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Abstract. The theory of discriminator algebras and varieties has been investigated ex-
tensively, and provides us with a wealth of information and techniques applicable to specific
examples of such algebras and varieties.

Here we give several such examples for Boolean algebras with a residuated binary operator,
abbreviated as r-algebras. More specifically, we show that all finite r-algebras, all integral r-
algebras, all unital r-algebras with finitely many elements below the unit, and all commutative
residuated monoids are discriminator algebras, provided they are subdirectly irreducible. These
results are then used to give equational bases for some varieties of r-algebras. We also show that
the variety of all residuated Boolean monoids is not a discriminator variety, which answers a
question of B. Jónsson.

1. Preliminaries. A unary operation f on a Boolean algebra A0 =
(A,+, 0, ·, 1,− ) is additive if f(x + y) = f(x) + f(y) and normal if f(0) = 0.
For an n-ary operation f on A0, a sequence a ∈ An and i < n we define the
(a, i)-translate of f to be the unary operation

fa,i(x) = f(a0, . . . , ai−1, x, ai+1, . . . , an−1) .

An operator on A0 is an n-ary operation for which all (a, i)-translates are additive
and normal. Note that 0-ary operations (constants) have no translates, so they
are operators by default. A = (A0,F) is a Boolean algebra with operators (BAO
for short) if each f ∈ F is an operator on A0. The arity (or rank) of f is denoted
by %f . To be an operator on a Boolean algebra is of course an equational property,
and the variety of all BAOs with operators in F will be denoted by BAOF . The
variety BAO{f}, where f is a unary operator, is usually referred to as the variety
of modal algebras (the algebraic counterpart of modal logic).
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Although we will concern ourselves only with BAOs, the concept of a discrim-
inator applies to algebras in general. Therefore we define it first in that context
and then show how it simplifies for BAOs. In the hope of popularizing the discrim-
inator in algebraic logic, we assume only a basic knowledge of universal algebra.
A good reference for such information is [MMT].

A discriminator algebra is a nontrivial algebra A for which there exists a
ternary term t (in the language of A), called a discriminator term, such that for
all x, y, z ∈ A

tA(x, x, z) = z and tA(x, y, z) = x if x 6= y .

The most striking consequence of the existence of such a term is that A must
be simple, i.e., A admits only two congruences, namely the identity relation and
the universal relation. This is because any congruence θ distinct from the iden-
tity relation identifies at least two distinct elements of A, say a 6= b, so by the
substitution property

a = tA(a, b, c) θ tA(a, a, c) = c

for any element c ∈ A, and now it follows from transitivity that θ must be the
universal relation.

In general it is not true that every simple algebra is a discriminator algebra,
though we will show below that for atomic r-algebras (in fact for Boolean algebras
with at least one atom and finitely many residuated operators) this is indeed the
case.

A discriminator variety is a variety generated by a class of (similar) algebras
which are discriminator algebras with respect to the same term t. Discriminator
varieties have nice structural properties. For example,

(I) the concepts of an algebra being simple, subdirectly irreducible or directly
indecomposable are equivalent in discriminator varieties,

(II) for a variety V and a term t in the language of V, the statement “t is a dis-
criminator term in the subdirectly irreducible members of V” can be characterised
by equations, and

(III) in a discriminator variety V any universal sentence can be translated into
an equation such that the sentence holds in all simple members of V if and only
if the corresponding equation holds in V.

In the next section we consider these results in more detail for BAOs. A
good survey of discriminator algebras in general can be found in the monograph
[W78] and more recent results relevant to algebraic logic are contained in [BP89].
Here we only note that for an algebra A that has a Boolean algebra reduct
A0 = (A,+, 0, ·, 1,− ), A is a discriminator algebra if and only if there exists a
unary term c, called a unary discriminator , such that

cA(0) = 0 and cA(x) = 1 if x 6= 0 .
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This follows from the observation that in a Boolean algebra c and t are interde-
finable:

c(x) = t(0, x, 1)− and t(x, y, z) = xc(x⊕ y) + zc(x⊕ y)− ,

where x⊕ y = xy− + x−y denotes the operation of symmetric difference. We use
the symbol c because cA is a monadic closure operator on A0. For example, any
relation algebra (A0, ; , ,̆ 1’) is a discriminator algebra with unary discriminator
term c(x) = 1 ; x ; 1. Much of the subsequent material addresses the question
which generalisations of relation algebras are discriminator algebras.

A unary operation on a Boolean algebra A0 is residuated if there exists a
residual operation g such that for all x, y ∈ A

f(x) ≤ y iff x ≤ g(y) .

Equivalently, f is residuated if there exists a conjugate operation h such that for
all x, y ∈ A

f(x)y = 0 iff xh(y) = 0 .
If they exist, then g and h are unique, and they are related by the formulas
h(x) = g(x−)− and g(x) = h(x−)−. The operation f is selfconjugate if it is equal
to its conjugate.

Note that the relation “is a conjugate of” is symmetric. This is one of the
reasons why it is more convenient to consider conjugates instead of residuals.
However, the concept of residuation applies more generally to posets, and is also
known as Galois connection or adjunction in category theory.

The following simple but important observations about residuated operations
in Boolean algebras appeared in [JT51]:

(IV) Every residuated operation is normal and completely additive (i.e. pre-
serves all existing joins).

(V) f and h are conjugate operations on A0 if and only if they are normal
and for all x, y ∈ A

f(x)y ≤ f(xh(y)) and xh(y) ≤ h(f(x)y) .

Two n-ary operations f and h on A are conjugate in the i-th argument if fa,i
is conjugate to ha,i for all a ∈ An.

Let A = (A0,F) be a Boolean algebra with additional operations. We say
that A is a Boolean algebra with residuated operators (residuated BAO for short)
if for each nonconstant f ∈ F and all i < %f there exist a %f -ary term t which
is conjugate to f in the ith argument. It follows immediately from (IV) that
A ∈ BAOF . Again we mention relation algebras A = (A0, ; , ,̆ 1’) as motivating
examples of residuated BAOs, since ˘ is selfconjugate and ; has conjugate terms
x ; y˘ and x˘ ; y.

An r-algebra is a Boolean algebra A0 with three residuated binary operations
◦, . and /, where . and / are the right and left conjugates of ◦, i.e., the conditions

(x ◦ y)z = 0, (x . z)y = 0 and (z / y)x = 0
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are equivalent. By (V) this is an equational property, whence it follows that the
class of all r-algebras is a (finitely based) variety.

A unital r-algebra or ur-algebra is of the form (A0, ◦, ., /, e), where e is a unit
element with respect to ◦ (i.e. e◦x = x◦e = x for all x ∈ A). A residuated Boolean
monoid, or rm-algebra, is a ur-algebra in which the operation ◦ is associative.

A motivation for studying r-algebras is that they are natural generalisations
of relation algebras: for any relation algebra A = (A0, ; , ,̆ 1’) we obtain an rm-
algebra A′ = (A0, ◦, ., /, e) if we define x ◦ y = x ; y, x . y = x˘ ; y, x / y = x ; y˘
and e = 1’. If we consider nonassociative relation algebras, as in [Ma82], then we
obtain ur-algebras. Conversely, it is shown in [JTs91] that if a ur-algebra satisfies
the equations x . y = (x . e) ◦ y and x / y = x ◦ (y . e) then it is (term-definably
equivalent to) a nonassociative relation algebra, with x˘ = x . e.

Other areas where r-algebras occur are in the theory of automata as com-
plex algebras over monoids, in axiomatic treatments of the betweenness relation
in geometry, in the algebraic study of relevance logics (with classical negation),
and in the study of complex algebras of ternary relational structures in general.
Residuated BAOs have also been studied in a more category-theoretical setting
in [GM90].

2. Discriminator varieties of Boolean algebras with operators. Since
Boolean algebras are term-definably equivalent to Boolean rings, Boolean congru-
ence relations are determined by their 0-congruence classes or ideals. In particular,
if I is an ideal of A0 then the corresponding Boolean congruence relation is given
by

x θI y iff x⊕ y ∈ I .
An ideal of a BAO is a congruence ideal if it is the 0-congruence class of some
congruence relation on the algebra. The following result gives an internal charac-
terisation of congruence ideals.

Lemma 1. Let A ∈ BAOF . For a Boolean ideal I of A0 the following are
equivalent :

(i) I is a congruence ideal of A,
(ii) x ∈ I implies f1,i(x) ∈ I for all f ∈ F and i < %f , where 1 is a sequence

of 1’s of length %f .

P r o o f. If (i) holds then θI is a congruence on A, so for all x ∈ I, f ∈ F and
i < %f

x θI 0⇒ f1,i(x) θI f1,i(0) = 0⇒ f1,i(x) ∈ I.
Conversely, suppose (ii) holds. We have to show that θI has the substitution

property for all f ∈ F . Since θI is transitive, it suffices to show that for all f ∈ F ,
all i < %f and all a ∈ A%f

x θI y implies fa,i(x) θI fa,i(y) .
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So suppose x⊕ y = xy− + x−y ∈ I. By the additivity of f we have

fa,i(x)fa,i(y)− = fa,i(xy)fa,i(y)− + fa,i(xy−)fa,i(y)− ≤ 0 + f1,i(xy−) ∈ I.

Similarly fa,i(x)−fa,i(y) ∈ I, whence the result follows.

For an element a in a BAO A let Aa = {xa : x ∈ A} = {y ∈ A : y ≤ a}
be the principal ideal generated by a, and let A0a be the relativised Boolean
algebra (Aa,+, 0, ·, 1,−a ) with relative complement x−a = x−a. The relativised
BAO Aa is defined to be (A0a, {fa : f ∈ F}) where fa(x) = f(x)a for any
sequence x ∈ (Aa)%f .

A congruence element in a BAO A is an element a ∈ A for which the principal
ideal Aa is a congruence ideal. By Lemma 1, a is a congruence element if and
only if

f1,i(a) ≤ a for all f ∈ F and i < %f .

Note that the map ϕ(x) = xa is a Boolean homomorphism from A0 to A0a, with
kernel Aa−. Therefore ϕ is a BAO homomorphism from A to Aa if and only if
a− is a congruence element. A universal algebraic result about factor congruences
can now be stated in this context as follows:

Theorem 2. A BAO A can be decomposed into a direct product of two non-
trivial factors if and only if there exists a ∈ A such that a 6∈ {0, 1} and both a
and a− are congruence elements of A. In this case A ∼= Aa×Aa−.

We now apply these observations to discriminator varieties. The following the-
orem is a reformulation for BAOs of McKenzie’s characterisation of discriminator
varieties in [M75] (cf. (II) above).

Theorem 3. Let V be a subvariety of BAOF and let c be a unary term of V.
The following are equivalent :

(i) c is a unary discriminator in all subdirectly irreducible members of V,
(ii) V satisfies the equations c(0) = 0, x ≤ c(x),

(∗) f1,i(c(x)) ≤ c(x) and f1,i(c(x)−) ≤ c(x)−

for each operator f ∈ F and i < %f .

P r o o f. (i)⇒(ii). By definition cA(0) = 0, cA(x) = 1 if x 6= 0, and fA
1,i(0) = 0

for each f ∈ F and i < %f , so the equations hold in V.
(ii)⇒(i). Let A be a subdirectly irreducible algebra in V. By Lemma 1 the

equations (∗) imply that cA(x) and cA(x)− are congruence elements for every
x ∈ A. Since any subdirectly irreducible member of V is directly indecomposable,
Theorem 2 implies that cA(x) is either 0 or 1. For x 6= 0 the equation x ≤ c(x)
implies that cA(x) 6= 0, so cA(x) = 1.

Observe that in a residuated BAO the complement of a congruence element
is also a congruence element, since if t is a conjugate term for f ∈ F in the ith
argument then t1,i is normal and hence t1,i(a) ≤ a for any congruence element a,
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which is equivalent to t1,i(a)a− = 0, f1,i(a−)a = 0 and finally f1,i(a−) ≤ a−.
Therefore half the equations (∗) are redundant in this case. Also, the existence of
a nontrivial congruence element in a residuated BAO implies that the algebra is
decomposable. Since every ideal in a finite Boolean algebra is necessarily principal,
it follows that for finite residuated BAOs the properties of being indecomposable,
subdirectly irreducible and simple are equivalent.

For a BAO A = (A0,F) of finite similarity type (i.e. F finite), define the term
τ by

τ(x) =
∑
{f1,i(x) : f ∈ F , 0 < %f , i < %f} .

So for example in a ur-algebra (A0, ◦, ., /, e)

τ(x) = 1 ◦ x+ x ◦ 1 + 1 . x+ x / 1 + 1 / x+ x . 1 .

It now follows from Lemma 1 that A and the modal algebra (A0, τ
A) have iden-

tical congruence lattices.
With this notation we can also summarise the equations (∗) as

τ(c(x)) ≤ c(x) and τ(c(x)−) ≤ c(x)− .

Note that for r-algebras τ(x) is selfconjugate and so the two equations are equiv-
alent.

Theorem 4. Let A∈BAOF be of finite type. If A is simple, contains at least
one atom, and if τ(x) is selfconjugate then A is a discriminator algebra with
unary discriminator c(x) = τn(x) for some n ∈ ω.

P r o o f. For any atom a ∈ A, the congruence ideal generated by a is the join
of all principal ideals Aτn(a), n ∈ ω. If A is simple, then this join must be A,
which is a compact congruence ideal of A. Therefore there exists na ∈ ω such
that τna(a) = 1.

Now for any nonzero x ∈ A, τna(a)x 6= 0, hence τna(x)a 6= 0 and a ≤ τna(x),
since τ is selfconjugate and a is an atom. Consequently, 1=τna(a) ≤ τ2na(x) for
all nonzero x ∈ A and therefore c(x) = τ2na(x) is a unary discriminator.

In light of the remarks after Theorem 3 we also have the following result.

Corollary 5. Every finite subdirectly irreducible residuated BAO of finite
type is a discriminator algebra with unary discriminator c(x) = τn(x) for some
n ∈ ω.

An r-algebra is integral if for all elements x, y the condition x ◦ y = 0 implies
x = 0 or y = 0. We now give an application of Theorem 3 to axiomatise the
variety generated by all integral r-algebras.

Lemma 6. An r-algebra A is integral if and only if the term c(x) = x . 1 is a
unary discriminator for A.
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P r o o f. Assume A integral and let x be a nonzero element of A. Then the
conditions

(x . 1)y = 0, x ◦ y = 0 and y = 0
are equivalent, whence x.1 = 1. Conversely, if x.1 is a unary discriminator then
x 6= 0 and y 6= 0 imply (x . 1)y 6= 0, hence x ◦ y 6= 0.

Corollary 7. For a variety V of r-algebras, the following are equivalent :

(i) V is the largest variety for which c(x) = x . 1 is a unary discriminator in
all its subdirectly irreducible members.

(ii) V is generated by all integral r-algebras.
(iii) V is the variety of all r-algebras that satisfy the equation x+τ(x.1) ≤ x.1.

P r o o f. (i) is equivalent to (ii) by Lemma 6, and the equivalence of (i) and
(iii) follows from Theorem 3 once we observe that 0 . 1 = 0 and τ is selfconjugate
for r-algebras.

We end this section with an explicit description (for BAOs) of the transla-
tion from universal sentences to equations, mentioned in (III) above. Let V be a
discriminator variety of BAOs with unary discriminator c(x) and let σ be a uni-
versal sentence in the language of V. Equivalently, we can view σ as a universally
quantified open formula and we may assume that it is built up from atomic formu-
las (i.e. equations of terms) using only conjunction and negation. Steps (A)–(C)
below inductively define a term σ∗ of V such that

V � σ∗ = 1 if and only if Si(V) � σ .

(A) If σ is an atomic formula s = t, let σ∗ = (s⊕ t)−,
(B) if σ is a conjuction of two open formulas ϕ and ψ, let σ∗ = ϕ∗ · ψ∗ and
(C) if σ is the negation of an open formula ϕ, let σ∗ = c(ϕ∗−).

3. Discriminator ur-algebras. We first list some properties that hold in all
ur-algebras.

Lemma 8. For any x, y, u, v in a ur-algebra with u, v ≤ e we have

(i) x ≤ y ◦ u implies x = x ◦ u,
(ii) (x ◦ u)y = (y ◦ u)x,

(iii) x / u = x ◦ u and u . x = u ◦ x,
(iv) u ◦ v = uv,
(v) (x ◦ u)v = (x . u)v = (x / u)v = (u ◦ x)v = (u . x)v = (u / x)v = xuv,
(vi) (1 ◦ u)x = x ◦ u and (u ◦ 1)x = u ◦ x.

P r o o f. (i) By assumption, x ≤ y ◦ u implies x ≤ y, so y = x+ yx−. Now

x ≤ y ◦ u = (x+ yx−) ◦ u = x ◦ u+ yx−◦ u .

But x(yx−◦ u) ≤ xyx− = 0, hence x ≤ x ◦ u ≤ x.
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(ii) Let z = (y ◦ u)x ≤ y ◦ u. Then (i) implies that z = z ◦ u ≤ x ◦ u. Since we
also have z ≤ yx ≤ y, we get z = (y ◦u)x ≤ (x ◦u)y. For the reverse direction we
simply interchange x and y.

(iii) Conjugation and (ii) imply that the conditions (x / u)y 6= 0, (y ◦ u)x 6= 0
and (x ◦ u)y 6= 0 are equivalent, hence x / u = x ◦ u.

(iv) First we note that u = u◦u since u = u◦e = u◦u+u◦eu− and u◦eu− ≤
uu− = 0. Therefore uv = uv ◦ uv ≤ u ◦ v. Conversely, u ◦ v ≤ (u ◦ e)(e ◦ v) ≤ uv.

(v) By additivity (x◦u)v = (xe◦u)v+(xe−◦u)v = xuv since (xe−◦u)v ≤ e−e
= 0. By (iii) we also have (x/u)v = xuv. Now (x.u)v = (xe.u)v+(xe− .u)v =
xeuv + 0 = xuv, again using (iii).

(vi) A direct calculation gives (1 ◦ u)x = (x ◦ u)x+ (x− ◦ u)x = x ◦ u.

Although there are several ways in which one might generalise the notions
of domain and range of a relation for an element in a ur-algebra, we find the
following one most useful. For x ∈ A let

xδ = (1 / x)e and x% = (x . 1)e

be the domain and range of x respectively. With this definition, u = exδ− is
the largest element below e for which u ◦ x = 0 (see proof of (iii) below). We
summarise some of the properties of these operations:

Lemma 9. For any x in a ur-algebra

(i) x ≤ e implies xδ = x = x%,
(ii) xδδ = xδ and x%% = x%, and
(iii) xδ ◦ x = x = x ◦ x%.

P r o o f. (i) follows from Lemma 8(v), and (ii) is an immediate consequence of
(i). To prove (iii), we compute x = e ◦ x = xδ ◦ x+ exδ− ◦ x, and (exδ− ◦ x)1 = 0
since (1 / x)exδ− = xδxδ− = 0.

We now prove a general result about congruence lattices of modal algebras,
and then apply it to ur-algebras in which the unit element is the join of finitely
many atoms.

Theorem 10. Let A = (A0, f) be a modal algebra and suppose that A satisfies
the inclusion x ≤ f(fn(x)u) for some (fixed) u ∈ A and n ∈ ω. Then

Con(A) ∼= Con(A0u, g
A)

where g(x) = fn+2(x)u.

P r o o f. We will show that the maps

F (I) = Iu and G(J) = Af(J) = {x ∈ A : x ≤ f(y) for some y ∈ J}
map congruence ideals to congruence ideals and are inverses of each other. Since
they are also order preserving, the result follows.

Note that the inclusion x ≤ f(fn(x)u) implies f2(x) ≤ f(g(x)), and therefore

(∗) fn+1(x) ≤ f(gn(x)) .
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For any congruence ideal I of A, F (I) is clearly a Boolean ideal, and if x ∈
Iu then fn+2(x) ∈ I, hence g(x) ∈ Iu. Now consider a congruence ideal J of
(A0u, g

A). Again G(J) is easily seen to be a Boolean ideal. So suppose x∈Af(J),
whence x ≤ f(y) for some y ∈ J . Then

f(x) ≤ f2(y) ≤ f(fn+2(y)u) ≤ f(g(y))

and since g(y) ∈ J it follows that f(x) ∈ Af(J). This shows that F and G map
congruence ideals to congruence ideals.

Next we show that FG(J) = J . Let x ∈ FG(J) = Af(J)u. Then x ≤ f(y)u
for some y ∈ J , hence

x ≤ f(fn(x)u)u ≤ fn+1(x)u ≤ fn+2(y)u = g(y) ∈ J .
Conversely, for any x ∈ J , we have x ≤ u, hence x ≤ fn+1(x) ≤ f(gn(x)), where
the last inclusion follows from (∗) above.

Finally, we have GF (I) = I since Af(Iu) ⊆ f(I) ⊆ I, and for any x ∈ I,
x ≤ f(fn(x)u) ∈ f(Iu), hence x ∈ Af(Iu).

Recall that for a BAO A = (A0,F) of finite type Con(A) is isomorphic to
Con(A0, τ

A), where τ is the join of all (1, i)-translates of f ∈ F , i < %f .

Corollary 11. Suppose A is a ur-algebra, and let g(x) = τ3(x)e. Then

Con(A) ∼= Con(A0e, g
A) .

P r o o f. The result will follow from the previous theorem with f(x) = τ(x)
and n = 2 once we establish the inclusion x ≤ τ(τ(x)e). But this is immediate,
since by Lemma 9(iii), x = xδ ◦ x ≤ (1 / x)e ◦ 1 ≤ τ(τ(x)e).

Corollary 12. Any subdirectly irreducible ur-algebra A in which the identity
element e is the join of finitely many atoms is a discriminator algebra.

P r o o f. In this case the algebra (A0e, g
A) from the preceding corollary is

a finite subdirectly irreducible selfconjugate modal algebra. By Corollary 5 it
is a discriminator algebra and therefore simple. But then A is also simple by
Corollary 11, whence Theorem 4 implies that it is a discriminator algebra.

If e is an atom of A then one can easily show by a direct calculation that
c(x) = (1.x)◦1 is a unary discriminator. Note also that e is an atom of A if and
only if A satisfies the universal sentence

for all x ∈ A either ex = 0 or ex− = 0 .

Using steps (A)–(C) at the end of Section 2 to translate this into an equation and
combining it with Theorem 3 we obtain the following result:

Theorem 13. Let Ve be the variety generated by all ur-algebras in which e is
an atom, and let c(x) = (1 . x) ◦ 1. Then the following equations form a basis for
Ve relative to the variety of all ur-algebras:

x+ τ(c(x)) ≤ c(x) and c(c(ex)− + c(ex−)−) = 1 .
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Note that e is an atom in any integral ur-algebra (by Lemma 8(iv)) but, in
contrast to relation algebras, the converse does not hold in general.

We now turn to rm-algebras, i.e. ur-algebras that are associative with respect
to ◦. The main result (Corollary 17) is that the variety of commutative rm-
algebras is a subvariety of Ve above.

Lemma 14. For any x , u, v in an rm-algebra with u, v ≤ e we have

(i) (1 ◦ u)(1 ◦ v) = 1 ◦ uv and
(ii) (x ◦ u)(y ◦ v) = xy ◦ uv.

P r o o f. (i) (1◦u)(1◦v)=1◦v◦u=1◦uv by Lemma 8(ii), (iv) and associativity.
(ii) Using (i) and Lemma 8(vi) we calculate (x ◦ u)(y ◦ v) = (1 ◦ u)(1 ◦ v)xy =

(1 ◦ uv)xy = xy ◦ uv.

The next lemma gives several equivalent formulations of the associative law in
r-algebras. A general method for proving such equivalences in residuated BAOs
is given in [JTs91], although they can also be verified by direct computation.

Lemma 15. The following identities are equivalent in any r-algebra:

(i) (x ◦ y) ◦ z = x ◦ (y ◦ z),
(ii) (x . y) / z = x . (y / z),
(iii) (x ◦ y) . z = y . (x . z),
(iv) x / (y ◦ z) = (x / z) / y.

Note also that the commutative law x ◦ y = y ◦x is equivalent to x. y = y /x.

Theorem 16. Let A=(A0, ◦, ., /, e) be a commutative rm-algebra. Then 1◦u
is a congruence element for any u ≤ e.

P r o o f. Let x=1◦u. Since A is commutative, it suffices to show that 1◦x≤ x,
1.x ≤ x and 1/x ≤ x. By associativity 1◦x = x. By Lemma 8(iii), x = 1/u, so

1 . x = 1 . (1 / u) = (1 . 1) / u = 1 / u = x

by Lemma 15(ii). Finally, 1 / x = 1 / (1 ◦ u) = (1 / u) / 1 using Lemma 15(iv). By
commutativity (1 / u) / 1 = 1 . (1 / u) = x as before.

Corollary 17. The variety of all commutative rm-algebras is a discriminator
variety , and in the simple members e is an atom.

P r o o f. Suppose A is a commutative rm-algebra in which e is not an atom.
Then there exists a nonzero element u ≤ e such that v = eu− is also nonzero. By
the preceding theorem u ◦ 1 and v ◦ 1 are congruence elements, and by Lemma 14
they are disjoint, so it follows from the additivity of ◦ that they are complements
of each other. Therefore A is directly decomposable by Theorem 2. As a result
e is necessarily an atom in any subdirectly irreducible commutative rm-algebra,
and hence the variety of all commutative rm-algebras is a subvariety of Ve. By
Corollary 12, Ve is a discriminator variety, and this property carries over to all
its subvarieties.
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The previous result generalises an unpublished result of C. Tsinakis, who
proved that the variety of commutative Euclidean (defined below) rm-algebras is
a discriminator variety.

4. Categories, Euclidean rm-algebras and a counterexample. Here
we show that certain rm-algebras can be constructed as complex algebras of
(small) categories. We then use this observation to show that, in spite of the
many examples of discriminator algebras and varieties of residuated BAOs in the
previous sections, the variety of all rm-algebras is not a discriminator variety.

At the end of Section 1 we remarked that r-algebras occurred in the algebraic
study of ternary relational structures. We now elaborate on this remark. Let U
be a relational structure (U,R) for some ternary relation R ⊆ U3. The complex
algebra of U is defined as U+ = (U+, R+), where U+ is the Boolean algebra of
sets (P(U),∪, ∅,∩, U,− ) and for X,Y ⊆ U

R+(X,Y ) = {z ∈ U : (x, y, z) ∈ R for some x ∈ X, y ∈ Y } .
It is easy to see that U+ is a BAO, but note that the definition of R+ treats the
last coordinate of R-tuples in a special way. We can just as well define two other
operations

R+
1 (X,Z) = {y ∈ U : (x, y, z) ∈ R for some x ∈ X, z ∈ Z} and

R+
0 (Z, Y ) = {x ∈ U : (x, y, z) ∈ R for some y ∈ Y, z ∈ Z} .

Now the residuated complex algebra of U, denoted by U⊕, is defined as
(U+, R+, R+

1 , R
+
0 ) and, when it is clear from the context what relation R we are

working with, we denote R+, R+
1 , R

+
0 by ◦, ., / respectively. Again it is easy to

see that U⊕ is a residuated BAO and thus an r-algebra. The concepts of complex
algebra and residuated complex algebra can, of course, be defined for relational
structures of arbitrary type, but this is not needed here.

Every r-algebra can be embedded in the residuated complex algebra of a
ternary relational structure. In the general case this result is known as the re-
presentation theorem for BAOs and is a straightforward consequence of the (non-
trivial) result that every BAO can be embedded in its canonical extension, which
is a complete and atomic BAO. This embedding preserves equations that contain
no complementation, so the canonical extension of a residuated BAO is again
residuated. For a recent treatment of these classical results of [JT51] see [J91].

We aim to construct an rm-algebra that is not a discriminator algebra, so we
need to consider some specialised relational structures. A partial semigroup is a
structure (U, ◦) where ◦ is a partial binary operation on U such that whenever
a◦ b and (a◦ b)◦ c are defined, then b◦ c and a◦ (b◦ c) are defined, and conversely,
and (a ◦ b) ◦ c = a ◦ (b ◦ c). Note that the residuated complex algebra of a partial
semigroup is an associative r-algebra, with ◦ defined on subsets of U in the usual
way by

X ◦ Y = {x ◦ y : x ∈ X and y ∈ Y } .
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A (small) category is a special kind of partial semigroup with a distinguished
subset E ⊆ U (of identity morphisms) such that E ◦ x = x ◦ E = x. Thus the
residuated complex algebra of a category is an rm-algebra. But we get somewhat
more since a category also has to satisfy the property: whenever a ◦ b and b ◦ c
are defined, then (a ◦ b) ◦ c (and a ◦ (b ◦ c)) is defined (see [MMT]). This suggests
considering the following property for r-algebras:

a ◦ b 6= 0 6= b ◦ c implies (a ◦ b) ◦ c 6= 0 6= a ◦ (b ◦ c) .

An r-algebra that satisfies this property will be called weakly Euclidean.
An r-algebra is said to be Euclidean if it satisfies the inclusion (a . b) ◦ c ≤

a . (b ◦ c) or equivalently if

(a . x)(y / c) 6= 0 implies (a ◦ y)(x ◦ c) 6= 0 .

An r-algebra is said to be strongly Euclidean if it satisfies the identity (a.b)◦ c =
a . (b ◦ c). The implicational form of the Euclidean inclusion appeared in [P61] in
the context of a modern treatment of geometry. Every relation algebra is strongly
Euclidean, and it is shown in [JTs91] that for ur-algebras the converse is also
true. The following lemma establishes a connection between Euclidean and weakly
Euclidean r-algebras. Note that At(A) is the set of atoms of the Boolean reduct
of A.

Lemma 18. Let A be an r-algebra.

(i) If A is Euclidean then it is weakly Euclidean.
(ii) If A is atomic, weakly Euclidean and (At(A), ◦) is a partial semigroup

then A is Euclidean.

P r o o f. (i) Since the Euclidean inclusion contains no complementation, it
is preserved under canonical extensions, so we may assume that A is atomic.
Consider a, b, c ∈ At(A). If a ◦ b 6= 0 then (a . (a ◦ b))b 6= 0, hence (a . (a ◦ b)) ≥ b,
and similarly if b◦ c 6= 0 then ((b◦ c)/ c) ≥ b. Therefore (a. (a◦ b))((b◦ c)/ c) 6= 0
and, since A is Euclidean, (a ◦ (b ◦ c))((a ◦ b) ◦ c) 6= 0. So the weakly Euclidean
property holds for all atoms of A, and by additivity it extends to all of A.

(ii) Suppose (a . x)(y / c) 6= 0 for some a, x, y, c ∈ At(A). Then there exists
an atom b ∈ A such that b ≤ a . x and b ≤ y / c, or equivalently x ≤ a ◦ b and
y ≤ b ◦ c. By assumption ◦ is a partial operation, so we actually have x = a ◦ b
and y = b ◦ c. From the associative law it follows that x ◦ c = a ◦ b ◦ c = a ◦ y.
Now, A is assumed to be weakly Euclidean, hence 0 6= a ◦ b ◦ c = (a ◦ y)(x ◦ c).
By additivity the Euclidean inclusion holds for all of A.

From part (ii) of the preceding lemma we can easily deduce the following
result.

Corollary 19. The residuated complex algebra of any small category is a
Euclidean rm-algebra.
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In [Ma78] there is an example of a ur-algebra (in fact a weakly associative
relation algebra) that is subdirectly irreducible but not simple. However, this
example is not associative, which led B. Jónsson [J91a] to ask the question whether
every subdirectly irreducible rm-algebra is simple. The example below shows that
this is not the case, even restricted to Euclidean rm-algebras, hence the variety
of all Euclidean rm-algebras is not a discriminator variety.

Recall that any quasiorder can be viewed as a category (the elements are
the objects and the pairs a ≤ b are the morphisms). The Euclidean rm-algebras
that arise in this way are in fact relative subalgebras of full relation algebras,
relativised with respect to the quasiorder relation.

Theorem 20. The complex algebra of the partial order of an infinite fence,
viewed as a category , is a subdirectly irreducible (Euclidean) rm-algebra that is
not simple.

P r o o f. Let Z be the set of integers and denote by U the partial order of an
infinite fence over Z, i.e.,

U = {(m,n) ∈ Z2 : m = n or (m is even and |m− n| = 1)} .
Let A be the residuated complex algebra of the structure (U, ◦, idZ), where ◦ is
the partial operation

(m,n) ◦ (p, q) = (m, q) if n = p and (m, q) ∈ U
and idZ = {(n, n) : n ∈ Z}. By Corollary 19, A is a Euclidean rm-algebra. Note
that for any (m,n) ∈ U we have

1 / (m,n) =
{
{(m,m)} if m 6= n or m is even,
{(m,m), (m− 1,m), (m+ 1,m)} otherwise,

(m,n) . 1 =
{
{(n, n)} if m 6= n or n is odd,
{(n, n), (n, n− 1), (n, n+ 1)} otherwise.

If we now let a1 be any atom (m,n) and define a2i = (a2i−1 . 1) . 1 and a2i+1 =
1/ (1/a2i) for i = 1, 2, 3, . . . , then the ai form an unbounded increasing sequence
which eventually exceeds every atom.

Denoting the ideal of all finite joins of atoms of A by I, it follows that any
nontrivial congruence ideal of A must contain I. On the other hand, I is also
a congruence ideal, hence it is the smallest nontrivial congruence ideal of A.
Therefore A is subdirectly irreducible but not simple.
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