## ALGEBRAIC METHODS IN LOGIC AND IN COMPUTER SCIENCE BANACH CENTER PUBLICATIONS, VOLUME 28 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 1993

## ON ALGEBRAS OF RELATIONS

## D. A. BREDIKHIN

Lermontova 7-22, 410002 Saratov, Russia

Throughout, by relation we mean a binary relation. Let  $\operatorname{Rel}(X)$  be the set of all binary relations on the set X. An algebra of relations is a pair  $(\Phi, \Omega)$  where  $\Omega$  is a set of operations on relations and  $\Phi \subset \operatorname{Rel}(X)$  is a set of relations closed under the operations of  $\Omega$ . Each algebra of relations can be considered as ordered by the set-theoretic inclusion  $\subset$ . Denote by  $M\{\Omega\}$  the class of all algebras isomorphic to ones whose elements are relations and whose operations are members of  $\Omega$ . The class  $M\{\Omega, \subset\}$  is determined in the same way.

We will consider the following operations on relations: relation product  $\circ$ , relation inverse  $^{-1}$ , intersection  $\cap$ , diagonal relation  $\Delta$ , and the unary operation \* determined as follows:  $\varrho^* = \varrho \cap \Delta$ .

The class  $M\{\circ,^{-1},\cap,\Delta\}$  was introduced and characterized in [6]. It is not finitely axiomatizable [5]. The classes  $M\{\circ,^{-1},\Delta\}$  and  $M\{\circ,^{-1},\Delta,\subset\}$  were characterized in [1, 8]. The class  $M\{\circ,^{-1},\Delta\}$  is not finitely axiomatizable [2].

In this paper we find a system of axioms for the class  $M\{\circ,^{-1},^*,\Delta,\subset\}$  and use it to obtain some results about the class  $M\{\circ,^{-1},\cap,\Delta\}$ .

Theorem 1. An algebra  $(A,\cdot,^{-1},^*,1,\leq)$  belongs to  $M\{\circ,^{-1},^*,\Delta,\subset\}$  iff it satisfies the following conditions:

- (1)  $(A, \cdot, ^{-1}, 1)$  is an involuted monoid, i.e. (xy)z = x(yz), 1x = x1 = x,  $(x^{-1})^{-1} = x$ ,  $(xy)^{-1} = y^{-1}x^{-1}$ .
- (2)  $\leq$  is an order relation and all operations are monotonic, i.e.  $x \leq y$  implies  $xz \leq yz, zx \leq zy, x^{-1} \leq y^{-1}, x^* \leq y^*.$
- (3) The following identities are satisfied:

$$(3.1) (x^*)^* = x^*,$$

<sup>1991</sup> Mathematics Subject Classification: 03G15.

 $<sup>\</sup>textit{Key words and phrases:} \ \text{agebras of relations, representations, involuted semigroups.}$ 

The paper is in final form and no version of it will be published elsewhere.

$$(3.2) x^*x^* = x^*,$$

$$(3.3) x^*y^* = y^*x^*,$$

$$(3.4) (x^*y^*)^* = x^*y^*,$$

$$(3.5) (xx^{-1})^*x = x,$$

$$(3.6) (xyy^{-1}x^{-1})^* = (x(yy^{-1})^*x^{-1})^*,$$

$$(3.7) x^* \le 1,$$

$$(3.8) x^* \le x.$$

Suppose that an algebra  $\underline{A}=(A,\cdot,^{-1},\wedge,1)\in M\{\circ,^{-1},\cap,\Delta\}$ . Then  $\underline{A}$  is a semilattice ordered involuted monoid, i.e.  $(A,\cdot,^{-1},1)$  is an involuted monoid,  $(A,\wedge,^{-1})$  is an involuted semilattice and the identity  $x(y\wedge z)\leq xy\wedge xz$  holds  $(\leq is the natural order of the semilattice) [6]. It is known [3] that <math>\underline{A}$  also satisfies

$$(4) xy \wedge z \le (x \wedge yz^{-1})y.$$

We say that a semilattice ordered involuted monoid  $\underline{A}$  is weakly representable if there exists a mapping  $F:A\to \mathrm{Rel}(X)$  for some X such that  $F(ab)=F(a)\circ F(b),\ F(a^{-1})=F(a)^{-1},\ F(1)=\Delta,\ F(a\wedge 1)=F(a)\cap\Delta$  and  $a\leq b$  iff  $F(a)\subset F(b)$  for all  $a,b\in A$ .

Theorem 2. Suppose that a semilattice ordered involuted monoid satisfies (4). Then it is weakly representable.

The following condition plays an important role in applications of algebras of relations to logic [4]:

(5) 
$$(\exists u, v)(\forall a) \ u^{-1}u \le 1 \ \& \ v^{-1}v \le 1 \ \& \ a \le u^{-1}v.$$

Consider the condition

(6) 
$$(\forall a)(\exists u, v) \ u^{-1}u \le 1 \ \& \ v^{-1}v \le 1 \ \& \ a \le u^{-1}v.$$

Obviously, (5) implies (6).

THEOREM 3. Suppose that a semilattice ordered involuted monoid  $\underline{A}$  satisfies (6). Then  $\underline{A}$  belongs to  $M\{\circ,^{-1},\cap,\Delta\}$  iff it satisfies (4).

Proof of Theorem 1. Necessity. Consider the ordered algebra of relations of the form  $(\varPhi, \circ, ^{-1}, ^*, \Delta, \subset)$ . It is well known that  $(\varPhi, \circ, ^{-1}, \Delta)$  is an involuted monoid and the operations  $\circ$  and  $^{-1}$  are monotonic [1, 8]. Suppose that  $\varrho, \pi \in \varPhi$ . Since  $\varrho^*, \pi^* \subset \Delta$ , we have  $\varrho^* \circ \pi^* = \varrho^* \cap \pi^*$ . It follows that (3.1)–(3.4) hold. If  $\varrho \subset \pi$  then  $\varrho^* = \varrho \cap \Delta \subset \pi \cap \Delta = \pi^*$ , i.e. the operation  $^*$  is monotonic. Since  $(\varrho \circ \varrho^{-1})^* \subset \Delta$ , we have  $(\varrho \circ \varrho^{-1})^* \circ \varrho \subset \varrho$ . Conversely, if  $(x,y) \in \varrho$  then  $(x,x) \in \varrho \circ \varrho^{-1} \cap \Delta = (\varrho \circ \varrho^{-1})^*$  and  $(x,y) \in (\varrho \circ \varrho^{-1})^* \circ \varrho$ , i.e.  $\varrho \subset (\varrho \circ \varrho^{-1})^* \circ \varrho$ . Since  $(\pi \circ \pi^{-1})^* \subset \pi \circ \pi^{-1}$ , we have  $(\varrho \circ (\pi \circ \pi^{-1})^* \circ \varrho^{-1})^* \subset (\varrho \circ \pi \circ \pi^{-1} \circ \varrho^{-1})^*$ . Conversely, if  $(x,x) \in (\varrho \circ \pi \circ \pi^{-1} \circ \varrho^{-1})^*$  then there exist y,z such that  $(x,y) \in \varrho$  and  $(y,z) \in \pi$ , hence  $(y,y) \in \pi \circ \pi^{-1} \cap \Delta = (\pi \circ \pi^{-1})^*$  and  $(x,y) \in (\varrho \circ (\pi \circ \pi^{-1})^* \circ \varrho^{-1})^*$ . Therefore,  $(\varrho \circ \pi \circ \pi^{-1} \circ \varrho^{-1})^* \subset (\varrho \circ (\pi \circ \pi^{-1})^* \circ \varrho^{-1})^*$ .

Sufficiency. Suppose that  $(A, \cdot, ^{-1}, ^*, 1, \leq)$  satisfies the conditions of Theorem 1. Put  $E(A) = \{a \in A : a^* = a\}$ .

LEMMA 1.  $(E(A), \cdot)$  is a semilattice;  $1 \in E(A)$ ;  $(a^{-1})^* = a^*$ ;  $(a^*)^{-1} = a^*$ ;  $a^* \le b^*$  iff  $a^*b^* = a^*$ ; if  $a \le b^*$  then  $a \in E(A)$ .

It follows from (3.1)–(3.4) that  $(E(A), \cdot)$  is a semilattice. Note that  $1^{-1} = 1 \cdot 1^{-1} = (1 \cdot 1^{-1})^{-1} = 1$ . Since  $1 = (1 \cdot 1^{-1})^* \cdot 1 = 1^* \cdot 1 = 1^*$ , we have  $1 \in E(A)$ . Since  $(a^*)^{-1} = ((a^*)^{-1}((a^*)^{-1})^{-1})^*(a^*)^{-1} \le (((a^*)^{-1})^{-1})^* = (a^*)^* = a^*$  and  $a^* = ((a^*)^{-1})^{-1} \le (a^*)^{-1}$ , we have  $(a^*)^{-1} = a^*$ . Since  $(a^*)^{-1} \le a^{-1}$ , we have  $(a^{-1})^* = ((a^{-1})^*)^{-1} \le (a^{-1})^{-1} = a$ , hence  $(a^{-1})^* \le a^*$ . Analogously,  $a^* \le (a^{-1})^*$ , i.e.  $(a^{-1})^* = a^*$ .

If  $a^*b^* = a^*$  then  $a^* = a^*b^* \le b^*$ . Conversely, if  $a^* \le b^*$  then  $a^* = a^*a^* \le a^*b^*$ . Since  $a^*b^* \le a^*$ , we have  $a^*b^* = a^*$ .

Suppose that  $a \leq b^*$ . Then  $a^* \leq (b^*)^* = b^*$  and  $a = (aa^{-1})^*a \leq (aa^{-1})^*b^* \leq (a(b^*)^{-1})^*b^* \leq a^*b^* \leq a^*$ . Since  $a^* \leq a$ , we have  $a^* = a$ , i.e.  $a \in E(A)$ . This completes the proof of Lemma 1.

Define the unary operations R and L as follows:  $Ra = (aa^{-1})^*$ ;  $La = (a^{-1}a)^*$ . Then  $R(a^{-1}) = La$  and Ra = a, La = a for each  $a \in E(A)$ . It follows from (3.5) that Raa = a and aLa = a. It follows from (3.6) that R(ab) = R(aRb) and  $L(ab) = R((ab)^{-1}) = R(b^{-1}a^{-1}) = R(b^{-1}R(a^{-1})) = R(b^{-1}La) = R((Lab)^{-1}) = L(Lab)$ .

LEMMA 2. If La = Rb then R(ab) = Ra and L(ab) = Lb.

Indeed, if La = Rb then R(ab) = R(aRb) = R(aLa) = Ra and L(ab) = L(Lab) = L(Rbb) = Lb.

For each  $B,C\subset A$  we define  $BC=\{bc:b\in B\ \&\ c\in C\}$  and  $B\leq C$  iff  $(\forall c\in C)(\exists b\in B)\ b\leq c.$  Note that if  $B\subset C$  then  $C\leq B.$ 

Let  $\mathbb{N}=\{0,1,\ldots,n,\ldots\}$  and let f be a one-to-one mapping from  $\mathbb{N}$  onto  $\mathbb{N}^5$   $(f(k)=(n_k^1,n_k^2,\ldots,n_k^5))$ . Define functions  $\varphi,\psi,\alpha,\beta:\mathbb{N}\to\mathbb{N}$  as follows:  $\varphi(k)=n_k^1$  if  $n_k^1\leq k$ , and  $\varphi(k)=k$  otherwise;  $\psi(k)=n_k^2$  if  $n_k^2\leq k$ , and  $\psi(k)=k$  otherwise;  $\alpha(k)=n_k^3$ ;  $\beta(k)=n_k^4$ . Clearly, for each  $p\in\mathbb{N}$  and  $(i,j,m,n)\in\mathbb{N}^4$  there exists  $k\in\mathbb{N}$  such that  $k\geq p$  and  $\varphi(k)=i$ ,  $\psi(k)=j$ ,  $\alpha(k)=m$ ,  $\beta(k)=n$ .

Suppose that  $b_0, \ldots, b_{2n} \in A$ . Define subsets  $B_{i,j}^k \subseteq A$  for  $k = 1, \ldots, n+1$  and  $i, j \leq k$  as follows:

(D1) 
$$B_{0,1}^1 = \{b_0\}, \quad B_{1,0}^1 = \{b_0^{-1}\}, \quad B_{0,0}^1 = \{Rb_0\}, \quad B_{1,1}^1 = \{Lb_0\};$$

(D2) 
$$B_{i,j}^{k+1} = \bigcup_{p=0}^{k} B_{i,p}^{k} B_{p,j}^{k};$$

$$B_{i,k+1}^{k+1} = B_{i,\varphi(k)}^{k+1} \{b_{2k-1}\} \cup B_{i,\psi(k)}^{k+1} \{b_{2k}^{-1}\};$$
 (D3)

$$B_{k+1,i}^{k+1} = \{b_{2k-1}^{-1}\} B_{\varphi(k),i}^{k+1} \cup \{b_{2k}\} B_{\psi(k),i}^{k+1};$$

(D4) 
$$B_{k+1,k+1}^{k+1} = \{Lb_{2k-1}Rb_{2k}\}.$$

Lemma 3.  $(B_{i,j}^k)^{-1} = B_{j,i}^k$  and  $B_{i,i}^i \subset B_{i,j}^m, B_{i,j}^m \le B_{i,j}^k$  for  $k \le m$ .

According to (D1),  $(B_{i,j}^1)^{-1} = B_{i,i}^1$ . Suppose that  $(B_{i,j}^k)^{-1} = B_{i,i}^k$ . Then

$$(B_{i,j}^{k+1})^{-1} = \left(\bigcup_{p=0}^{k} B_{i,p}^{k} B_{p,j}^{k}\right)^{-1} = \bigcup_{p=0}^{k} (B_{i,p}^{k} B_{p,j}^{k})^{-1}$$

$$= \bigcup_{p=0}^{k} (B_{p,j}^{k})^{-1} (B_{i,p}^{k})^{-1} = \bigcup_{p=0}^{k} B_{j,p}^{k} B_{p,i}^{k} = B_{i,j}^{k+1},$$

$$(B_{i,k+1}^{k+1})^{-1} = (B_{i,\varphi(k)}^{k+1} \{b_{2k-1}\} \cup B_{i,\psi(k)}^{k+1} \{b_{2k}^{-1}\})^{-1}$$

$$= \{b_{2k-1}^{-1}\} B_{\varphi(k),i}^{k+1} \cup \{b_{2k}\} B_{\psi(k),i}^{k+1} = B_{k+1,i}^{k+1},$$

$$(B_{k+1,k+1}^{k+1})^{-1} = B_{k+1,k+1}^{k+1}.$$

Suppose that  $B_{i,i}^i \subset B_{i,i}^m$ . Then  $B_{i,i}^i = B_{i,i}^i B_{i,i}^i \subset B_{i,i}^m B_{i,i}^m \subset B_{i,i}^{m+1}$ . If  $B_{i,j}^m \leq B_{i,j}^k$  then  $B_{i,j}^{m+1} \leq B_{i,i}^m B_{i,j}^m \leq B_{i,j}^i B_{i,j}^m \leq \{1\} B_{i,j}^m = B_{i,j}^m$ .

Since  $M\{\circ,^{-1},^*,\Delta,\subset\}$  is a quasivariety [7], without loss of generality we may suppose that A is countable, i.e.  $A = \{a_1, a_2, \ldots, a_n, \ldots\}$ .

Using induction for each  $d \in A$  we define sequents  $b_0, \ldots, b_{2n-1}, b_{2n}, \ldots$  and  $r_0, \ldots, r_n, \ldots$  of elements of A and E(A) respectively such that  $b_0 = d$  and for all n the following conditions hold:

- (a)  $B_{\varphi(n),\psi(n)}^n \leq \{a_{\alpha(n)}a_{\beta(n)}\};$
- (b)  $Rb = r_i$  and  $Lb = r_j$  for each  $b \in B_{i,j}^n$  and  $B_{i,i}^i = \{r_i\}$ .

Base of induction. Put  $b_0 = d$  and  $r_0 = Rb_0$ ,  $r_1 = Lb_0$ .

Inductive step. Suppose that  $b_0, \ldots, b_{2m-3}, b_{2m-2}$  and  $r_0, \ldots, r_m$  have already been defined and (a), (b) are satisfied for  $n = 1, \ldots, m$  and  $i, j \leq m$ . Put

$$b_{2m-1} = r_{\varphi(m)} a_{\alpha(m)} R(a_{\beta(m)} r_{\psi(m)}),$$
  

$$b_{2m} = L(r_{\varphi(m)} a_{\alpha(m)}) a_{\beta(m)} r_{\psi(m)}, \quad r_{m+1} = L b_{2m-1}$$

if  $B^m_{\varphi(m),\psi(m)} \leq \{a_{\alpha(m)}a_{\beta(m)}\}$ , and  $b_{2m-1} = b$  for some  $b \in B^m_{\varphi(m),\psi(m)}$ ,  $b_{2m} = r_{\psi(m)}$ ,  $r_{m+1} = r_{\psi(m)}$ , otherwise.

If  $b_{2m-1} = b$  for some  $b \in B^m_{\varphi(m),\psi(m)}$ ,  $b_{2m} = r_{\psi(m)}$ ,  $r_{m+1} = r_{\psi(m)}$  then  $b = bLb = br_{\psi(m)} = b_{2m-1}b_{2m}$ , i.e.  $B^m_{\varphi(m),\psi(m)} \le b_{2m-1}b_{2m}$  and  $Lb_{2m-1} = Rb_{2m} = r_{m+1}$ , hence  $B^{m+1}_{m+1,m+1} = \{Lb_{2m-1}Rb_{2m}\} = \{r_{m+1}\}$ .

If  $B^m_{\varphi(m),\psi(m)} \leq \{a_{\alpha(m)}a_{\beta(m)}\}$ , i.e.  $b \leq a_{\alpha(m)}a_{\beta(m)}$  for some  $b \in B^m_{\varphi(m),\psi(m)}$ , then

$$\begin{split} b &= r_{\varphi(m)} b r_{\psi(m)} \leq r_{\varphi(m)} a_{\alpha(m)} a_{\beta(m)} r_{\psi(m)} \\ &= r_{\varphi(m)} a_{\alpha(m)} L(r_{\varphi(m)} a_{\alpha(m)}) R(a_{\beta(m)} r_{\psi(m)}) a_{\beta(m)} r_{\psi(m)} \\ &= r_{\varphi(m)} a_{\alpha(m)} R(a_{\beta(m)} r_{\psi(m)}) L(r_{\varphi(m)} a_{\alpha(m)}) a_{\beta(m)} r_{\psi(m)} = b_{2m-1} b_{2m} \,, \end{split}$$

i.e.  $B_{\varphi(m),\psi(m)}^m \leq b_{2m-1}b_{2m}$ .

Since  $b \leq b_{2m-1}b_{2m}$  for some  $b \in B^m_{\varphi(m),\psi(m)}$ , we have

$$r_{\varphi(m)} = Rb \le R(b_{2m-1}b_{2m}) \le R(b_{2m-1}Rb_{2m}) \le R(b_{2m-1}).$$

On the other hand,

$$Rb_{2m-1} = R(r_{\varphi(m)}a_{\alpha(m)}R(a_{\beta(m)}r_{\psi(m)}))$$
  
=  $R(r_{\varphi(m)}R(a_{\alpha(m)}R(a_{\beta(m)}r_{\psi(m)}))) \le R(r_{\varphi(m)}) = r_{\varphi(m)},$ 

hence  $Rb_{2m-1} = r_{\varphi(m)}$ . Analogously,  $Rb_{2m} = r_{\psi(m)}$ . Since  $r_{m+1} = Lb_{2m-1}$ , we

$$\begin{split} r_{m+1} &= Lb_{2m-1} = L(r_{\varphi(m)}a_{\alpha(m)}R(a_{\beta(m)}r_{\psi(m)})) \\ &= L(L(r_{\varphi(m)}a_{\alpha(m)})R(a_{\beta(m)}r_{\psi(m)})) = R(L(r_{\varphi(m)}a_{\alpha(m)})R(a_{\beta(m)}r_{\psi(m)})) \\ &= R(L(r_{\varphi(m)}a_{\alpha(m)})a_{\beta(m)}r_{\psi(m)}) = Rb_{2m} \,. \end{split}$$

Therefore, using Lemma 2 and the definition (D1)–(D4) we conclude that (b) is satisfied for  $i, j \leq m+1$ .

Put 
$$B_{i,j} = \bigcup \{B_{i,j}^n : n \in \mathbb{N}\}$$
. Then  $B_{i,k}B_{k,j} \leq B_{i,j}$ .

LEMMA 4. 
$$\{b_0\} \leq B_{0,1} \text{ and } \{r_i\} \leq B_{i,i}$$
.

Note that if  $b \in B_{i,j}$  then b can be represented as a product of elements  $b_1, \ldots, b_m, \ldots$  and  $b_0^{-1}, \ldots, b_m^{-1}, \ldots$  This product constructed according to (D1)-(D4) will be called the *canonical form* of b. Let  $Q_k(b)$  be the number of occurrences of elements  $a_{2k-1}$ ,  $a_{2k}$  in the canonical form of b and  $Q(b) = \max\{k : Q_k(b) > 0\}$ .

Suppose that  $b \in B_{0,1}$ . If Q(b) = 0 then according to (D1)-(D4), b = 0 $b_0(b_0^{-1}b_0)^m$  for some m and we have  $b_0 = b_0Lb_0 = b_0(b_0^{-1}b_0)^* \le b_0b_0^{-1}b_0 \le b_0b_0^{-1}b_0$  $\dots \leq b_0(b_0^{-1}b_0)^m = b$ . Assume that for every  $b \in B_{0,1}$  if  $Q(b) \leq k$  and  $Q_k(b) = p$ then  $b_0 \leq b$ . Suppose that  $Q_k(b) = p + 1$ . According to (D1)-(D4) the following cases are possible:

- 1)  $b = c_1 b_{2k-1} b_{2k} c_2$  where  $c_1 \in B_{0,\varphi(k)}$  and  $c_2 \in B_{\psi(k),1}$ . Since  $B_{\varphi(k),\psi(k)}^k \leq$  $\{b_{2k-1}b_{2k}\}$ , i.e.  $c \leq \{b_{2k-1}b_{2k}\}$  for some  $c \in B_{\varphi(k),\psi(k)}^k$ , using the inductive assumption we have  $b_0 \leq c_1cc_2 \leq c_1b_{2k-1}b_{2k}c_2 = b$ . 2)  $b = c_1b_{2k}^{-1}b_{2k-1}^{-1}c_2$  where  $c_1 \in B_{0,\psi(k)}$  and  $c_2 \in B_{\varphi(k),1}$ . This case is analo-
- gous to Case 1.
- 3)  $b = c_1 b_{2k-1} b_{2k-1}^{-1} c_2$  where  $c_1 \in B_{0,\varphi(k)}$  and  $c_2 \in B_{\varphi(k),1}$ . Since  $Lc_1 =$  $Rb_{2k-1} = r_{\varphi(k)}$ , using the inductive assumption we have  $b_0 \le c_1c_2 = c_1Lc_1c_2 =$  $c_1 R b_{2k-1} c_2 = c_1 (b_{2k-1} b_{2k-1}^{-1})^* c_2 \le c_1 b_{2k-1} b_{2k-1}^{-1} c_2 = b.$
- 4)  $b = c_1 b_{2k}^{-1} b_{2k} c_2$  where  $c_1 \in B_{0,\psi(k)}$  and  $c_2 \in B_{\psi(k),1}$ . This case is analogous to Case 3.

Suppose that  $b \in B_{i,i}$ . If Q(b) = 0 then according to (D1)-(D4), i = 0 or i = 1. If i = 0 then  $b = r_0$  or  $b = (b_0 b_0^{-1})^m$  for some m and we have  $r_0 = (r_0)^m = 1$  $(Rb_0)^m = ((b_0b_0^{-1})^*)^m \le (b_0b_0^{-1})^m$ . The case i = 1 is analogous. Assume that for every  $b \in B_{i,i}$  if  $Q(b) \le k$  and  $Q_k(b) = p$  then  $r_i \le b$ . Suppose that  $Q_k(b) = p + 1$ . According to (D1)–(D4) the following cases are possible:

- 1)  $b = c_1 b_{2k-1} b_{2k} c_2$  where  $c_1 \in B_{i,\varphi(k)}$  and  $c_2 \in B_{\psi(k),i}$ . Since  $B_{\varphi(k),\psi(k)}^k \le \{b_{2k-1} b_{2k}\}$ , i.e.  $c \le \{b_{2k-1} b_{2k}\}$  for some  $c \in B_{\varphi(k),\psi(k)}^k$ , using the inductive assumption we have  $r_i \le c_1 c c_2 \le c_1 b_{2k-1} b_{2k} c_2 = b$ .
- 2)  $b = c_1 b_{2k}^{-1} b_{2k-1}^{-1} c_2$  where  $c_1 \in B_{i,\psi(k)}$  and  $c_2 \in B_{\varphi(k),i}$ . This case is analogous to Case 1.
- 3)  $b = c_1 b_{2k-1} b_{2k-1}^{-1} c_2$  where  $c_1 \in B_{i,\varphi(k)}$  and  $c_2 \in B_{\varphi(k),i}$ . Since  $Lc_1 = Rb_{2k-1} = r_{\varphi(k)}$ , using the inductive assumption we have  $r_i \le c_1 c_2 = c_1 Lc_1 c_2 = c_1 Rb_{2k-1} c_2 = c_1 (b_{2k-1} b_{2k-1}^{-1})^* c_2 \le c_1 b_{2k-1} b_{2k-1}^{-1} c_2 = b$ .
- 4)  $b = c_1 b_{2k}^{-1} b_{2k} c_2$  where  $c_1 \in B_{i,\psi(k)}$  and  $c_2 \in B_{\psi(k),i}$ . This case is analogous to Case 3.

This completes the proof of Lemma 3.

Define the mapping  $F_d: A \to \operatorname{Rel}(\mathbb{N})$  as follows:

$$F_d(a) = \{(i,j) : B_{i,j} \le \{a\}\}.$$

Since  $(B_{i,j})^{-1} = B_{j,i}$ , we have  $F_d(a^{-1}) = (F_d(a))^{-1}$ . Obviously,  $a \leq b$  implies  $F_d(a) \subset F_d(b)$ .

We show that  $F_d(ab) = F_d(a) \circ F_d(b)$ . If  $(i,j) \in F_d(a) \circ F_d(b)$ , i.e.  $(i,k) \in F_d(a)$  and  $(k,j) \in F_d(b)$  for some k, then  $B_{i,k} \leq \{a\}$  and  $B_{k,j} \leq \{b\}$ , hence  $B_{i,j} \leq B_{i,k}B_{k,j} \leq \{ab\}$ , i.e.  $(i,j) \in F_d(ab)$ . Conversely, suppose that  $(i,j) \in F_d(ab)$ , i.e.  $B_{i,j} \leq \{ab\}$ . Then  $B_{i,j}^p \leq \{ab\}$  for some p and there exists  $k \geq p$  such that  $\varphi(k) = i$ ,  $\psi(k) = j$ ,  $a = a_{\varphi(k)}$ ,  $b = a_{\psi(k)}$ . Since  $B_{\varphi(k),\psi(k)}^k \leq B_{\varphi(k),\psi(k)}^p = B_{i,j}^p \leq \{ab\} = \{a_{\alpha(k)}a_{\beta(k)}\}$ , we have  $b_{2m-1} = r_{\varphi(m)}a_{\alpha(m)}R(a_{\beta(m)}r_{\psi(m)})$ ,  $b_{2m} = L(r_{\varphi(m)}a_{\alpha(m)})b_{\beta(m)}r_{\psi(m)}$ ,  $r_{m+1} = Lb_{2m-1}$ , hence  $b_{2k-1} \leq a$  and  $b_{2k} \leq b$ . Since  $b_{2k-1} = r_ib_{2k-1} \in B_{i,\varphi(k)}^kb_{2k-1} \subset B_{i,k+1}^{k+1}$ , we have  $(i,k+1) \in F_d(b_{2k-1}) \subset F_d(a)$ . Analogously,  $(k+1,j) \in F_d(b_{2k}) \subset F_d(b)$ . Thus,  $(i,j) \in F_d(a) \circ F_d(b)$ .

We show that  $F_d(a^*) = F_d(a) \cap F_d(1)$ . Since  $a^* \leq a$  and  $a^* \leq 1$ , we have  $F_d(a^*) \subset F_d(a)$  and  $F_d(a^*) \subset F_d(1)$ . Conversely, suppose that  $(i,j) \in F_d(a) \cap F_d(1)$ ; then  $B_{i,j} \leq \{a\}$  and  $B_{i,j} \leq \{1\}$ , hence  $B_{i,i} \leq B_{i,j}(B_{i,j})^{-1} \leq \{a1^{-1}\} = \{a\}$ . Since  $\{r_i\} \leq B_{i,i}$ , we have  $r_i \leq a$ , hence  $r_i = r_i^* \leq a^*$ . Since  $r_i \in B_{i,i}$ , we have  $(i,i) \in F_d(r_i) \subset F_d(a^*)$ . It now follows from  $(i,i) \in F_d(a^*)$  and  $(i,j) \in F_d(1)$  that  $(i,j) \in F_d(a^*) \circ F_d(1) = F_d(a^*1) = F_d(a^*)$ .

Put  $X_d = X \times \{d\}$  and  $X = \bigcup \{X_d : d \in A\}$ ,  $F_d^0(a) = \{((i,d),(j,d)) : (i,j) \in F_d(a)\}$  and  $F(a) = \bigcup \{F_d^0(a) : d \in A\}$ . Obviously  $F(ab) = F(a) \circ F(b)$ ,  $F(a)^{-1} = F(a)^{-1}$ ,  $F(a^*) = F(a) \cap F(1)$ , and  $a \le b$  implies  $F(a) \subset F(b)$ . Suppose that  $F(a) \subset F(b)$ ; then  $F_a(a) \subset F_a(b)$ . Since  $(0,1) \in F_a(a)$ , we have  $(0,1) \in F_a(b)$ , i.e.  $B_{0,1} \le \{b\}$ . Then using Lemma 4, we obtain  $\{a\} \le B_{0,1} \le \{b\}$ , i.e.  $a \le b$ . Therefore, F is an isomorphism of  $(A, \cdot, ^{-1}, \le)$  into  $(\text{Rel}(X), \circ, ^{-1}, \subset)$  and  $F(a^*) = F(a) \cap F(1)$ .

It is clear that  $\varepsilon = F(1)$  is an equivalence relation on X. Let  $Y = X/\varepsilon$  and let  $\eta$  be the natural mapping of X onto Y. Put  $P(a) = \eta \circ F(a) \circ \eta^{-1}$ . It is easy to see that P is an isomorphism of  $(A, \cdot, \cdot^{-1}, \leq)$  into  $(\text{Rel}(Y), \circ, \cdot^{-1}, \subset)$  and  $P(1) = \Delta$ . It

follows that  $P(a^*) = P(a) \cap P(1) = P(a) \cap \Delta = P(a)^*$ . This completes the proof of Theorem 1.

Proof of Theorems 2 and 3. Suppose that  $(A,\cdot,^{-1},\wedge,1)$  is a semilattice ordered involuted monoid and (4) holds. Let  $\leq$  be the canonical order relation of the semilattice  $(A,\wedge)$ . Put  $a^*=a\wedge 1$ . Obviously,  $a^*\leq 1$  and  $a^*\leq a$ .

LEMMA 5. The operations  $\cdot$ ,  $^{-1}$ , \* are monotonic.

If  $a \leq b$ , i.e.  $a \wedge b = a$ , then  $a^{-1} \wedge b^{-1} = (a \wedge b)^{-1} = a^{-1}$ , i.e.  $a^{-1} \leq b^{-1}$ , and  $a^* = a \wedge 1 \leq b \wedge 1 = b^*$ . Also if  $a \leq b$ , i.e.  $a \wedge b = a$ , then  $ac = (a \wedge b)c \leq ac \wedge bc \leq bc$  and  $c(a \wedge b) \leq ca \wedge cb \leq cb$ .

LEMMA 6.  $xy \wedge z \leq x(y \wedge x^{-1}z), x \leq xx^{-1}x$ .

Indeed,  $xy \wedge z = (y^{-1}x^{-1} \wedge z^{-1})^{-1} \le ((y^{-1} \wedge z^{-1}x)x^{-1})^{-1} = x(y \wedge xz), x = x1 \wedge x < x(1 \wedge x^{-1}x) < xx^{-1}x.$ 

LEMMA 7.  $(x^{-1})^* = x^*, x^*x^* = x^*, (x^*)^{-1} = x^*.$ 

Indeed,  $x^* = x \wedge 1 = (x \wedge 1)1 \wedge 1 \leq (x \wedge 1)(1 \wedge (x \wedge 1)^{-1}1) \leq (x \wedge 1)^{-1} = x^{-1} \wedge 1 = (x^{-1})^*$  and  $(x^{-1})^* \leq ((x^{-1})^{-1})^* = x^*$ . The second assertion follows from

$$x^*x^* = (x \land 1)(x \land 1) \le (x \land 1)1 \le x \land 1 = x^*$$

and

$$x^* = x \wedge 1 = (x \wedge 1)1 \wedge 1 \le (x \wedge 1)(1 \wedge (x \wedge 1)^{-1}1)$$
  
 
$$\le (x \wedge 1)(1 \wedge x^{-1}) = x^*(x^{-1})^* = x^*x^*.$$

Finally,  $(x^*)^{-1} = (x \wedge 1)^{-1} = x^{-1} \wedge 1^{-1} = x^{-1} \wedge 1 = (x^{-1})^* = x^*$ .

Lemma 8.  $x^*y^* = x^* \wedge y^*, x^*y^* = y^*x^*, (x^*y^*)^* = x^*y^*.$ 

Since  $x^*y^* \le x^*1 = x^*$  and  $x^*y^* \le 1y^* = y^*$ , we have  $x^*y^* \le x^* \wedge y^*$ . Conversely,  $x^* \wedge y^* = x^*1 \wedge y^* \le x^*(1 \wedge (x^*)^{-1}y^*) \le x^*x^*y^* = x^*y^*$ . Thus,  $x^*y^* = x^* \wedge y^*$ . It follows that  $x^*y^* = x^* \wedge y^* = y^* \wedge x^* = y^*x^*$  and  $(x^*y^*)^* = x^*y^* \wedge 1 = x^* \wedge y^* \wedge 1 = x^* \wedge y^* = x^*y^*$ .

Lemma 9.  $(xyy^{-1}x^{-1})^* \le (xx^{-1})^*, (xx^{-1})^*x = x.$ 

Indeed,  $(xyy^{-1}x^{-1})^* = xyy^{-1}x^{-1} \wedge 1 = (xyy^{-1}x^{-1} \wedge 1) \wedge 1 \leq x(yy^{-1}x^{-1} \wedge x^{-1}1) \wedge 1 \leq xx^{-1} \wedge 1 = (xx^{-1})^*$ . For the second assertion,  $(xx^{-1})^*x \leq 1x = x$  and  $x = 1x \wedge x \leq (1 \wedge xx^{-1})x = (xx^{-1})^*x$ .

Lemma 10.  $(xyy^{-1}x^{-1})^* = (x(yy^{-1})^*x^{-1})^*$ .

Indeed,

$$\begin{split} (xyy^{-1}x^{-1})^* &= (x((yy^{-1})^*y)((yy^{-1})^*y)^{-1}x^{-1})^* \\ &= (x(yy^{-1})^*yy^{-1}((yy^{-1})^*)^{-1}x^{-1})^* \\ &\leq (x(yy^{-1})^*((yy^{-1})^*)^{-1}x^{-1})^* \\ &= (x(yy^{-1})^*(yy^{-1})^*x^{-1})^* = (x(yy^{-1})^*x^{-1})^* \end{split}$$

and

$$(x(yy^{-1})^*x^{-1})^* \le (xyy^{-1}x^{-1})^*$$
.

According to Lemmas 5–10,  $(A, \cdot, ^{-1}, ^*, 1, \leq)$  satisfies the conditions of Theorem 1. This immediately implies the conclusion of Theorem 2.

LEMMA 11.  $x \wedge y(z \wedge tz) \leq y(y^{-1}xz^{-1} \wedge t)z$ .

Indeed.

$$y(z \wedge tz) \wedge x \leq y(z \wedge tz \wedge y^{-1}x) \leq y((t \wedge zz^{-1})z \wedge y^{-1}x) \leq y(t \wedge zz^{-1} \wedge y^{-1}xz^{-1})z \leq y(t \wedge y^{-1}xz^{-1})z.$$

LEMMA 12. If 
$$x^{-1}x \le 1$$
 then  $x(y \land z) = xy \land xz$  and  $(y \land z)x^{-1} = yx^{-1} \land zx^{-1}$ .

Indeed,  $x(y \wedge z) \leq xy \wedge xz$  and  $xy \wedge xz \leq x(y \wedge x^{-1}xz) \leq x(y \wedge 1z) = x(y \wedge z)$ . The proof of the second assertion is similar.

LEMMA 13. If  $u^{-1}u \le 1$ ,  $v^{-1}v \le 1$  and  $x \wedge y \le u^{-1}v$ , then  $x \wedge y = u^{-1}(uxv^{-1})^*(uyv^{-1})^*v$ .

Since  $u^{-1}u \leq 1$  and  $v^{-1}v \leq 1$ , we have  $u^{-1}(uxv^{-1})^*(uyv^{-1})^*v \leq u^{-1}(uxv^{-1})^*v \leq u^{-1}uxv^{-1}v \leq x$ . Analogously,  $u^{-1}(uxv^{-1})^*(uyv^{-1})^*v \leq y$ . Thus,  $u^{-1}(uxv^{-1})^*(uyv^{-1})^*v \leq x \wedge y$ . Conversely, using Lemmas 11, 12, we obtain

$$x \wedge y = x \wedge y \wedge u^{-1}v$$

$$= x \wedge y \wedge u^{-1}(v \wedge 1v) = u^{-1}(u(x \wedge y)v^{-1} \wedge 1)v$$

$$= u^{-1}(uxv^{-1} \wedge uyv^{-1} \wedge 1)v = u^{-1}((uxv^{-1} \wedge 1) \wedge (uyv^{-1} \wedge 1))v$$

$$= u^{-1}((uxv^{-1})^* \wedge (uyv^{-1})^*)v = u^{-1}((uxv^{-1})^*(uyv^{-1})^*)v.$$

LEMMA 14. Suppose that  $\varrho, \pi, \alpha, \beta \in \text{Rel}(X)$  and  $\alpha^{-1} \circ \alpha \subset \Delta$ ,  $\beta^{-1}\beta \subset \Delta$ ,  $\varrho \cap \pi \subset \alpha^{-1} \circ \beta$ . Then

$$\varrho \cap \pi = \alpha^{-1} \circ (\alpha \circ \varrho \circ \beta^{-1})^* \circ (\alpha \circ \pi \circ \beta^{-1})^* \circ \beta$$
.

It follows from  $\alpha^{-1} \circ \alpha \subset \Delta$  and  $\beta^{-1} \circ \beta \subset \Delta$  that  $\alpha$ ,  $\beta$  are functions. Therefore, we write  $y = \alpha(x)$  and  $y = \beta(x)$  instead of  $(x, y) \in \alpha$  and  $(x, y) \in \beta$ . Since  $\varrho \cap \pi \subset \alpha^{-1} \circ \beta$ , for each pair  $(x, y) \in \varrho \cap \pi$  there exists  $z \in X$  such that  $\alpha(z) = x$  and  $\beta(z) = y$ .

Suppose that  $(x,y) \in \alpha^{-1} \circ (\alpha \circ \varrho \circ \beta^{-1})^* \circ (\alpha \circ \pi \circ \beta^{-1})^* \circ \beta$ . Then  $x = \alpha(z)$  and  $y = \beta(z)$  for some z such that  $(z,z) \in (\alpha \circ \varrho \circ \beta^{-1})^* \circ (\alpha \circ \pi \circ \beta^{-1})^*$ . It follows that  $(z,z) \in \alpha \circ \varrho \circ \beta^{-1}$  and  $(z,z) \in \alpha \circ \pi \circ \beta^{-1}$ , hence  $(x,y) = (\alpha(z),\beta(z)) \in \varrho \cap \pi$ . Conversely, let  $(x,y) \in \varrho \cap \pi$ . Since  $x = \alpha(z)$  and  $y = \beta(z)$  for some z, we have  $(z,z) \in (\alpha \circ \varrho \circ \beta^{-1})^*$  and  $(z,z) \in (\alpha \circ \pi \circ \beta^{-1})^*$ , hence  $(z,z) \in (\alpha \circ \varrho \circ \beta^{-1})^* \circ (\alpha \circ \pi \circ \beta^{-1})^* \circ \beta$ , which completes the proof of Lemma 14.

Theorem 2 and Lemmas 13, 14 immediately imply Theorem 3.

## References

- [1] D. A. Bredikhin, Representation of ordered involuted semigroups, Izv. Vyssh. Uchebn. Zaved. Mat. 7 (1975), 19–29 (in Russian).
- [2] —, Abstract characteristics of some relation algebras, in: Algebra and Number Theory, Nalchic 1977, 3–19 (in Russian).
- [3] L. H. Chin and A. Tarski, Distributive and modular laws in the arithmetic of relation algebras, Univ. Calif. Publ. Math. 1 (1951), 341–383.
- [4] S. A. Givant and A. Tarski, A formalization of set theory without variables, Amer. Math. Soc. Colloq. Publ. 41, Amer. Math. Soc., Providence, R.I., 1987.
- [5] M. Haivan, Arguesian lattices which are not linear, Bull. Amer. Math. Soc. 16 (1987), 121–123.
- [6] B. Jónsson, Representation of modular lattices and of relation algebras, Trans. Amer. Math. Soc. 92 (1959), 449–464.
- [7] B. M. Schein, Relation algebras and function semigroups, Semigroup Forum 1 (1970), 1–62.
- [8] —, Representation of involuted semigroups by binary relations, Fund. Math. 82 (1974), 121–141.