clarified, or simply when no standard
term was available.

In general, the two classes Alg(S) and Log(S) are linked by several properties
not immediately contained in the definitions, and which will be proved in [20]
using some tools of the theory of abstract logics.

Proposition 2. The algebraic category associated with Alg(S) (i.e., algebras

and homomorphisms) is isomorphic to a full subcategory of the abstract-logical

category associated with Log(S) (i.e., abstract logics with logical morphisms, see

[10]); the subcategory is that of reduced S-logics.Moreover , if we restrict all arrows

to be epimorphisms, then this full subcategory is also reflective, and the reflector

is the functor associated with the factorization of L by Ω̃A(L).

Proposition 3. ConAlg(S)(A) is always a complete lattice, with inf =
⋂

.
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Thus after Theorem 1 also LogS(A) will become a complete lattice, isomorphic
to the former:

Theorem 1 (Jansana). For any deductive system S and any algebra A, the

(extended) Leibniz operator Ω̃A is an isomorphism between the complete lattices

LogS(A) and ConAlg(S)(A).

Now it is clear that Theorem 4.7 of [27], quoted above, is just the particular
case of this general result for S = S2. The interest of this theorem lies both in its
generality (it holds for any deductive system!) and in its applications. We hope
that all theorems having the form (12) will also become particular cases of this
result, after having conveniently characterized the classes of algebras and of clo-
sure operators there involved. On the other hand, from it and taking Theorem 5.1
of [4] into account, we can prove

Proposition 4. If S is algebraizable then, for any A, the lattice FiSA is iso-

morphic to the lattice LogS(A) through the mapping F 7→ (FiSA)F .

This confirms one of the chief features of algebraizable logics we had already
observed, that their S-logics are all of the form “all S-filters containing a given
one”, and thus their study can be reduced to the study of the S-filters. And it
turns out that the key point in our proof of Theorem 2 is a particular case of this
property. We can first prove a weaker thing under different hypotheses:

Proposition 5. If S is, Fregean and CS(∅) 6= ∅ then the mapping Γ 7→ SΓ

is an order-preserving embedding of Th(S) into LogS(Fm).

Then, using this and Theorem 1, we prove

Proposition 6. If S is protoalgebraic, Fregean, and satisfies CS(∅) 6= ∅,
then the mapping Γ 7→ SΓ is an isomorphism between the lattices Th(S) and

LogS(Fm).

On the other hand, we have the following general characterization of the fini-
tarity of closure operators:

Proposition 7. A closure operator C on a set A is finitary if and only if the

operator ΛC preserves unions of directed families of subsets of A.

In view of the above results the proof of the announced theorem is simple but
may have some interest:

Theorem 2. If a deductive system S is protoalgebraic and Fregean, and sat-

isfies CS(∅) 6= ∅, then it is algebraizable.

P r o o f. If S is protoalgebraic then by (9), Ω(Γ )=Ω̃(SΓ ) for any Γ ∈Th(S),
thus the result of the composition of the isomorphisms of Theorem 1 and of
Proposition 6 is just Ω : Th(S) ∼= ConAlg(S)(Fm), so Ω is injective and order-
preserving on Th(S). On the other hand, S is both protoalgebraic and Fregean,
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therefore Ω=ΛS on Th(S), and since by definition S is finitary, by Proposition 7
we conclude that Ω preserves unions of directed families of Th(S). By Theorem 4.2
of [4] quoted before, it follows that S is algebraizable.
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[19] J. M. Font, F. Guzmán and V. Verdú, Characterization of the reduced matrices for the

{∧,∨}-fragment of classical logic, Bull. Sec. Logic Polish Acad. Sci. 20 (1991), 124–128.

[20] J. M. Font and R. Jansana, A general algebraic semantics for deductive systems,
preprint, 1992, to appear.

[21] J. M. Font and M. Rius, A four-valued modal logic arising from Monteiro’s last algebras,
in: Proc. 20th Internat. Sympos. on Multiple-Valued Logic, Charlotte 1990, 85–92.

[22] J. M. Font and G. Rodr ı́guez, Note on algebraic models for relevance logic, Z. Math.
Logik Grundlag. Math. 36 (1990), 535–540.

[23] —, —, Algebraic study of system R of relevance logic, manuscript, 1992.



ON THE LEIBNIZ CONGRUENCES 35

[24] J. M. Font and V. Verdú, Abstract characterization of a four-valued logic, in: Proc. 18th
Internat. Sympos. on Multiple-Valued Logic, Palma de Mallorca 1988, 389–396.

[25] —, —, A first approach to abstract modal logics, J. Symbolic Logic 54 (1989), 1042–1062.

[26] —, —, Completeness theorems for a four-valued logic related to De Morgan lattices, Fac.
Math. Preprint Ser. 57, Barcelona 1989.

[27] —, —, Algebraic logic for classical conjunction and disjunction, Studia Logica, Special
Issue on Algebraic Logic, 50 (1991), 391–419.

[28] —, —, The lattice of distributive closure operators over an algebra, Studia Logica, to
appear.

[29] —, —, Algebraic study of Belnap’s four-valued logic, manuscript.

[30] J. L. Garc ı́a Lapresta, Finitely deductive logics, Ph.D. dissertation, Univ. of Barcelona,
1991 (in Spanish).

[31] A. Grzegorczyk, An approach to logical calculi , Studia Logica 30 (1972), 33–43
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I. Németi (eds.), Colloq. Math. Soc. János Bolyai 54, North-Holland, Amsterdam 1991,
473–502.
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[43] J. Rebagl iato and V. Verdú, On the algebraization of some Gentzen systems, Fund.
Inform., Special Issue on Algebra and Logic in Computer Science (1992), to appear.

[44] —, —, A Hilbert-style axiomatization of the {∧,∨,¬}-fragment of IPC , manuscript, 1992.

[45] M. Rius, Tetravalent modal logics, Ph.D. dissertation, Univ. of Barcelona, 1992 (in Cata-
lan).

[46] A. J. Rodr ı́guez, A. Torrens and V. Verdú,  Lukasiewicz logic and Wajsberg algebras,
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