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ON ALGEBRAS OF RELATIONS

D. A. BREDIKHIN

Lermontova 7-22, 410002 Saratov, Russia

Throughout, by relation we mean a binary relation. Let Rel(X) be the set of
all binary relations on the set X. An algebra of relations is a pair (@, {2) where {2
is a set of operations on relations and ¢ C Rel(X) is a set of relations closed under
the operations of 2. Each algebra of relations can be considered as ordered by the
set-theoretic inclusion C. Denote by M {2} the class of all algebras isomorphic to
ones whose elements are relations and whose operations are members of (2. The
class M{f2,C} is determined in the same way.

We will consider the following operations on relations: relation product o,
relation inverse ~!, intersection N, diagonal relation A, and the unary operation *
determined as follows: ¢* = pN A.

The class M{o,”1 N, A} was introduced and characterized in [6]. It is not
finitely axiomatizable [5]. The classes M {o,”! A} and M{o,~1 A, C} were char-
acterized in [1, 8]. The class M{o,~%, A} is not finitely axiomatizable [2].

In this paper we find a system of axioms for the class M{o,” * A, C} and
use it to obtain some results about the class M{o,~! N, A}.

THEOREM 1. An algebra (A,-,71,*,1,<) belongs to M{o,~t* A,C} iff it
satisfies the following conditions:
(1)  (A,-,71,1) is an involuted monoid, i.e. (zy)z = x(yz), lx = x1 = =,
@)t =a, (ay) =yl
(2) < is an order relation and all operations are monotonic, i.e. x <y implies
vz <yz, 2o < zy, v <yl oot <yt
(3)  The following identities are satisfied:

(3.1) (") =z™,
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(3.2) it =a",

(3.3) Tyt =yt

(3.4 (") = o™y,

(3.5) (zz™ )z =z,

(3.6) (zyy~ta™)" = (z(yy~")"2™h)",
(3.7) v <1,

(3.8) <.

Suppose that an algebra A = (A,-,71 A1) € M{o,7} N, A}. Then A is
a semilattice ordered involuted monoid, i.e. (4,-,71,1) is an involuted monoid,
(A,A,71) is an involuted semilattice and the identity z(y A 2) < xy A xz holds
(< is the natural order of the semilattice) [6]. It is known [3] that A also satisfies
(

4) zy Az < (zAyz Hy.

We say that a semilattice ordered involuted monoid A is weakly representable
if there exists a mapping F : A — Rel(X) for some X such that F(ab) =
F(a) o F(b), F(a™') = F(a)™', F(1) = A, F(aA1l) = Fla)N A and a < b
iff F(a) C F(b) for all a,b € A.

THEOREM 2. Suppose that a semilattice ordered involuted monoid satisfies (4).
Then it is weakly representable.

The following condition plays an important role in applications of algebras of
relations to logic [4]:

(5) (Fu,v)(Va) v 'u<1 & v v<1&a<u .
Consider the condition

(6) (Va)Bu,v) v 'u<1 & v o<l &a<u .

Obviously, (5) implies (6).

THEOREM 3. Suppose that a semilattice ordered involuted monoid A satis-
fies (6). Then A belongs to M{o,~1 N, A} iff it satisfies (4).

Proof of Theorem 1. Necessity. Consider the ordered algebra of re-
lations of the form (&@,0,71 * A C). It is well known that (®,0,7!, A) is an
involuted monoid and the operations o and ~! are monotonic [1, 8]. Suppose that
o,m € ®. Since o*, 7" C A, we have ¢* o m* = p* N 7*. It follows that (3.1)—(3.4)
hold. If o C 7w then ¢* = pN A CwNA=x"% ie. the operation * is monotonic.
Since (oo o™ 1)* C A, we have (9o o~ 1)* 0 o C 0. Conversely, if (z,7) € o then
(z,2) € goo™ ' NA = (0og™")* and (z,y) € (000 ")*0p, ie. 0 C (000 ) o0
Since (ror~1)* C mor 1, we have (go(mom 1) *op™1)* C (pomor~lop™1)*. Con-
versely, if (z,7) € (pomom~top™1)* then there exist y, z such that (z,y) € o and
(y,z) € m, hence (y,y) € ror 1NA = (ror~1)* and (z,y) € (0o(momr™1)*0p~1)*.
Therefore, (gomom Lo 1)* C (0o (mom H)*op 1)~
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Sufficiency. Suppose that (A,-, =1 * 1, <) satisfies the conditions of Theo-
rem 1. Put E(A) ={a€ A:a" =a}.

LEMMA 1. (E(A),-) is a semilattice; 1 € E(A); (a™!)* = a*; (a*)7! = a¥;
a* < b* iff a*b* = a*; if a < b* then a € E(A).

It follows from (3.1)7(3.4) that (E(A),-) is a semilattice. Note that 171 =
1-17t=1-17Ht=1. Sincel—(l I=hH* . 1=1*. 1—1*,wehave1€E(A).
Since (a*)™' = ((a*)"((a*)™H)7H)*(a") ™" < (((a*)~ D7 = (a")* = a* and

=a* e

a* = ((a*)~ 1) L < (a*)7t, we have (a*)~t Sinc (a*)*1 < a1, we have
(a 1)* = ((a™)*)7! < (a7})~! = a, hence (a_l)* < a*. Analogously, a* <
(a™)* ie. (a 1)* a.

If a*b* = a* then a* = a*b* < b*. Conversely, if a* < b* then a* = a*a* <

a*b*. Since a*b* < a*, we have a*b* = a*.

Suppose that a < b*. Then a* < (b*)* = b* and a = (aa™1)*a < (aa™1)*b* <
(a(b*)71)*b* < a*b* < a*. Since a* < a, we have a* = qa, i.e. a € E(A). This
completes the proof of Lemma 1.

Define the unary operations R and L as follows: Ra = (aa™1)*; La = (a~ta)*.
Then R(a™') = La and Ra = a, La = a for each a € E(A). It follows from (3.5)
that Raa = a and aLa = a. It follows from (3.6) that R(ab) = R(aRb) and
L(ab) = R((ab)™) = R(b~'a™') = R(b"'R(a™')) = R(b~'La) = R((Lab)™!) =
L(Lab).

LEMMA 2. If La = Rb then R(ab) = Ra and L(ab) = Lb.

Indeed, if La = Rb then R(ab) = R(aRb) = R(aLa) = Ra and L(ab) =
L(Lab) = L(Rbb) = Lb.

For each B,C C A we define BC = {bc : b € B & ¢ € C} and B < C iff
(Ve € C)(3b € B) b < c. Note that if B C C then C < B.

Let N = {0,1,...,n,...} and let f be a one-to-one mapping from N onto
N5 (f(k) = (n},n3,...,n3)). Define functions ¢,%,a,3 : N — N as follows:
(k) =nj, if nj, <k, and ¢(k) = k otherwise; (k) = n3 if n? <k, and (k) = k
otherwise; a(k) = n3; B(k) = n{. Clearly, for each p € N and (i, j,m,n) € N*
there exists k € N such that k£ > p and ¢(k) =14, (k) = j, a(k) =m, B(k) =

Suppose that by, ..., b, € A. Define subsets Bi’fj CAfork=1,...,n+1and
1,7 < k as follows:

(D1)  Bhy={bo}, Bio={b'}. Boo={Rbo}, Bi,={Lbo}:

k-‘rl k k .
(D2) B! U BF,BY
k+1 _ pk+1
(D3) Birn = B; (k){b2k 1tUB w(k){b
Biti, = {bo 1 )BLi . U {bzk}Bi(ﬁ),i ;
(D4) Byt o1 = {Lbak—1Rbay} .
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LEMMA 3. (Bf;)~' = B}, and B}, C B}, B, < Bf; for k <m.

According to (D1), (B} ;)" = Bj,. Suppose that (B;)~' = BF,. Then

k 1 k
k+1y—1 _ k pk _ k pk y—1
(Bm )= ( U Bi,po,j) - U(Bi,po,j)
p=0

p=0

k k
_ k \—1 k \—1 __ k k _ pk+l
- U(BPJ) (Bi/p) - U BJ’JJBW - Bi,j ’
p=0 p=0

(Bik,ﬁl)_l = (Bf:;(lk){bzk—l} U stprgk){b;kl})_l

-1 k41 k+1 k+1
= {ba_4 ng?rk),i U {b2k}Bw2Lk)7i = Bk:j—l,i )

E+1 —1 _ pk+1
(Bk:+1,k+1) = Bk+1,k+1 :

Suppose that B{; C B/. Then B}, = B! B!, C B"B" C B/;"". If B < Bf;
then B"' < B B™, < B ;B < {1}BJ"; = BI";.

Since M{o,~! * A, C} is a quasivariety [7], without loss of generality we may
suppose that A is countable, i.e. A = {ay,a2,...,an,...}.

Using induction for each d € A we define sequents by, . .., b2, 1,02y, ... and
TOy-+-3Tn,-..of elements of A and E(A) respectively such that by = d and for all
n the following conditions hold:

(a) By wm) < {aamyasm}: '
(b) Rb=r; and Lb = r; for each b € B}!; and B} ; = {r;}.
Base of induction. Put by = d and ro = Rbg, r1 = Lbg.

Inductive step. Suppose that b, ..., bam_3,b2m_2 and rg, ..., 7, have already
been defined and (a), (b) are satisfied for n = 1,...,m and 7,5 < m. Put

bam—1 = Tp(m)a(m) B(ag(m) Ty(m))
bam = L(To(m)Ga(m))aa0m)Ty(m) s Tm+1 = Lbam—1
if B;jl(m)’w(m) < AH{aa(m)yagm)}, and bay, 1 = b for some b € Bgl(m),w(m)’ bom =
Ty(m)s Tm+1 = To(m), Otherwise.
If by,—1 = b for some b € B:;im),w(m)’ bam = Ty(m), Tm+1 = Ty(m) then
b = bLb = b’l"d,(m) = me_lem, i.e. B;n(m),q/)(m) < bgm_lbgm and Lb2m—1 =

szm = Tm+1, hence Bzill,m—i-l = {Lb2m—1Rb2m} = {T‘m+1}.

" If Bgl(m),w(m) < H{aa@m)asm)}, i-e. b < ag(m)agm) for some b € Bg(m)@(m)v
en

b= T (m)bTy(m) < To(m)@a(m)@B(m)Tv(m)
= Tp(m) Ga(m) LT (m) Ga(m) ) B(B(m) Tp(m) ) a8 (m) Ty (m)
= Tp(m) a(m) B(agm) Tym) ) LT p(m) @a(m) ) agm) Ty (m) = b2m—1b2m ,
i.e. B<T(m),¢(m) < boyn—1bom,.-
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Since b < bgyy,—1bo,, for some b € Bgl(m),zp(m)v we have
To(m) = Bb < R(bam—1b2m) < R(bam—1Rbam) < R(bam—1).
On the other hand,
Rbym—1 = R(rp(m)@a(m) R(asm)Tym)))
= R(rp(m) B(aa(m) B(asm)rpm))) < BT pm)) = Tomm) »

hence Rbs,,—1 =7
have

o(m)- Analogously, Rba,, = Ty(m). Since rpyi1 = Lbay 1, we

Tm+1 = Lb?m—l = L(Tw(m)aa(m)R(aﬁ(m)rw(m)))
= L(L(rp(m)@a(m) ) B(asm)Tpm) ) = BIL(Ton) Ga(m)) B(agmm) Ty m)))
= R(L(7p(m)a(m) ) AB(m) Ty(m)) = o .

Therefore, using Lemma 2 and the definition (D1)—(D4) we conclude that (b)
is satisfied for i,j < m + 1.

Put B; ; = U{B}'; : n € N}. Then B; By ; < B; ;.
LEMMA 4. {bo} < By and {r;} < B, ;.

Note that if b € B;; then b can be represented as a product of elements
biy..wsbm,...and by', ... bt ... This product constructed according to (D1)-
(D4) will be called the canonical form of b. Let Q(b) be the number of occurrences
of elements ask—1, agy in the canonical form of b and Q(b) = max{k : Q(b) > 0}.

Suppose that b € Byi. If Q(b) = 0 then according to (D1)-(D4), b =
bo(by *bo)™ for some m and we have by = boLby = bo(by 'bo)* < boby *by <
. < bo(by tbo)™ = b. Assume that for every b € By if Q(b) < k and Qx(b) = p
then by < b. Suppose that Q(b) = p+ 1. According to (D1)-(D4) the following
cases are possible:

1) b = c1bag—1barco where ¢1 € Bo,,k) and ca2 € Byx),1- Since lez(k)ﬂb(k) <
{bok—1bar }, i.e. ¢ < {bax—1bor} for some c € B(’;(k)’w(k), using the inductive as-
sumption we have by < ciceo < ¢1bog_1borco = 0.

2) b= clb;klbgkil@ where ¢ € By yr) and ca € By (x),1- This case is analo-
gous to Case 1.

3) b = clbgk_lb;kl_lcg where ¢ € By ,x) and co € Byy,1- Since Le¢; =
Rbay—1 = ryr), using the inductive assumption we have by < ci1ca = c1Leica =
c1Rbog—1c2 = 1 (b2k71b2_k1_1)*02 < C1bzk71bg_k1_162 =0

4) b= Clb;klekCQ where ¢1 € By yx) and ca € By y),1- This case is analogous
to Case 3.

Suppose that b € B; ;. If Q(b) =0 then according to (D1)-(D4), ¢ = 0 or
i=1.1fi =0 then b =rq or b= (bopby ")™ for some m and we have rq = (ry)™ =
(Rbo)™ = ((boby 1)*)™ < (boby *)™. The case i = 1 is analogous. Assume that for
every b € B;; if Q(b) < k and Qx(b) = p then r; < b. Suppose that Qx(b) = p+1.
According to (D1)—(D4) the following cases are possible:
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1) b = cibor_1barca where ¢ € B; i) and ¢z € By ). Since Bi(k),zp(k) <
{bak—1bar }, i.e. ¢ < {bog_1bax} for some c € Bclz(k),w(k)’ using the inductive as-
sumption we have r; < cicey < c1bog_1barca = .

2)b=c b;kl bQ_kl_lCQ where ¢ € Bw,(k) and ¢; € Bw(k),i. This case is analogous
to Case 1.

3) b = Clbgk_lb;kl_ICQ where ¢ € B; o) and c2 € Byp)i- Since Lec; =
Rbay, 1 = ry(k), using the inductive assumption we have r; < cica = c1Lejcp =
c1Rbog_1c2 = 1 (b2k71bg_k1_1)*62 < C1b2k71bg_k1_102 =0

4) b= clb;klbgk@ where ¢1 € B; y(x) and c2 € Byy),;- This case is analogous
to Case 3.

This completes the proof of Lemma 3.

Define the mapping Fy : A — Rel(N) as follows:

Fy(a) ={(i,j) : Bij <{a}}.

Since (B; ;)™ = Bj;, we have Fy(a™') = (F4(a))™'. Obviously, a < b implies
Fy(a) C Fu(b).

We show that Fj(ab) = Fy(a)oFq(b). If (i,7) € Fy(a)oFy(b), i.e. (i, k) € F4(a)
and (k,j) € Fy(b) for some k, then B, < {a} and By ; < {b}, hence B;; <
B; xBi,; < {ab}, i.e. (i,j) € Fy(ab). Conversely, suppose that (i,j) € Fy(ab),
ie. B;; < {ab}. Then B}; < {ab} for some p and there exists k > p such
that o(k) =i, ¥(k) = j, a = aym), b = ay@). Since B;(k),w(k) < Bi(k),w(k) =
Bf’j < {ab} = {aa(k)aﬂ(k)}, we have bgm,1 = r@(m)aa(m)R(aB(m)m,(m)), bgm =
L7 5 (m) Ga(m))b3(m) T (m) s Tm+1 = Lbam_1, hence byr_1 < a and by < b. Since
bop_1 = T;bor_1 € Bﬁw(k)ka—l C Bf,:—il-l’ we have (i,k‘ + 1) S Fd(ka—l) C Fd(a).
Analogously, (k+1,7) € Fy(bar) C Fyq(b). Thus, (4,7) € Fi(a) o Fy(b).

We show that Fy(a*) = Fy(a) N F4(1). Since a* < a and a* < 1, we have
Fy(a*) C Fy(a) and Fy(a*) C F4(1). Conversely, suppose that (i,j) € Fy(a) N
Fy(1); then B; ; < {a} and B; ; < {1}, hence B; ;< B, ;(B; ;)" < {al71} = {a}.
Since {r;} < B;;, we have r; < a, hence r; = r; < a*. Since r; € B;;, we have
(i,7) € Fy(r;) C Fy(a*). It now follows from (i,7) € Fy(a*) and (i, j) € F4(1) that
(’L,]) S Fd(a*) o Fd(l) = Fd(a*l) = Fd(a*).

Put Xg = X x {d} and X = U{Xy4 : d € A}, FI(a) = {((i,d), (j,d)) :
(i,7) € Fa(a)} and F(a) = U{FJ(a) : d € A}. Obviously F(ab) = F(a) o F(b),
F(a)™' = F(a)™!, F(a*) = F(a)NF(1), and a < b implies F(a) C F(b). Suppose
that F'(a) C F(b); then Fy(a) C Fu(b). Since (0,1) € Fy(a), we have (0,1) €
F,(b), i.e. By < {b}. Then using Lemma 4, we obtain {a} < By, < {b}, i.e.
a < b. Therefore, F is an isomorphism of (4,-,7!, <) into (Rel(X), 0,7}, C) and
F(a*) = F(a) N F(1).

It is clear that ¢ = F'(1) is an equivalence relation on X. Let Y = X /e and let
n be the natural mapping of X onto Y. Put P(a)=noF(a)on~!. It is easy to see
that P is an isomorphism of (4,-,71, <) into (Rel(Y), 0,71, C) and P(1) = A. Tt
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follows that P(a*) = P(a) N P(1) = P(a)N A = P(a)*. This completes the proof
of Theorem 1.
Proof of Theorems 2 and 3. Suppose that (A,-, 71, A, 1) is a semilat-

tice ordered involuted monoid and (4) holds. Let < be the canonical order relation
of the semilattice (A4, A). Put a* = a A 1. Obviously, a* <1 and a* < a.

LEMMA 5. The operations -, ~*, * are monotonic.

Ifa<b ie.aNb=a,thena ' Ab™ = (aAb)"t=a"t ie a ! <b7! and
a* =aNl <bA1=0b*. Alsoifa < b,i.e. aAb=a, then ac = (aAb)c < acAbe < be
and c(a Ab) < ca A cb < cb.

LEMMA 6. 2y Az < z(y Az 12), 2 < zo~lz.

Indeed, xy A z = (y‘lm_1 AzH)E < (it Az te)z™ ) = a(y A z2),
aj—xl/\:z‘<:n(1/\:n lg) <z~ lo.

LEMMA 7. (z71)* = 2%, 2*2* = 2%, (z*)~! = 2*.

Indeed, 2* =2 Al = (2 ADNIAL< (2 A)AA(zAD)) < (A1)t =
A1 = (271)* and (z71)* < ((@71)71)* = 2*. The second assertion follows
from

'z =(xAl)(zA]) < (zAD)1I<zxzAl=z"
and
F=2zAl=(@ADIALLS (@ AD(A(xAL1))
<(@zADAAzY) =2 (@) =2,
Finally, (z*) ' = (A1)t =27t Al =27 Al = (27 1) =2~

LEMMA 8. z*y* = a* Ay*, o*y* = y*z*, (z*y*)* = 2™ y*.

Since z*y* < z*1 = z* and z*y* < ly* = y*, we have z*y* < x* A y*.
Conversely, z* A y* = 2*1 Ay* < 2*(1 A (%)~ y*) < 2%z *y* = x*y*. Thus,
x*y* = x* Ay*. Tt follows that z*y* = x* A y* = y* Az* = y*2* and (z*y*)* =
Y AL =" Ay* Nl =z ANy* = x¥y*.

LEMMA 9. (zyy tz~1)* < (zz~)*, (zo71)*2 = 2.

Indeed, (zyy loz=1)* =zyy 2 ' Al = (ayy la A DAL < a(yy a7t A
)AL <zz ' Al = (zz~!)*. For the second assertion, (zz~1)*z < lz = x
and x = lz Az < (1 Azz™ )z = (zo1)*z.

LEMMA 10. (zyytz=1)* = (z(yy~1)*z~1)*.

Indeed,
(zyy 'z = (2((yy™ ") ) (wy ) y) e
= (x(yy yy ((wy ) e
< (x(yy™ ) ((wy= 1))
= (@(yy )y )z = (alyy ) 2™h)*
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and
(x(yy™") 2™ ") < (ayy e~ h)".
According to Lemmas 5-10, (A,-,~%,* 1, <) satisfies the conditions of Theo-
rem 1. This immediately implies the conclusion of Theorem 2.

LEMMA 11. 2 Ay(z Atz) <y(y~taz"t At)z.
Indeed,
y(zAt2) Az <yl(z Atz Ay ')
<y(tnzzHzAy o) <y(tAzz Ay tez D <yt Ay taezhz.

LEMMA 12. If v~ 'a < 1 then z(yAz) = zyAxz and (yAz)r~! = yz= Azz—t.

Indeed, z(y A2) < xyAxz and zy Axz < x(yAz tzz) <x(yAlz) = z(yAz).
The proof of the second assertion is similar.

LEMMA 13. If u™'u < 1, v"'v < 1 and z Ay < u'v, then x ANy =
u™H (uzv™1)* (uyv 1) *.

Since v~'u < 1 and v™'v < 1, we have u '(uzv=!)*(uyv~!)*v <
uHurv™)*v < uluzv=tv < 2. Analogously, v~ !(uxv™)*(uyv=)*v < v.
Thus, v~ (uzv™H)*(uyv=')*v < 2 A y. Conversely, using Lemmas 11, 12, we
obtain

ar/\y:a:/\y/\u_lv
=z AyAut(wAlw) =u H(ulzAy)v Al
=u N uzv ™ AuyoTt A = u (uzv TP AL A (uyoTt AT
=u  ((uzv™)* A (uyv™ 1)) = v ((uzv™ ) * (uyv™H*v.

LEMMA 14. Suppose that o, 7, ,3 € Rel(X) and a ™t oa C A, 713 C A,
oNTCa topB. Then

oNm=alo(aopoB H*o(aomof ) 0p.

It follows from a~'oa C A and 37! o3 C A that a, 8 are functions.
Therefore, we write y = a(x) and y = () instead of (x,y) € « and (z,y) € (.
Since p N7 C a~! o B3, for each pair (x,y) € o N7 there exists 2 € X such that
a(z) =z and B(z) =

Suppose that (z,y) € a™ ' o (aopof™ ) o(aomoB1)*oB. Then z = a(2)
and y = 3(z) for some z such that (z,2) € (aopo B~ 1)*o(aomoB~1)*. It follows
that (2,2) € acpoB ! and (2,2) € ao7roﬁ ! hence (z,y) = (a(z), 3(2)) € oN.
Conversely, let (z,y) € pNw. Since z = a(z ) and y = ((z) for some z, we have
(2,2) € (a0pof~H* and (z,2) € (oo B71)*, hence ( 2,2) € (aogoﬂ ¥ o
(aomoB~1)* and (z,y) = (a(2),8(2)) €a"lto (aogoﬁ B*o(aomop™)*op,
which completes the proof of Lemma 14.

Theorem 2 and Lemmas 13, 14 immediately imply Theorem 3.



ON ALGEBRAS OF RELATIONS 199

References

D. A. Bredikhin, Representation of ordered involuted semigroups, lzv. Vyssh. Uchebn.
Zaved. Mat. 7 (1975), 19-29 (in Russian).

—, Abstract characteristics of some relation algebras, in: Algebra and Number Theory,
Nalchic 1977, 3-19 (in Russian).

L. H. Chin and A. Tarski, Distributive and modular laws in the arithmetic of relation
algebras, Univ. Calif. Publ. Math. 1 (1951), 341-383.

S. A. Givant and A. Tarski, A formalization of set theory without variables, Amer. Math.
Soc. Collog. Publ. 41, Amer. Math. Soc., Providence, R.I., 1987.

M. Haivan, Arguesian lattices which are not linear, Bull. Amer. Math. Soc. 16 (1987),
121-123.

B. Jénsson, Representation of modular lattices and of relation algebras, Trans. Amer.
Math. Soc. 92 (1959), 449-464.

B. M. Schein, Relation algebras and function semigroups, Semigroup Forum 1 (1970),
1-62.

—, Representation of involuted semigroups by binary relations, Fund. Math. 82 (1974),
121-141.



