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Throughout, by relation we mean a binary relation. Let Rel(X) be the set of
all binary relations on the set X. An algebra of relations is a pair (Φ,Ω) where Ω
is a set of operations on relations and Φ ⊂ Rel(X) is a set of relations closed under
the operations of Ω. Each algebra of relations can be considered as ordered by the
set-theoretic inclusion ⊂. Denote by M{Ω} the class of all algebras isomorphic to
ones whose elements are relations and whose operations are members of Ω. The
class M{Ω,⊂} is determined in the same way.

We will consider the following operations on relations: relation product ◦,
relation inverse −1, intersection ∩, diagonal relation ∆, and the unary operation ∗

determined as follows: %∗ = % ∩∆.
The class M{◦,−1 ,∩, ∆} was introduced and characterized in [6]. It is not

finitely axiomatizable [5]. The classes M{◦,−1 , ∆} and M{◦,−1 , ∆,⊂} were char-
acterized in [1, 8]. The class M{◦,−1 , ∆} is not finitely axiomatizable [2].

In this paper we find a system of axioms for the class M{◦,−1 ,∗ , ∆,⊂} and
use it to obtain some results about the class M{◦,−1 ,∩, ∆}.

Theorem 1. An algebra (A, ·,−1 ,∗ , 1,≤) belongs to M{◦,−1 ,∗ , ∆,⊂} iff it
satisfies the following conditions:

(1) (A, ·,−1 , 1) is an involuted monoid , i.e. (xy)z = x(yz), 1x = x1 = x,
(x−1)−1 = x, (xy)−1 = y−1x−1.

(2) ≤ is an order relation and all operations are monotonic, i.e. x ≤ y implies
xz ≤ yz, zx ≤ zy, x−1 ≤ y−1, x∗ ≤ y∗.

(3) The following identities are satisfied :

(3.1) (x∗)∗ = x∗ ,
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(3.2) x∗x∗ = x∗ ,

(3.3) x∗y∗ = y∗x∗ ,

(3.4) (x∗y∗)∗ = x∗y∗ ,

(3.5) (xx−1)∗x = x ,

(3.6) (xyy−1x−1)∗ = (x(yy−1)∗x−1)∗ ,
(3.7) x∗ ≤ 1 ,
(3.8) x∗ ≤ x .

Suppose that an algebra A = (A, ·,−1 ,∧, 1) ∈ M{◦,−1 ,∩, ∆}. Then A is
a semilattice ordered involuted monoid, i.e. (A, ·,−1 , 1) is an involuted monoid,
(A,∧,−1 ) is an involuted semilattice and the identity x(y ∧ z) ≤ xy ∧ xz holds
(≤ is the natural order of the semilattice) [6]. It is known [3] that A also satisfies

(4) xy ∧ z ≤ (x ∧ yz−1)y .

We say that a semilattice ordered involuted monoid A is weakly representable
if there exists a mapping F : A → Rel(X) for some X such that F (ab) =
F (a) ◦ F (b), F (a−1) = F (a)−1, F (1) = ∆, F (a ∧ 1) = F (a) ∩ ∆ and a ≤ b
iff F (a) ⊂ F (b) for all a, b ∈ A.

Theorem 2. Suppose that a semilattice ordered involuted monoid satisfies (4).
Then it is weakly representable.

The following condition plays an important role in applications of algebras of
relations to logic [4]:

(5) (∃u, v)(∀a) u−1u ≤ 1 & v−1v ≤ 1 & a ≤ u−1v .

Consider the condition

(6) (∀a)(∃u, v) u−1u ≤ 1 & v−1v ≤ 1 & a ≤ u−1v .

Obviously, (5) implies (6).

Theorem 3. Suppose that a semilattice ordered involuted monoid A satis-
fies (6). Then A belongs to M{◦,−1 ,∩, ∆} iff it satisfies (4).

P r o o f o f T h e o r e m 1 . Necessity . Consider the ordered algebra of re-
lations of the form (Φ, ◦,−1 ,∗ , ∆,⊂). It is well known that (Φ, ◦,−1 , ∆) is an
involuted monoid and the operations ◦ and −1 are monotonic [1, 8]. Suppose that
%, π ∈ Φ. Since %∗, π∗ ⊂ ∆, we have %∗ ◦ π∗ = %∗ ∩ π∗. It follows that (3.1)–(3.4)
hold. If % ⊂ π then %∗ = % ∩∆ ⊂ π ∩∆ = π∗, i.e. the operation ∗ is monotonic.
Since (% ◦ %−1)∗ ⊂ ∆, we have (% ◦ %−1)∗ ◦ % ⊂ %. Conversely, if (x, y) ∈ % then
(x, x) ∈ % ◦ %−1 ∩∆ = (% ◦ %−1)∗ and (x, y) ∈ (% ◦ %−1)∗ ◦ %, i.e. % ⊂ (% ◦ %−1)∗ ◦ %.
Since (π◦π−1)∗ ⊂ π◦π−1, we have (%◦(π◦π−1)∗◦%−1)∗ ⊂ (%◦π◦π−1◦%−1)∗. Con-
versely, if (x, x) ∈ (%◦π◦π−1 ◦%−1)∗ then there exist y, z such that (x, y) ∈ % and
(y, z) ∈ π, hence (y, y) ∈ π◦π−1∩∆ = (π◦π−1)∗ and (x, y) ∈ (%◦(π◦π−1)∗◦%−1)∗.
Therefore, (% ◦ π ◦ π−1 ◦ %−1)∗ ⊂ (% ◦ (π ◦ π−1)∗ ◦ %−1)∗.
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Sufficiency . Suppose that (A, ·,−1 ,∗ , 1,≤) satisfies the conditions of Theo-
rem 1. Put E(A) = {a ∈ A : a∗ = a}.
Lemma 1. (E(A), ·) is a semilattice; 1 ∈ E(A); (a−1)∗ = a∗; (a∗)−1 = a∗;

a∗ ≤ b∗ iff a∗b∗ = a∗; if a ≤ b∗ then a ∈ E(A).

It follows from (3.1)–(3.4) that (E(A), ·) is a semilattice. Note that 1−1 =
1 · 1−1 = (1 · 1−1)−1 = 1. Since 1 = (1 · 1−1)∗ · 1 = 1∗ · 1 = 1∗, we have 1 ∈ E(A).
Since (a∗)−1 = ((a∗)−1((a∗)−1)−1)∗(a∗)−1 ≤ (((a∗)−1)−1)∗ = (a∗)∗ = a∗ and
a∗ = ((a∗)−1)−1 ≤ (a∗)−1, we have (a∗)−1 = a∗. Since (a∗)−1 ≤ a−1, we have
(a−1)∗ = ((a−1)∗)−1 ≤ (a−1)−1 = a, hence (a−1)∗ ≤ a∗. Analogously, a∗ ≤
(a−1)∗, i.e. (a−1)∗ = a∗.

If a∗b∗ = a∗ then a∗ = a∗b∗ ≤ b∗. Conversely, if a∗ ≤ b∗ then a∗ = a∗a∗ ≤
a∗b∗. Since a∗b∗ ≤ a∗, we have a∗b∗ = a∗.

Suppose that a ≤ b∗. Then a∗ ≤ (b∗)∗ = b∗ and a = (aa−1)∗a ≤ (aa−1)∗b∗ ≤
(a(b∗)−1)∗b∗ ≤ a∗b∗ ≤ a∗. Since a∗ ≤ a, we have a∗ = a, i.e. a ∈ E(A). This
completes the proof of Lemma 1.

Define the unary operations R and L as follows: Ra = (aa−1)∗; La = (a−1a)∗.
Then R(a−1) = La and Ra = a, La = a for each a ∈ E(A). It follows from (3.5)
that Raa = a and aLa = a. It follows from (3.6) that R(ab) = R(aRb) and
L(ab) = R((ab)−1) = R(b−1a−1) = R(b−1R(a−1)) = R(b−1La) = R((Lab)−1) =
L(Lab).

Lemma 2. If La = Rb then R(ab) = Ra and L(ab) = Lb.

Indeed, if La = Rb then R(ab) = R(aRb) = R(aLa) = Ra and L(ab) =
L(Lab) = L(Rbb) = Lb.

For each B,C ⊂ A we define BC = {bc : b ∈ B & c ∈ C} and B ≤ C iff
(∀c ∈ C)(∃b ∈ B) b ≤ c. Note that if B ⊂ C then C ≤ B.

Let N = {0, 1, . . . , n, . . .} and let f be a one-to-one mapping from N onto
N5 (f(k) = (n1

k, n
2
k, . . . , n

5
k)). Define functions ϕ,ψ, α, β : N → N as follows:

ϕ(k) = n1
k if n1

k ≤ k, and ϕ(k) = k otherwise; ψ(k) = n2
k if n2

k ≤ k, and ψ(k) = k
otherwise; α(k) = n3

k; β(k) = n4
k. Clearly, for each p ∈ N and (i, j,m, n) ∈ N4

there exists k ∈ N such that k ≥ p and ϕ(k) = i, ψ(k) = j, α(k) = m, β(k) = n.
Suppose that b0, . . . , b2n∈A. Define subsets Bki,j ⊆ A for k = 1, . . . , n+ 1 and

i, j ≤ k as follows:

(D1) B1
0,1 = {b0} , B1

1,0 = {b−1
0 } , B1

0,0 = {Rb0} , B1
1,1 = {Lb0} ;

(D2) Bk+1
i,j =

k⋃
p=0

Bki,pB
k
p,j ;

(D3)
Bk+1
i,k+1 = Bk+1

i,ϕ(k){b2k−1} ∪Bk+1
i,ψ(k){b

−1
2k } ;

Bk+1
k+1,i = {b−1

2k−1}B
k+1
ϕ(k),i ∪ {b2k}B

k+1
ψ(k),i ;

(D4) Bk+1
k+1,k+1 = {Lb2k−1Rb2k} .
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Lemma 3. (Bki,j)
−1 = Bkj,i and Bii,i ⊂ Bmi,i, Bmi,j ≤ Bki,j for k ≤ m.

According to (D1), (B1
i,j)

−1 = B1
j,i. Suppose that (Bki,j)

−1 = Bkj,i. Then

(Bk+1
i,j )−1 =

( k⋃
p=0

Bki,pB
k
p,j

)−1

=
k⋃
p=0

(Bki,pB
k
p,j)

−1

=
k⋃
p=0

(Bkp,j)
−1(Bki,p)

−1 =
k⋃
p=0

Bkj,pB
k
p,i = Bk+1

i,j ,

(Bk+1
i,k+1)−1 = (Bk+1

i,ϕ(k){b2k−1} ∪Bk+1
i,ψ(k){b

−1
2k })

−1

= {b−1
2k−1}B

k+1
ϕ(k),i ∪ {b2k}B

k+1
ψ(k),i = Bk+1

k+1,i ,

(Bk+1
k+1,k+1)−1 = Bk+1

k+1,k+1 .

Suppose that Bii,i ⊂ Bmi,i. Then Bii,i = Bii,iB
i
i,i ⊂ Bmi,iBmi,i ⊂ B

m+1
i,i . If Bmi,j ≤ Bki,j

then Bm+1
i,j ≤ Bmi,iBmi,j ≤ Bii,iBmi,j ≤ {1}Bmi,j = Bmi,j .

Since M{◦,−1 ,∗ , ∆,⊂} is a quasivariety [7], without loss of generality we may
suppose that A is countable, i.e. A = {a1, a2, . . . , an, . . .}.

Using induction for each d ∈ A we define sequents b0, . . . , b2n−1, b2n, . . . and
r0, . . . , rn, . . . of elements of A and E(A) respectively such that b0 = d and for all
n the following conditions hold:

(a) Bnϕ(n),ψ(n) ≤ {aα(n)aβ(n)};
(b) Rb = ri and Lb = rj for each b ∈ Bni,j and Bii,i = {ri}.
Base of induction. Put b0 = d and r0 = Rb0, r1 = Lb0.
Inductive step. Suppose that b0, . . . , b2m−3, b2m−2 and r0, . . . , rm have already

been defined and (a), (b) are satisfied for n = 1, . . . ,m and i, j ≤ m. Put

b2m−1 = rϕ(m)aα(m)R(aβ(m)rψ(m)) ,
b2m = L(rϕ(m)aα(m))aβ(m)rψ(m) , rm+1 = Lb2m−1

if Bmϕ(m),ψ(m) ≤ {aα(m)aβ(m)}, and b2m−1 = b for some b ∈ Bmϕ(m),ψ(m), b2m =
rψ(m), rm+1 = rψ(m), otherwise.

If b2m−1 = b for some b ∈ Bmϕ(m),ψ(m), b2m = rψ(m), rm+1 = rψ(m) then
b = bLb = brψ(m) = b2m−1b2m, i.e. Bmϕ(m),ψ(m) ≤ b2m−1b2m and Lb2m−1 =
Rb2m = rm+1, hence Bm+1

m+1,m+1 = {Lb2m−1Rb2m} = {rm+1}.
If Bmϕ(m),ψ(m) ≤ {aα(m)aβ(m)}, i.e. b ≤ aα(m)aβ(m) for some b ∈ Bmϕ(m),ψ(m),

then
b = rϕ(m)brψ(m) ≤ rϕ(m)aα(m)aβ(m)rψ(m)

= rϕ(m)aα(m)L(rϕ(m)aα(m))R(aβ(m)rψ(m))aβ(m)rψ(m)

= rϕ(m)aα(m)R(aβ(m)rψ(m))L(rϕ(m)aα(m))aβ(m)rψ(m) = b2m−1b2m ,

i.e. Bmϕ(m),ψ(m) ≤ b2m−1b2m.
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Since b ≤ b2m−1b2m for some b ∈ Bmϕ(m),ψ(m), we have

rϕ(m) = Rb ≤ R(b2m−1b2m) ≤ R(b2m−1Rb2m) ≤ R(b2m−1) .

On the other hand,

Rb2m−1 = R(rϕ(m)aα(m)R(aβ(m)rψ(m)))

= R(rϕ(m)R(aα(m)R(aβ(m)rψ(m)))) ≤ R(rϕ(m)) = rϕ(m) ,

hence Rb2m−1 = rϕ(m). Analogously, Rb2m = rψ(m). Since rm+1 = Lb2m−1, we
have
rm+1 = Lb2m−1 = L(rϕ(m)aα(m)R(aβ(m)rψ(m)))

= L(L(rϕ(m)aα(m))R(aβ(m)rψ(m))) = R(L(rϕ(m)aα(m))R(aβ(m)rψ(m)))

= R(L(rϕ(m)aα(m))aβ(m)rψ(m)) = Rb2m .

Therefore, using Lemma 2 and the definition (D1)–(D4) we conclude that (b)
is satisfied for i, j ≤ m+ 1.

Put Bi,j =
⋃
{Bni,j : n ∈ N}. Then Bi,kBk,j ≤ Bi,j .

Lemma 4. {b0} ≤ B0,1 and {ri} ≤ Bi,i.
Note that if b ∈ Bi,j then b can be represented as a product of elements

b1, . . . , bm, . . . and b−1
0 , . . . , b−1

m , . . . This product constructed according to (D1)–
(D4) will be called the canonical form of b. Let Qk(b) be the number of occurrences
of elements a2k−1, a2k in the canonical form of b and Q(b) = max{k : Qk(b) > 0}.

Suppose that b ∈ B0,1. If Q(b) = 0 then according to (D1)–(D4), b =
b0(b−1

0 b0)m for some m and we have b0 = b0Lb0 = b0(b−1
0 b0)∗ ≤ b0b

−1
0 b0 ≤

. . . ≤ b0(b−1
0 b0)m = b. Assume that for every b ∈ B0,1 if Q(b) ≤ k and Qk(b) = p

then b0 ≤ b. Suppose that Qk(b) = p+ 1. According to (D1)–(D4) the following
cases are possible:

1) b = c1b2k−1b2kc2 where c1 ∈ B0,ϕ(k) and c2 ∈ Bψ(k),1. Since Bkϕ(k),ψ(k) ≤
{b2k−1b2k}, i.e. c ≤ {b2k−1b2k} for some c ∈ Bkϕ(k),ψ(k), using the inductive as-
sumption we have b0 ≤ c1cc2 ≤ c1b2k−1b2kc2 = b.

2) b = c1b
−1
2k b

−1
2k−1c2 where c1 ∈ B0,ψ(k) and c2 ∈ Bϕ(k),1. This case is analo-

gous to Case 1.
3) b = c1b2k−1b

−1
2k−1c2 where c1 ∈ B0,ϕ(k) and c2 ∈ Bϕ(k),1. Since Lc1 =

Rb2k−1 = rϕ(k), using the inductive assumption we have b0 ≤ c1c2 = c1Lc1c2 =
c1Rb2k−1c2 = c1(b2k−1b

−1
2k−1)∗c2 ≤ c1b2k−1b

−1
2k−1c2 = b.

4) b = c1b
−1
2k b2kc2 where c1 ∈ B0,ψ(k) and c2 ∈ Bψ(k),1. This case is analogous

to Case 3.

Suppose that b ∈ Bi,i. If Q(b) = 0 then according to (D1)–(D4), i = 0 or
i = 1. If i = 0 then b = r0 or b = (b0b−1

0 )m for some m and we have r0 = (r0)m =
(Rb0)m = ((b0b−1

0 )∗)m ≤ (b0b−1
0 )m. The case i = 1 is analogous. Assume that for

every b ∈ Bi,i if Q(b) ≤ k and Qk(b) = p then ri ≤ b. Suppose that Qk(b) = p+1.
According to (D1)–(D4) the following cases are possible:
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1) b = c1b2k−1b2kc2 where c1 ∈ Bi,ϕ(k) and c2 ∈ Bψ(k),i. Since Bkϕ(k),ψ(k) ≤
{b2k−1b2k}, i.e. c ≤ {b2k−1b2k} for some c ∈ Bkϕ(k),ψ(k), using the inductive as-
sumption we have ri ≤ c1cc2 ≤ c1b2k−1b2kc2 = b.

2) b = c1b
−1
2k b

−1
2k−1c2 where c1 ∈ Bi,ψ(k) and c2 ∈ Bϕ(k),i. This case is analogous

to Case 1.
3) b = c1b2k−1b

−1
2k−1c2 where c1 ∈ Bi,ϕ(k) and c2 ∈ Bϕ(k),i. Since Lc1 =

Rb2k−1 = rϕ(k), using the inductive assumption we have ri ≤ c1c2 = c1Lc1c2 =
c1Rb2k−1c2 = c1(b2k−1b

−1
2k−1)∗c2 ≤ c1b2k−1b

−1
2k−1c2 = b.

4) b = c1b
−1
2k b2kc2 where c1 ∈ Bi,ψ(k) and c2 ∈ Bψ(k),i. This case is analogous

to Case 3.

This completes the proof of Lemma 3.

Define the mapping Fd : A→ Rel(N) as follows:

Fd(a) = {(i, j) : Bi,j ≤ {a}} .

Since (Bi,j)−1 = Bj,i, we have Fd(a−1) = (Fd(a))−1. Obviously, a ≤ b implies
Fd(a) ⊂ Fd(b).

We show that Fd(ab) = Fd(a)◦Fd(b). If (i, j) ∈ Fd(a)◦Fd(b), i.e. (i, k) ∈ Fd(a)
and (k, j) ∈ Fd(b) for some k, then Bi,k ≤ {a} and Bk,j ≤ {b}, hence Bi,j ≤
Bi,kBk,j ≤ {ab}, i.e. (i, j) ∈ Fd(ab). Conversely, suppose that (i, j) ∈ Fd(ab),
i.e. Bi,j ≤ {ab}. Then Bpi,j ≤ {ab} for some p and there exists k ≥ p such
that ϕ(k) = i, ψ(k) = j, a = aϕ(k), b = aψ(k). Since Bkϕ(k),ψ(k) ≤ Bpϕ(k),ψ(k) =
Bpi,j ≤ {ab} = {aα(k)aβ(k)}, we have b2m−1 = rϕ(m)aα(m)R(aβ(m)rψ(m)), b2m =
L(rϕ(m)aα(m))bβ(m)rψ(m), rm+1 = Lb2m−1, hence b2k−1 ≤ a and b2k ≤ b. Since
b2k−1 = rib2k−1 ∈ Bki,ϕ(k)b2k−1 ⊂ Bk+1

i,k+1, we have (i, k + 1) ∈ Fd(b2k−1) ⊂ Fd(a).
Analogously, (k + 1, j) ∈ Fd(b2k) ⊂ Fd(b). Thus, (i, j) ∈ Fd(a) ◦ Fd(b).

We show that Fd(a∗) = Fd(a) ∩ Fd(1). Since a∗ ≤ a and a∗ ≤ 1, we have
Fd(a∗) ⊂ Fd(a) and Fd(a∗) ⊂ Fd(1). Conversely, suppose that (i, j) ∈ Fd(a) ∩
Fd(1); then Bi,j ≤ {a} and Bi,j ≤ {1}, hence Bi,i≤Bi,j(Bi,j)−1 ≤ {a1−1} = {a}.
Since {ri} ≤ Bi,i, we have ri ≤ a, hence ri = r∗i ≤ a∗. Since ri ∈ Bi,i, we have
(i, i) ∈ Fd(ri) ⊂ Fd(a∗). It now follows from (i, i)∈Fd(a∗) and (i, j) ∈ Fd(1) that
(i, j) ∈ Fd(a∗) ◦ Fd(1) = Fd(a∗1) = Fd(a∗).

Put Xd = X × {d} and X =
⋃
{Xd : d ∈ A}, F 0

d (a) = {((i, d), (j, d)) :
(i, j) ∈ Fd(a)} and F (a) =

⋃
{F 0

d (a) : d ∈ A}. Obviously F (ab) = F (a) ◦ F (b),
F (a)−1 = F (a)−1, F (a∗) = F (a)∩F (1), and a ≤ b implies F (a) ⊂ F (b). Suppose
that F (a) ⊂ F (b); then Fa(a) ⊂ Fa(b). Since (0, 1) ∈ Fa(a), we have (0, 1) ∈
Fa(b), i.e. B0,1 ≤ {b}. Then using Lemma 4, we obtain {a} ≤ B0,1 ≤ {b}, i.e.
a ≤ b. Therefore, F is an isomorphism of (A, ·,−1 ,≤) into (Rel(X), ◦,−1 ,⊂) and
F (a∗) = F (a) ∩ F (1).

It is clear that ε = F (1) is an equivalence relation on X. Let Y = X/ε and let
η be the natural mapping of X onto Y . Put P (a)=η◦F (a)◦η−1. It is easy to see
that P is an isomorphism of (A, ·,−1 ,≤) into (Rel(Y ), ◦,−1 ,⊂) and P (1) = ∆. It
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follows that P (a∗) = P (a)∩P (1) = P (a)∩∆ = P (a)∗. This completes the proof
of Theorem 1.

P r o o f o f T h e o r e m s 2 a n d 3 . Suppose that (A, ·,−1 ,∧, 1) is a semilat-
tice ordered involuted monoid and (4) holds. Let ≤ be the canonical order relation
of the semilattice (A,∧). Put a∗ = a ∧ 1. Obviously, a∗ ≤ 1 and a∗ ≤ a.

Lemma 5. The operations ·, −1, ∗ are monotonic.

If a ≤ b, i.e. a ∧ b = a, then a−1 ∧ b−1 = (a ∧ b)−1 = a−1, i.e. a−1 ≤ b−1, and
a∗ = a∧1 ≤ b∧1 = b∗. Also if a ≤ b, i.e. a∧b = a, then ac = (a∧b)c ≤ ac∧bc ≤ bc
and c(a ∧ b) ≤ ca ∧ cb ≤ cb.
Lemma 6. xy ∧ z ≤ x(y ∧ x−1z), x ≤ xx−1x.

Indeed, xy ∧ z = (y−1x−1 ∧ z−1)−1 ≤ ((y−1 ∧ z−1x)x−1)−1 = x(y ∧ xz),
x = x1 ∧ x ≤ x(1 ∧ x−1x) ≤ xx−1x.

Lemma 7. (x−1)∗ = x∗, x∗x∗ = x∗, (x∗)−1 = x∗.

Indeed, x∗ = x ∧ 1 = (x ∧ 1)1 ∧ 1 ≤ (x ∧ 1)(1 ∧ (x ∧ 1)−11) ≤ (x ∧ 1)−1 =
x−1 ∧ 1 = (x−1)∗ and (x−1)∗ ≤ ((x−1)−1)∗ = x∗. The second assertion follows
from

x∗x∗ = (x ∧ 1)(x ∧ 1) ≤ (x ∧ 1)1 ≤ x ∧ 1 = x∗

and
x∗ = x ∧ 1 = (x ∧ 1)1 ∧ 1 ≤ (x ∧ 1)(1 ∧ (x ∧ 1)−11)

≤ (x ∧ 1)(1 ∧ x−1) = x∗(x−1)∗ = x∗x∗ .

Finally, (x∗)−1 = (x ∧ 1)−1 = x−1 ∧ 1−1 = x−1 ∧ 1 = (x−1)∗ = x∗.

Lemma 8. x∗y∗ = x∗ ∧ y∗, x∗y∗ = y∗x∗, (x∗y∗)∗ = x∗y∗.

Since x∗y∗ ≤ x∗1 = x∗ and x∗y∗ ≤ 1y∗ = y∗, we have x∗y∗ ≤ x∗ ∧ y∗.
Conversely, x∗ ∧ y∗ = x∗1 ∧ y∗ ≤ x∗(1 ∧ (x∗)−1y∗) ≤ x∗x∗y∗ = x∗y∗. Thus,
x∗y∗ = x∗ ∧ y∗. It follows that x∗y∗ = x∗ ∧ y∗ = y∗ ∧ x∗ = y∗x∗ and (x∗y∗)∗ =
x∗y∗ ∧ 1 = x∗ ∧ y∗ ∧ 1 = x∗ ∧ y∗ = x∗y∗.

Lemma 9. (xyy−1x−1)∗ ≤ (xx−1)∗, (xx−1)∗x = x.

Indeed, (xyy−1x−1)∗ = xyy−1x−1 ∧ 1 = (xyy−1x−1 ∧ 1) ∧ 1 ≤ x(yy−1x−1 ∧
x−11) ∧ 1 ≤ xx−1 ∧ 1 = (xx−1)∗. For the second assertion, (xx−1)∗x ≤ 1x = x
and x = 1x ∧ x ≤ (1 ∧ xx−1)x = (xx−1)∗x.

Lemma 10. (xyy−1x−1)∗ = (x(yy−1)∗x−1)∗.

Indeed,

(xyy−1x−1)∗ = (x((yy−1)∗y)((yy−1)∗y)−1x−1)∗

= (x(yy−1)∗yy−1((yy−1)∗)−1x−1)∗

≤ (x(yy−1)∗((yy−1)∗)−1x−1)∗

= (x(yy−1)∗(yy−1)∗x−1)∗ = (x(yy−1)∗x−1)∗
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and
(x(yy−1)∗x−1)∗ ≤ (xyy−1x−1)∗ .

According to Lemmas 5–10, (A, ·,−1 ,∗ , 1,≤) satisfies the conditions of Theo-
rem 1. This immediately implies the conclusion of Theorem 2.

Lemma 11. x ∧ y(z ∧ tz) ≤ y(y−1xz−1 ∧ t)z.

Indeed,

y(z ∧ tz) ∧ x ≤ y(z ∧ tz ∧ y−1x)
≤ y((t ∧ zz−1)z ∧ y−1x) ≤ y(t ∧ zz−1 ∧ y−1xz−1)z ≤ y(t ∧ y−1xz−1)z .

Lemma 12. If x−1x ≤ 1 then x(y∧z) = xy∧xz and (y∧z)x−1 = yx−1∧zx−1.

Indeed, x(y∧ z) ≤ xy∧xz and xy∧xz ≤ x(y∧x−1xz) ≤ x(y∧1z) = x(y∧ z).
The proof of the second assertion is similar.

Lemma 13. If u−1u ≤ 1, v−1v ≤ 1 and x ∧ y ≤ u−1v, then x ∧ y =
u−1(uxv−1)∗(uyv−1)∗v.

Since u−1u ≤ 1 and v−1v ≤ 1, we have u−1(uxv−1)∗(uyv−1)∗v ≤
u−1(uxv−1)∗v ≤ u−1uxv−1v ≤ x. Analogously, u−1(uxv−1)∗(uyv−1)∗v ≤ y.
Thus, u−1(uxv−1)∗(uyv−1)∗v ≤ x ∧ y. Conversely, using Lemmas 11, 12, we
obtain

x ∧ y = x ∧ y ∧ u−1v

= x ∧ y ∧ u−1(v ∧ 1v) = u−1(u(x ∧ y)v−1 ∧ 1)v

= u−1(uxv−1 ∧ uyv−1 ∧ 1)v = u−1((uxv−1 ∧ 1) ∧ (uyv−1 ∧ 1))v

= u−1((uxv−1)∗ ∧ (uyv−1)∗)v = u−1((uxv−1)∗(uyv−1)∗)v .

Lemma 14. Suppose that %, π, α, β ∈ Rel(X) and α−1 ◦ α ⊂ ∆, β−1β ⊂ ∆,
% ∩ π ⊂ α−1 ◦ β. Then

% ∩ π = α−1 ◦ (α ◦ % ◦ β−1)∗ ◦ (α ◦ π ◦ β−1)∗ ◦ β .

It follows from α−1 ◦ α ⊂ ∆ and β−1 ◦ β ⊂ ∆ that α, β are functions.
Therefore, we write y = α(x) and y = β(x) instead of (x, y) ∈ α and (x, y) ∈ β.
Since % ∩ π ⊂ α−1 ◦ β, for each pair (x, y) ∈ % ∩ π there exists z ∈ X such that
α(z) = x and β(z) = y.

Suppose that (x, y) ∈ α−1 ◦ (α ◦ % ◦ β−1)∗ ◦ (α ◦ π ◦ β−1)∗ ◦ β. Then x = α(z)
and y = β(z) for some z such that (z, z) ∈ (α◦%◦β−1)∗ ◦ (α◦π ◦β−1)∗. It follows
that (z, z) ∈ α◦%◦β−1 and (z, z) ∈ α◦π◦β−1, hence (x, y) = (α(z), β(z)) ∈ %∩π.
Conversely, let (x, y) ∈ % ∩ π. Since x = α(z) and y = β(z) for some z, we have
(z, z) ∈ (α ◦ % ◦ β−1)∗ and (z, z) ∈ (α ◦ π ◦ β−1)∗, hence (z, z) ∈ (α ◦ % ◦ β−1)∗ ◦
(α ◦ π ◦ β−1)∗ and (x, y) = (α(z), β(z)) ∈ α−1 ◦ (α ◦ % ◦ β−1)∗ ◦ (α ◦ π ◦ β−1)∗ ◦ β,
which completes the proof of Lemma 14.

Theorem 2 and Lemmas 13, 14 immediately imply Theorem 3.
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[6] B. J ónsson, Representation of modular lattices and of relation algebras, Trans. Amer.
Math. Soc. 92 (1959), 449–464.

[7] B. M. Sche in, Relation algebras and function semigroups, Semigroup Forum 1 (1970),
1–62.

[8] —, Representation of involuted semigroups by binary relations, Fund. Math. 82 (1974),
121–141.


