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These notes are a corrected and revised version of notes which accompanied
lectures given at the Banach Center in the fall of 1991. The intent is to give a
self-contained introduction to cylindric algebras from the concrete point of view.
I hope that after these lectures the reader will be able to digest the basic works on
this subject (Henkin, Monk, Tarski [4], [5] and Henkin, Monk, Tarski, Andréka,
Németi [6]) more easily, and that even research articles in this area will be readable
by one who studies these notes carefully. As the title of the lectures indicates,
we are mainly concerned with the topics in [6], which appear in a condensed
form in [5]. One of the frightening things about both of these books is that they
begin with a mass of definitions and proceed with very detailed discussion of the
interrelationships of the defined notions. We are going to introduce just a few of
these definitions, little by little, giving important (but not highly technical) results
about them as we go along. And we will try to motivate the notions from logic.

Cylindric algebras form the most developed form of algebraic logic. In gen-
eral, algebraic logic is concerned with algebraic structures which correspond to
logics of various sorts. Cylindric algebras correspond to ordinary first-order lo-
gics and to certain straightforward modifications of these logics. Other algebraic
structures have a similar relationship to first-order logic; the most developed of
these are relation algebras (in Tarski’s sense) and polyadic algebras. We will not
be concerned with these, but the reader should be able to study them more easily
after reading these notes.

We will describe only the concrete aspect of cylindric algebras. The axiomatic
version, fully developed in [4], will play only a minor role. Also, we will not
deal with applications. Such applications exist in several other fields, such as
combinatorics and theoretical computer science.
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We assume familiarity with the elementary theory of Boolean algebras, ele-
mentary first-order logic, and with the basics of universal algebra.

1. Fields of sets. We assume that the reader is familiar with the notion
of a field of sets; here we just recall the notion, and establish notation. Any
more extended apparatus which we need will be mentioned later on. A field of
sets over a set X is a collection A of subsets of X containing X itself and closed
under union and complementation with respect to X. Then A is also closed under
intersection, and has the empty set 0 as a member. Unless confusion might result,
we identify such a collection with the algebra (in the sense of universal algebra)
(A,U,N,\,0,X). Here \ is the operation of complementation with respect to X;
many people denote it by —.

2. Cylindric-relativized set algebras. We begin with some purely set-
theoretical notation. For any sets A and B, the set of all functions from A into B
is denoted by 4B (many people denote this by B4). For any set V, P(V) is the
collection of all subsets of V; for any function y and any i in its domain, g is the
function which is like y except that its value at i is equal to u. For any function f
and any a in its domain, the value of f at a will be indicated by fa, f,, or other
similar things.

Now we define the basic notions of cylindric-relativized set algebras. Let U
and I be sets and V C U. For all 4, j € I we set

Dz[;/} = {U eV :'Uj};

this is a diagonal set. Furthermore, for each i € I we let CZ-[V] be the mapping
from P (V') into P(V') defined as follows: for any X C V,

C}V]X:{yEV:y;EXforsomeueU}.

This is called the V -relativized cylindrification in the direction i. Usually here and
in the literature one uses an ordinal « in place of I; the more general definition
here is sometimes useful. Here is a general convention: When no confusion is
likely, we omit superscripts and subscripts from defined objects. Thus,
for example, we frequently write merely D;; or C;.

A cylindric-relativized field of sets is a field A of sets such that there exist

sets I, U, V such that V C U, A is a field of subsets of V, DI') € A for all
1,7 € I, and A is closed under each operation CZ[V}, i € 1. A cylindric-relativized
set algebra is the associated algebra
def % 1%
2 = <A7U7m7\707‘/707§[ ]7Dz[] ]>i,j61'

Cylindric-relativized set algebras are the main things that we shall be dis-
cussing in these notes. There are three natural areas of investigation concerning
them. First, there are intrinsic questions deriving from the very definitions: what

happens to these algebras when the sets I, U, or V are changed; and what can
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one say about algebraic operations (homomorphisms, subalgebras, products, etc.)
applied to them? Second, can one abstractly characterize such algebras up to iso-
morphism, like one does for permutation groups via the abstract notion of group,
for example? Third, how do such algebras relate to other objects in mathematics,
in particular to logic, which, as indicated at the beginning, is the main justifica-
tion for their consideration? In these notes we will be concerned mainly with the
first type of question, with some consideration of the second and third questions.
We will right now say a few words about the third aspect of this subject.

3. The logical origin of cylindric algebras. Let L be a first-order language,
and 91 a model for L. The universe of any model 91 is denoted by M. We assume
that L has a countably infinite sequence of variables (v; : i € w). We take as
well-known what it means for a sequence z € “M to satisfy a formula ¢ in 9.
Set ™ = {x € “M : x satisfies ¢ in M}. The set A = {¢™ : ¢ a formula of
L} is a cylindric-relativized field of sets; the corresponding sets I, U, and V are,
respectively, w, M, and “ M. This is the main motivating source for the notion of
cylindric-relativized field of sets and, indeed, for the whole topic of algebraic logic.
The cylindric-relativized set algebra obtained from 9t will be denoted by €s 9.
By the above convention, Cs9 then denotes the indicated cylindric-relativized
field of sets.

The cylindric-relativized field of sets obtained in this way has many special
properties. Some of these will be described and studied later.

For now we want to indicate some important connections between logic and
such algebras. We use = to indicate isomorphism. The central logical notion of
elementary equivalence is characterized algebraically as follows:

THEOREM 3.1. If M is elementarily equivalent to N, then €59 = Cs M.

In fact, let MM and N be similar structures, and let f = {(¢™,¢™) : ¢ a
formula}. Then the following conditions are equivalent:

(i) M is elementarily equivalent to N,
(ii) f is a function from CsIM into CsN such that f¢™ = ¢™ for every
formula ¢;

(iii) f is an isomorphism from €s9M onto €5 N such that f¢™ = ¢™ for every
formula ¢.

Proof. (i)=(iii). That f is a function and is one-one is seen as follows (using
[x] temporarily to denote the universal closure of any formula x): for any formulas
¢ and ¥, o™ = YT Iff ME (¢ < ) if ME [¢p « Y] if ME [¢p < ] iff ... iff
¢”* = ™. The other conditions in (iii) are clear from the definitions involved.

(iii)=(ii). Obvious.

(ii)=(i). For any sentence ¢, M= ¢ = ¢™' =M = fp”' =“N = ¢" =“N
= M F ¢. Applying this argument to —¢ gives the other direction. m
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On the other hand, it is also natural to try to characterize logically the isomor-
phism of structures €s 9t. To do this, we need to discuss a special topic in logic,
definitional equivalence. Given two first-order structures 9 and 91, not necessar-
ily similar, we say that they are definitionally equivalent provided that M = N
and the following two conditions hold (we restrict ourselves to languages with
only relation symbols, for simplicity):

(1) Each fundamental relation of 9 is elementarily definable in N, i.e., if R is
an m~ary fundamental relation of 901, then there is a formula ¢ of the language of
N with free variables among vy, ..., vy, —1 such that R = {z € "M : M F ¢[x]}.

(2) Each fundamental relation of 91 is elementarily definable in 9.

Two standard examples of this sort of thing are: groups as structures with a
single binary operation, or as structures with a binary operation and an inverse
operation; Boolean algebras with lattice operations versus Boolean algebras with
ring operations.

THEOREM 3.2. M and N are definitionally equivalent iff €s9M = CsN.

Proof. = Let ¢ be a function which assigns to each fundamental relation
R of M a formula ¢ as in the definition. Then we define a function ¢’ from
formulas of the language of 91 into formulas of the language of J:

¢ (Ruig ... v, 1) = Or(Vigs- -y 00, 1), @ (vi=v;) = (v, =v;),
¢'(=x) = =¢'(x), ¢'(xVO)=¢(x) V),
¢'(x NO) = ¢"(x) N/ (0), ¢ (Voix) = Yvid' (x) -
Now a straightforward induction shows that x™ = (¢'(x))™ for every formula y
of the language of 9. This proves that Cs9t C Cs1. The converse is similar.

< Let R be an m-ary fundamental relation of 9. Then R’ %' {x € “M
x [ meR} e CsIM, and hence it is also in CsN, say R' =™, Now if i >m then
C;R'=R'; hence (Fv; ¥)" = C;4” = 9™ also. Hence without loss of generality we
may assume that the free variables of ¢ are among vg, ..., v,,_1. Thus 9 defines
R in 91. By symmetry, this proves that 9t and 91 are definitionally equivalent. m

For the characterization of isomorphism of structures €s M we also need to
use the following not so well-known fact about ordinary first-order logic:

FAcT. Every first-order formula is logically equivalent to a formula in which
all mon-equality atomic parts have the standard form

RUO e Um—1,

thus with the first m variables following each m-ary relation symbol (in a language
with only relation symbols).

Here is a sketch of the proof of this fact. Note the following logical equivalence:

Ru;, ... v, , < Jv; (v; = viy ARvjv, o0, ),
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provided that j is different from each of ig, ..., %,_1. This is an elementary exer-
cise. A similar result holds for a replacement of any variable instead of just the
first one. So any atomic formula is equivalent to a more complicated expression
involving existential quantifiers and equality formulas, and an atomic formula
Rwj, ...v;,,_, in which all the indices are distinct and greater than m. Then
the same procedure can be applied to “replace” these variables by vg,...,vm_1
respectively.

THEOREM 3.3. €s M is isomorphic to €sMN iff M is elementarily equivalent
to a structure definitionally equivalent to N.

Proof. = Let f be an isomorphism from €s 91 onto €s91. We define a new
structure ‘B similar to 9 and with universe N. For each fundamental relation R

of M, let
R¥ = {z € ™N : 2 C y for some y € f(Ruvg...vm_1)"}.

Now we claim that f(Ruvg...vm_1)™ = (Rvg...vm_1)¥. In fact, if y € f(Ruvg
oo Up1)™ then y | m € R¥, and hence y € (Rvg...vm_1)¥*. On the other
hand, suppose that y € (Rvg...v,_1)*. Theny [ m C z € f(Rvg...vm_1)™
for some z. Write f(Ruvg...vm_1)"" = ¢™. If i > m, then C;(Ruvg ... vp_1)" =
(Rvg ... vm_1)™, and hence C;¢” = ¢™. So without loss of generality we may
assume that the free variables of ¢ are among vg, ..., v, _1. Hence from y [ m C
z € ¢™ it follows that y € ¢” = f(Rug...vm_1)™, as desired: this proves our
claim. From the claim and the FAcT it follows that fy™ = 4¥ for every formula
1 of the language of 9. Therefore by Theorem 3.1, f is an isomorphism from
Cs M onto €s°PB. Hence €59 = €s°P, and the desired conclusion follows from
previous theorems.
< Clear from previous theorems. m

We now make some remarks about Boolean algebras. The abstract operations
in a Boolean algebra corresponding to the set-theoretic operations U, N, \, 0, and
X in a field of sets (subsets of X) are denoted by +, -, —, 0, and 1 respectively.

An important aspect of the theory of Boolean algebras is the description of
the Lindenbaum—Tarski algebras of common first-order theories. Given a theory
T, one defines an equivalence relation = on sentences of the given language by
defining ¢ = ¢ iff T F ¢ < 1. Then the collection of equivalence classes forms
a Boolean algebra under the operations [¢] + [¢)] = [¢p V ¥, [¢] - [¢] = [ A ],
—[¢] = [~¢], 0 = [F]|, 1 = [T]; this is the Lindenbaum—Tarski algebra of T' (F
and T are any fixed logically invalid and logically valid sentences, respectively).
For what these algebras look like for common theories 7', see the chapter by
Myers in the Boolean algebra handbook [7]. For Boolean algebras, the description
consists in describing a linear order L such that the Lindenbaum-Tarski algebra
is isomorphic to the interval algebra on L.

The corresponding facit of the theory of cylindric algebras is to describe the
cylindric set algebras €s9 for important models 9t. This amounts to looking
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at complete theories only, which is customary in model theory. It is somewhat
surprising that this aspect of the theory of cylindric algebras has been almost
entirely neglected. A complete description of €59t is known only in the case in
which 91 has only one-place relations. There are many other simple structures
where the description of €s91 should not be difficult; for example, for 9 the
rationals under their natural ordering.

4. Elementary facts. We summarize some of the elementary arithmetic of
cylindric-relativized set algebras in the following lemma. This lemma will be used
later without specific citation of it.

LEMMA 4.1. (i) X NCY =04ff C; X NY =0.

(i) X C C;X.

(iti) If X C Y then C;X C CiY.

() CiUX = Uyey Cro

Proof. (i) Suppose that x € X N C;Y. Then 2%, € Y for some u € U.
= (2!)i. soxl € C;XNY; (i) follows by symmetry.

(ii)—(iv). Easy. m

Now we introduce some notation. Crsy is the class of all cylindric-relativized
set algebras with associated set I, called its dimension. When we say “a Crs;”, we
mean “a member of Crs;”, and similarly for other classes of algebras introduced
later. For any collection V of functions with domain I, the collection of all subsets
of V forms a cylindric-relativized field of sets; the associated algebra is denoted
by PV. If A is any Crs;, with notation as in Section 2, then the set V is called
the unit of 2. The base of the Crs; and of V' is the set (J .y range(p); this is the
smallest set U such that V' C TU. For any Crs; 2, we denote by BI2 the Boolean
reduct of ; it consists of A together with the operations U, N, \, 0, and V. For
any a in a Crsy, we define the dimension set of a to be

Aa={iel:Cia#a}.

An element a is zero-dimensional if its dimension set is 0. The 0 and unit of a
Crs; are always zero-dimensional. In an algebra €s9 these are the only zero-
dimensional elements. But if, for example, we take V = “{0,1} U “{2,3} and
consider the Crs,, of all subsets of V, then both “{0,1} and “{2,3} are zero-
dimensional, as well as the 0 and unit of the algebra.

We use “BA” to abbreviate “Boolean algebra’.

LEMMA 4.2. The collection of all zero-dimensional elements of a Crs; 2 forms
a subalgebra of the BA BI.

Proof. Let Z be the indicated collection. Clearly Z is closed under U. To
show that it is closed under \, suppose that z € Z, i € I, and = € C;(V\z2);
we want to show that x € V\z. We have z!, € V\z for some u. If x € z, then
zi, € Cjz = 2, contradiction. m
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A subunit of 2 is an atom of the BA of zero-dimensional elements of BV
(where V' is the unit of 2). A subbase of 2 is the base of some subunit of A. Note
that it may be that some subunits of 2 are not members of A. For any set U and
any function p mapping I into U we denote by UP the set {¢ € U : {i € I :
pi # qi} is finite}.

LEMMA 4.3. Let A be a Crsy with unit V.. Then V is the disjoint union of all
subunits of A. Moreover, for each subunit W of 2 there is a subbase Y of 2 and
some p € V such that W C TYP,

Proof. For each p € V let
zd(p) = | J{Ciy ... Ci, {p} :m € w, i € ™I}

Clearly zd(p) is a zero-dimensional element of BV. We claim that it is an atom
of the BA of zero-dimensional elements of V. To show this, suppose that a is
any zero-dimensional element, and zd(p) Na#0. Thus C;, ...C;, {p} Na#0 for
some g, . . ., im, and hence {p}NC;  ...C; a#0,i.e. (since a is zero-dimensional),
p € a. Hence clearly zd(p) C a, as desired. This shows that zd(p) is a subunit
of A. If a is any subunit of 2, choose p € a; then clearly zd(p) C a, and hence
zd(p)=a. So, every subunit has the form zd(p). For any p € V we have p € zd(p).
This proves that V is the disjoint union of all subunits of 2.

Let W be any subunit of 2. By the preceding paragraph, W = zd(p) for some
p € V. Clearly, then, W C IYP_ where Y is the base of W. m

Note that the sets /Y”? may not be in the algebra BV, since the cylindrifica-
tions may lead outside of V, so to speak. For example, if V' = {(i : i € w)}, then
the base of V' is w, but of course for all p, “wP & PV

5. Relativization. Let 2 be a Crs; with unit element V', and suppose that
W C V. We define a mapping 13, from 2 into P(W) by setting, for any X € 4,

iy, X =WnX.

Thus rl?}v (the relativization operation) maps into the Crs; PW. It clearly pre-
serves all of the Boolean operations (union, intersection, complementation, 0,

unit) and takes DZ[-;/] to Dz[gw. Also, for any X € A we have CZ-[W] (r1X) C
rl(Ci[V]X). In fact, if z € C[W](rlX), then z € W, and say !, € W N X. Thus

i

r € W and z € CiMX, ie, r € rl(Ci[V]X). The other inclusion does not in
general hold, but we have the following important case in which it does:

PROPOSITION 5.1. Let U be a Crsy with unit element V', and suppose that W
s a zero-dimensional element of PV. Then rl%‘v is a homomorphism from 2 into

TW.

Proof. By the remarks before the proposition, it suffices to show that for

any X € A we have rl(C’i[V}X) c cV! (rl1 X'). So, suppose that = € rl(C’sz).

)
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Thus x € W N Ci[V]X. Choose u so that 2!, € X. Since z = (x!)¢, we have

u/x

Tl € C’i[V]W =W. So z¢, € r1 X, and hence x € CZ-[W} (rl1 X), as desired. m

[Here is an example where the indicated inclusion does not hold: [ = w,
V =2{0,1}, 2 = (0 : i € w), W = {a}, f0 =1, fi =0 for all i € w\{0},
X = {f}; then z € rly (C XN\ CI (2l X))

The Crs’s obtained from logic also provide an important example where the
function rl is a homomorphism—even an isomorphism. And we get an algebraic
version of elementary substructure:

PROPOSITION 5.2. Suppose that 9 and N are similar structures. Let A =
CsN, B=CsM, V=N, and W =*M.

(i) If M is an elementary substructure of N, then rl%v s an isomorphism
from A onto *B.
(ii) Assume that M C N. Then the following conditions are equivalent:
(a) M is an elementary substructure of MN;
(b) rl%/ is an isomorphism from 2 onto B and rlgvt/ ¢ = ™ for every
formula ¢;
(c) rl%, »™ = ¢™ for every formula ¢.

Proof. Since (i) obviously follows from (ii), we restrict the proof to (ii).
For (a)=-(b), note that the defining property of elementary substructure can be
expressed as saying that rl¢™ = “M N ¢™ = ¢™ for every formula ¢. So by
Theorem 3.1, (b) follows. (b)=-(c) is trivial, and (c)=-(a) has essentially been
proved now too. m

The converse of Proposition 5.2(i) does not hold. In fact, let 9 = (Q, >) (the
rationals under >), and let 91 = (R, <) (the reals under <). Clearly 9 is not an
elementary substructure of O (it is not even an ordinary substructure), but rl%,
is an isomorphism from 2 onto B—this follows from our next theorem, which
logically characterizes when rl%, is an isomorphism:

PROPOSITION 5.3. Suppose that 9N and N are first-order structures, not ne-
cessarily similar. Let A = €N, B =M, V =“N, and W =“M. Then the
following conditions are equivalent:

(i) M is definitionally equivalent to an elementary substructure of N.

(ii) rlw is an isomorphism from A onto B.

Proof. (i)=(ii). This is clear from previous theorems.

(ii)=(i). We define a structure 8 with universe M: if R is an m-ary funda-
mental relation of M, let R¥ = ™M N R™. We claim that

(%) for any formula ¢ of the language of M, rly ¢”t = ¢F.
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The proof is by induction on ¢:
rly (Rvjy ... v, ) =W N Ry . .ovg,, )™
={ze“M :NERv;,...v;, ,[z]}
—{ze“M:z0icR"}={ze“M:z0icR¥}
= (R, ... v, )%;
w (9 V)™ =W (ov )" =Wn(e" Up™) =(oV¥)¥;

similarly for —;
rly (Fv; 0)™ = rly Cio™ = Citly ¢™ = Cip* = (Fv; ¢)*.

So, (*) holds. It follows that rly is an isomorphism from €s 9t onto €s‘P. Thus
CsP = E€s M, and so the desired conclusion follows from previous theorems. m

One more question in this little circle of ideas is to discuss the logical meaning
of rl%t, merely being a homomorphism, not necessarily an isomorphism. Well,
every non-trivial homomorphism defined on an algebra €591 is an isomorphism,
since as we will see in a future section (or the reader can easily verify for herself
now), every algebra s 91 is simple.

Next, we want to give an algebraic version of the downward Léwenheim—
Skolem—Tarski theorem. To this end we introduce some more terminology. Let
A and B be Crs;’s with unit elements V' and W respectively, where W C V. If
rl% is an isomorphism from 2 onto 2B, then we say that 21 is ext-isomorphic to
B, and B is sub-isomorphic to A; rl%‘v is an ext-isomorphism, and (rl?}v)_l is a
sub-isomorphism.

THEOREM 5.4. Let A be a Crs; with unit element V and base U. Let k be
an infinite cardinal such that |A| < k < |U|. Assume that S C U and |S| < k.

Finally, assume that k! = k. Then there is a W such that S C W C U, |W| =k,
and A is ext-isomorphic to a Crs; with unit element VN I1W.

Proof. Let a well-ordering of U be given. Now we define by induction sets T,
for all & < k. Let Ty be a subset of U such that [Ty| = &, S C Tp, and X NITy # 0
for all X € A; clearly such a set exists. (Note that |I| < & since s/l = .) Suppose
that 0 < § < k and T, has been defined for all « < 8. Let M = J T, and
let

Ts=MU{acU:3X € AFic I3z c M NV]ais the

first element of U such that x’ € X]}.

Let W =T, =U,<, Ta- Set Z =V N'W. It is clear by induction that |T,| = &
for all @ < k; here again the assumption x!!| = k comes in. By the definition of
T, it is clear that rl% is one-one. To prove that rl preserves C;, by the comment

before Proposition 5.1 it suffices to take any X € A and z € CZ[V]X N Z and
show that = € C’i[Z} (XN Z). Thus x € 'W. The assumption &/l = x implies

a<f
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that |I| < cfk, and hence there is some 3 < k such that x € 1Tz, From the
construction it follows that there is an a € T4 such that 2, € X. Thus 2!, € Z,

and hence z € Ci[Z] (XNZ), as desired. m

This theorem has been considerably generalized in the literature, and we shall
give one or two of these generalizations later; see [6], pp. 47ff, and [9].

6. Change of base. The procedure of relativization in general changes the
base of a Crsy, going from a base to a subset. Now we want to consider another
way of changing the base, to an entirely new set. Let f be a one-one function
from U into W, and let 2 be a Crs; with base U and unit V. We define a function
f on A as follows: for any a € A,

fa={ze'W:flozeal.
The operation ~ is actually a general set-theoretic operation. It would perhaps
be more natural to define it, for any function f, by

fa:{m:fo:nea},
but we take the above definition to be consistent with the basic references men-

tioned in the introduction.

PROPOSITION 6.1. Let A be a Crsy with base U, and let f be a one-one function
mapping U onto W. Then f is an isomorphism from A onto a Crs; with base W.
Proof. From the form of the definition it is a straightforward matter to check
that ]?preserves the Boolean operations and the D;;’s. To prove that ]?C’i[v]a -
C'i[fv] fa, suppose that = € ]?Cima. Thus z € TW and f~lox € C’ima. So there
is a u such that (f~'ox), € a. But (f~'ox), = f~toa’,, so f~tox), € aand

hence m}u € fa and x € C’Z-[f~ V] fa, as desired.

To prove that Ci[fv} fa - fC’Z»[V}a, suppose that x € C’i[fv]fa. So x € fV and
Tt € fa for some w. Therefore x € W, w e W, floz € V,and f~l o2l € a.
Let fu=w. Then (f~lox)i = f~loxi sofloxe Ci[v]a and = € fCi[V]a, as
desired. m

If A is a Crsy with base U, 95 is a Crs; with base W, and g is an isomorphism
from 2L onto B, we call g a base isomorphism from 2l onto B if there is a one-one
function f from U onto W such that g = f.

Base isomorphisms in algebras roughly correspond to isomorphisms of struc-
tures; this is expressed in the following two results:

PROPOSITION 6.2. Let 9 and I be similar structures, and let f be a one-one
function from M onto N. Then the following conditions are equivalent:
(i) f is an isomorphism from 9M onto N.

(ii) f is a base isomorphism from €s9M onto €sN, and f(l)m = o™ for every
formula ¢.
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Proof. (i)=(ii). For any formula ¢, M F ¢[z| iff M E ¢[f ox]; this elementary
logical fact clearly implies that f »™ = ¢ for every formula ¢. Then Theorem 3.1
says that also f is a base isomorphism from €s 9t onto €sN.

(ii)=(i). Easy. =

PROPOSITION 6.3. Suppose that O and N are first-order structures, not ne-
cessarily similar. Let A = €s M, B = CsN. Suppose that f is a one-one function
mapping M onto N. Then the following conditions are equivalent:

(i) f is an isomorphism from M onto a structure P definitionally equivalent
to M.

(i) f is a base isomorphism from 2 onto B.

Proof. (i)=(ii). By Proposition 6.1, f is an isomorphism from 2 onto some
Crs;. Proposition 6.2 says that f¢™ = ¢F for every formula ¢. Thus f maps onto
€s P, which is the same as B, as desired.

(ii)=(i). There is a unique way of defining a structure ‘P such that f is an

isomorphism from 97 onto P. Then Proposition 6.2 yields that f is a base iso-
morphism from 2 onto €sP. The desired result follows. =

An algebraic version of elementary embeddings is captured in the following
definition. Let 2 be a Crs; with unit V' and base U, and let B be a Crs; with
unit X and base W. An isomorphism f of 2 onto B is a sub-base-isomorphism
provided there exist a base isomorphism h and a sub-isomorphism g such that
f = goh. The following equivalent version of this notion is sometimes useful.

PROPOSITION 6.4. Let A be a Crs; with unit V' and base U, and let B be a
Crs; with unit X and base W. Let f be an isomorphism from 2 onto 6. Then
the following conditions are equivalent:

(i) f is a sub-base-isomorphism from A onto B.

(ii) There exist a base isomorphism h' and an ext-isomorphism g’ such that
f—l — g/ o h/.

Proof. (i)=(ii). Let [ be a one-one function from U onto some set S such
that f = (1)~ o[, where Z = IV this is possible by the assumption (i). Say
that [ is a base isomorphism from 2 onto ®. Then purely set-theoretically it is
possible to find a one-one function k with domain W and range some set 7' 2 U

such that ™! C k. So k is a base isomorphism from 8 onto some Crs; ¢ with

unit Y %' %V and base T In pictures:

Y, T <& wmxw

rl?

rl‘e;
AV,U - ©,7,8



264 J. D. MONK

We claim that [ o rly ok = 113; this will establish (ii). To prove this claim, take
any b € B. Then

(lorls ok)b =115 {z € 'T : k™' oz € b}
—Hz:zeV,ze!T, k' oxecb}
={ze€!S: 1 ozeV, I oze!T, kol oz cb}
=bNnZz,

as desired. B

(ii)=-(i). Let k be a one-one function from W onto some set 7" such that h’ =k;
say that h' is a base isomorphism from B onto a Crs; € with base T" and unit
Y. Thus ¢ = rl‘e}. Let [ = k=! | U, and let S be the range of I. Then [ is an
isomorphism from 2 onto some Crs; © with some unit Z and with base .S. So we
have the same picture as before. By steps similar to the above one can verify that
113 =l orl}, ok, and this yields (i). =

The actual algebraic equivalence of elementary embeddings is given in the
following result.

PROPOSITION 6.5. Let MM and N be (not necessarily similar) structures, and
let f be a one-one function from M into N. Then the following conditions are
equivalent:

(i) f is an elementary embedding of M into a structure P which is defini-
tionally equivalent to N. B

(ii) There is a sub-isomorphism g such that g o f is a sub-base-isomorphism
of €s M onto CsN.

Proof. (i)=(ii). Let Q be a structure similar to M (and PB) such that f is
an isomorphism from 9 onto Q and L is an elementary substructure of 3. By
Proposition 6.3, f is a base isomorphism from €s 9t onto €s Q. By Proposition
5.3, rlyy is an isomorphism of ¢sP onto €s ), where W = Q. By Theorem 3.2,
CsP = €sN. So rl~ ! of is a sub-base-isomorphism of €M onto Cs M.

(ii)=(i). Similar. m

7. Subalgebras. For the general notion of a Crs we have nothing to say about
subalgebras except the following connection with logic. There are interesting re-
sults and questions concerning subalgebras in special classes of Crs’s.

THEOREM 7.1. For any L-structure M and any Crs,, A the following conditions
are equivalent:

(i) A C s M.
(ii) There exist a structure N definitionally equivalent to M, say N an L'-

structure, and a sublanguage L of L' such that A = Cs(N | L”). (N | L” is the
reduct of N to the language L".)
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Proof. (i)=(ii). For each x € €sM and each positive integer m such that
Az C m we introduce an m-ary relation symbol R,,, in a language £’; and we
also choose ¢, with ¢ = x with free variables among {v; : i € Az}. Define
N =M and

R ={uc™N:ME ¢, [u]}.
Let £” be the sublanguage of £’ consisting of all of the relation symbols R, for
x € A. To check (ii) we first show that 9t and 91 are definitionally equivalent.
Obviously every fundamental relation of 91 is definable in 9t. Now take a funda-

mental relation R™ of Mt; say R is an m-ary relation symbol of the language of
M. Let 2 = (Rvg ... v,m_1)™. Note that M F ¢, < Rug...v,,_1. Hence

{u €™M :MERumvo - VU [u]} =R, ={u€™N : ME ¢,[u]} = R™,

as desired. This proves that 91 is definitionally equivalent to 9.

Now we show that 2 = €s(D [ L”). To do this, it suffices to show that if z € A
and Az C m, then = (Rgmvo ... Um_1)", since this shows that €s(N | L") has
A as a set of generators and hence must coincide with 2. We have

(Raomvo - 1) ={u€“N:ulmeR}
={ue“M:ME ¢ [u]} = ¢7 = x.

As to (ii)=(i), take any a € A and by (ii) write a = ¢? X" for some formula
¢ of L"”. Then

a=¢" =M e CsN = CsM. u

8. Homomorphisms. The basic result about homomorphisms is that a ho-
momorphic image of a Crs is isomorphic to a Crs. The proof that we give for this
(due to Andréka and Németi) depends on ultraproducts, and so it will be post-
poned to Section 10. Closure under homomorphic images is the difficult thing in
proving that the class of isomorphs of Crs’s is equational. There is another, in-
volved, proof due to Resek and Thompson, based on an axiom system for Crs;’s,
and a simple proof that this axiom system works is due to Andréka and Thomp-
son independently; this simple proof has not been published, but is sketched in
Resek, Thompson [8]. See also Section 9.

Concerning connections with logic, the basic result is that €59 is always
simple, in the general algebraic sense. We prove this now, assuming only a basic
knowledge of universal algebra.

THEOREM 8.1. For any L-structure M, the Crs,, €sIM is simple.

Proof. Suppose that E is a congruence relation on €59t and ¢™ and ¢ are
distinct elements such that ¢™ E™; we want to show that £ = Cs9 x Cs 9.
Say ¢™ € ™. Let x = Jvg ... Um_1(¢ A1), where m is such that all of the free
variables of ¢ A —1) are among vy, . .., Vym—_1. Thus M F yx, and hence Y™ = “ M.
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Therefore
™ By,
o™ -~y EO;
(¢ A =)™ EO;
Co...Co1(d AN=))™|ECy...Chy10 = 0;
[Fvo ... vm_1(d A —1p)]" EO;
“MEO;

hence for any x,y € Cs M we have x = (z-“M)E(z - 0) = 0, and similarly yFO0,
so xFy, as desired. m

9. Products. The basic fact here is that a product of Crs’s is isomorphic to
a Crs:

THEOREM 9.1. For |K| > 1, any product of Crsk ’s is isomorphic to a Crsg.

Proof. Let (A; : ¢ € I) be a system of Crsi’s. Say V; is the unit element of 2;
for each 7€ 1. Without loss of generality, the bases of 2; and 2l; are disjoint for
distinet i, j € I. Let W = (J,¢; Vi. Now we define f : [],.; A; — P(W) by setting
fx = ey i for any @ € [[,c; Ai. Thus f maps into the Crsg of all subsets of
W. Clearly f preserves +, —, and dy; for k,l € K. Moreover, x # 0 = fz #£ 0, so
f is one-one. Finally, f preserves ¢i for each k € K:

a€ fepr it Fiel(ac C,[CV"]a:i)
iff 3iel(aecV;and Ju(ak €xy))
iff JuIicI(acV;andadl €xy)
iff o€ W and Ju(a* € fz)
iff acCV fu,

as desired. Note that the next to the last equivalence uses the fact that |K| > 1
and that the bases are disjoint. =

Theorem 9.1 does not extend to the case | K| < 1; but we shall not go into this.
For the rest of the present remarks assume that |K| > 1. According to Theorem
9.1 and preceding sections, the class K of isomorphs of Crsg’s is closed under
subalgebras, homomorphisms, and products. Hence by the well-known theorem
of Birkhoff, K is a variety, i.e., it is characterized by a set of equations. One
of the major results in the theory of cylindric algebras is that K is not finitely
axiomatizable if K has at least 3 elements; this is a result of Andréka and Németi.
For K infinite the result is somewhat trivial, but there is a stronger, non-trivial
result: K is not definable by a finite schema. We shall prove the first result here,
but in order not to digress too much we omit the definition of “finite schema”
and the proof of the second result.
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LEMMA 9.2. The following inequality holds in every Crsg, for any m € w and
any distinct j, k,l € K:

(cjck)m+1(dkl . IL‘) . dkl S Cj:E.

Proof. Let & be a Crsg. Suppose that a is in the left side of the indicated

inequality. Then there exist ug, w1, ..., Usm+1 such that
def PNk i k
b = (( .. (<agto)u1) .. .)iQm)u2m+1 € Dy Na.

Hence it suffices to show that a{wm = b. Since these two functions clearly agree
except possibly at k, we just check k: (a], )r = ar = a; = b, = by, as desired. =

THEOREM 9.3. If K has at least 3 elements, then the class L of isomorphs of
Crsk ’s is not finitely axiomatizable. Specifically, there is a system (A, : m € w)
of algebras similar to Crsi’s such that no %, is isomorphic to a Crsg, while
[L,co &m/F is isomorphic to a Crsi for every non-principal ultrafilter F' on w.

Proof. For notational convenience we assume that K is an ordinal «. Let
a = (1,0,0,...) (a sequence of length «), ¢ = {a}, and for each m € w let
b™ = 2m + 1,2m + 2,0,0,...) (a sequence of length a), d™ = {b™}. Now for
each m € w we set

Vin = {f € ®w : for some n < m we have f0=2n+ 1,

fle{2n,2n+ 2}, and fk =0 for all k € a\{0,1}},

d:enn = Vm7

doK:d50:01f0<H<C¥,

dix =de1 = {a,bm} ifl < k<,

dex = Vi if £, X € 0\{0,1},

Wy = (P(Vin), U, M\, 0, Vi, OVl @) ey

(\ is complementation relative to V,,). First we apply Lemma 9.2 to see that no
algebra 2, is isomorphic to a Crsg. We claim that ™ is in the left side of the
inequality of Lemma 9.2 but not in the right, for j =0,k =1,1=2, z = {a}. In
fact,

(- ((B™)2mr1)2m)2m—1 - D)o =

and by construction all of the elements

(bm)gm—i—l’ ((bm)gm—f—l)%n’w (((bm)gm—l—l)%m)gm—l?

are in V,,,. Hence b™ is clearly in the left side, and it also clearly fails to be in the
right side.

Now let F' be any non-principal ultrafilter on w. Set B = [[,,c., %m/F. The
rest of the proof is devoted to showing that 9% is isomorphic to a Crsg.

To prove this, we first develop some notation for the algebras 2,,,. Each such
algebra is an atomic Boolean algebra with additional operations. If u is an atom
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of A, then there is a unique n < m such that u has the form {(2n+1,...)}; we
denote this n by intu. In case u € A,, is not an atom we let int u = 0.

Another ultraproduct will play an important role in the rest of the proof. Let
C=Ileo(m+1,<)/F.Let 0= (0:m € w)/F and 5 = (m : m € w)/F. Thus
¢ is a linearly ordered structure with least element 0 and greatest element oc.
Moreover, every element except o0 has an immediate successor, and every element
except 0 has an immediate predecessor. Therefore the order type of € consists of
w followed by 2 copies of Z in some order not of interest in this proof, followed
by w*. (It is well known that C' has power 2¢.) For any element x of C' and any
n € Z we denote by x + n the nth successor of = (meaning (—n)th predecessor
if n < 0), if it exists (which is only problematical for the initial w and terminal
w*). Two elements u,v of C' are said to be equivalent if u is the nth successor of
v or v is the nth successor of u for some n € w.

If z/F is an atom of B, then we say that z/F is of

o type 1 if {m € w: In(z,, = {(2n +1,2n,0,0,...)})} € F;
o type 2if {m cw:In(z, ={2n+1,2n+2,0,0,...)})} € F.

Note that every atom is either of type 1 or of type 2. For any atom z/F of B we
set int(x/F) = (intx,, : m € w)/F; clearly this is a well-defined function from
the set of atoms of B into C'. Then we call atoms u, v of B equivalent if int u and
int v are equivalent.

(1) For any i € {1,2} and any n € [], . (m +1) there is at most one atom u
of B of type i such that intu =n/F.

In fact, suppose that x/F and y/F are atoms of B of the same type, and
int(z/F) = int(y/F) = n/F. By symmetry we assume that the type is 1. Then
each of the following sets is in F, and hence so is their intersection, which we
call X:
{mew:In(x, ={2n+1,2n,0,0,...)})},
{m e w:3In(ym ={(2n+1,2n,0,0,...)})},
{m ew:intz,, =nn,},
{m e w:inty, = nm}.

Then it is clear that for any m € X we have x,, = ym,, as desired.

Next, let ¢ = (¢ : m € w) and d’' = (d™ : m € w). The following rules for
calculation of cylindrifications will be useful; the rules are clear on the basis of (1):

(2) co(c'/F)=¢'/F and c¢o(d'/F) =d'/F.

(3) If /F is an atom of 9B, then ¢1(z/F) = x/F + y/F, where y/F is the
other atom such that int(y/F') = int(z/F).

(4) If /F is an atom of type 1 and x/F # ¢ /F, then ¢o(x/F) =x/F +y/F,
where y/F is the unique atom of type 2 such that int(y/F) is the immediate
predecessor of int(z/F).
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(5) If /F is an atom of type 2 and z/F # d'/F, then c¢o(z/F) = z/F +y/F,
where y/F is the unique atom of type 1 such that int(y/F’) is the immediate
successor of int(x/F).

(6) If k > 1, then c,u = u for any u € B.

Next we define a function G mapping the set of atoms of 25 into “C by defining
its restriction to each equivalence class k& under the above equivalence relation.

Case 1: ¢/F € k. Let x/F be any member of k. Then int(x/F) is, for some

n € w, the nth successor of 0 in €. Then we set
G(z/F) = (04 2n+ 1,0+ 2n,0,0,...) if /F is of type 1,
(0+2n+1,0+2n+2,0,0,...) otherwise.

Case 2: d'/F € k. Let y/F be any member of k. Then int(y/F) is, for some
n € w, the nth predecessor of 50 in €. Then we set

Gly/F) = (36— (2n+1),0 — 2n,,3, .. .) if y/F is of type 2,

y (- (2n+1),50 — (2n+2),50,0,...) otherwise.

Case3: ¢/F,d'/F ¢ k. Fix an element s of the equivalence class of int(u/F),
where u/F' is any element of k. Now for any z/F € k write int(z/F') = s+n with
n € Z and define

G(2/F) = (s+2n+1,5+2n,0,0,...) if z/F is of type 1,
(s+2n+1,s+2n+2,0,0,...) otherwise.

This finishes the definition of G. Note that G is one-one.

Finally, we define H : B — P(“C), which will turn out to be the desired
isomorphism. For any x € B, let

Hx ={Gy:y <z and y is an atom of B}.

We claim that H is an isomorphism from 9B onto a Crs, with unit element Z def

H1. Clearly H is a Boolean isomorphism. Now we check the diagonals. In 8 we
have dx, = 1 for any Kk < «, and Dy, = 1 in any Crs,, so there is no problem
with that. For 0 < k¥ < a we have dy, = 0 in B. Now Z is simply the range of G,
and clearly (Gy)o # (Gy), for all atoms y of B, so Dy, = 0 also. For 1 < kK < «
we clearly have, in B, dy, = {¢/F,d'/F}. So, using the notation introduced in
the definition of G,

Hdy, = {(0+1,0,0,...),(cc — 1,50,30,...)}.

This is clearly equal to Di,. Finally, for K, A > 1 we have d;y = 1 in 9B, and
clearly also D) = 1, as desired.
Finally, we have to check the cylindrifications. First note

(7) For any z,y € B with x an atom, and any k < a, z < ¢,y iff there is an
atom u < y such that z < ciu.

We omit the proof, which is straightforward.
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To check preservation of cylindrifications, note that ¢,z = x for all x if K > 1,
in both algebras considered, so it is only necessary to check ¢y and ¢;. Here there
are many little cases to be considered. To illustrate the ideas, we take one typical
case and leave the rest to the reader. Suppose that Gz € Hcgy; we want to show
that Gz € CoHy. By (7) there is an atom wu such that u<y and z <cou. Without
loss of generality, u # z. We now consider one of two possibilities for the type of
u: assume that u has type 1. Then by (4), z is of type 2 and int z is the immediate
predecessor of int u. Now we consider one of three possibilities for the equivalence
class of u: assume that u is equivalent to ¢/ /F. Let n = int u. Then the definition
of G gives

Gu=0+2n+1,0+2n,0,0,...), Gz={0+2n—-1,0+2n,0,0,...),
so Gz € CyHy, as desired. =

Although Theorem 9.3 discourages the idea of abstractly characterizing the
class of isomorphs of Crs;’s, it turns out that it is possible to give a rather simple
description of an infinite set of equations which characterizes this class. This
description is due to Resek and Thompson. We need some simple notation in
order to conveniently formulate their description. Let szx =ci(dij-x)ifi #j
and siz = x. We use [i/j] for the function with domain I which sends i to j and
fixes all other elements of I (here I is to be understood from the context). For
any function f, f[K] = {fx :x € K}. Now for any set I let X; be the following
set of equations, where we use u < v to mean that v -v = u:

(1) Equations characterizing Boolean algebras (for +,-, —,0,1).
(2) ¢;0=0.

(3) ci(z + y) = T + ¢y.

(4) x < ¢z

(5) ¢ic cix.

(6) ex(ccia) = —cia

(7) di; = 1

(8) dij = dji.

(9) dij - djr < dip,.

(10) cz(x dij) - d” <uzifi#j.

(11) S " Ch,, SJ - [iex dirqy < cix, where K = {iy, ... in, k1,... kn}
\{i}, 7= [Zn/jn] oli1/71] and kst & ([im/Jm]o- . .o[i1/71])[K] for all m < n.

The result of Resek and Thompson is then that X} characterizes the isomorphs
of members of Crsy for every I with at least two elements. A simple proof of this
result is due to Hajnal Andréka, and we will now give the essential part of her
proof, which establishes the following theorem. For this theorem, for convenience
we work with an ordinal rather than our general set I.

THEOREM 9.4. Let v be an ordinal greater than 1. Then every Crs, is a model
of Xo. Moreover, every atomic model of X, is isomorphic to a Crs,.
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Remark. From results in Section 2.7 of [4] it then follows easily that every
model of Y, is isomorphic to a Crs,, giving the indicated result.

Proof. First we prove that any Crs,, is a model of X,,. So, let A be a Crs,, with
unit V' and base U. All of the parts of X, except (11) are completely routine, and
will be left to the reader. Now let f be in the left-hand side of (11). For 1 <~y <n
let 74 be the member of “U defined by setting (FJ)l = f[in/jn] . .- [iy/j]l for
all | € a. Let ¢(g,7) be the statement that there exist ¢ € w, x1,...,24 €
{i,i1,...,iy—1}, and u1,...,uy € U such that

(a)y forallu=1,...,gand all e = 1,...,v — 1, if z, = j. # i., then there
is some § with € < d <  such that z, = is # js;

(b)y g = (F))utan.
Now we will define by downward induction functions g,,...,g1 and h,,..., hy
so that for each v =1,...,n the following conditions hold:

(1) ¢(gy,7+1) and g, € S;-:Ck,y . sé.icklx;
(2) ¢(hy,v) and h, € ckws;::l ...s?lcklsc.

1

To start with, we let g, = f; condition (1) for v = n is clear. Now assume
that g, has been defined; we define h.. Assume the notation of (1), (a)y+1, and
(b)y41. If iy = j,, let hy = g,; clearly (2) holds for . Now assume that i # j,.
Then we have

Ty_1

i’y
(99) (5, € ChySi L o Chy T

and we let hy = (g-) . To see that (2) holds for ~, first note that j, # x,, for

i'Y

(9+)3~
allu=1,...,q. Hence (g4)j, = $+1j’Y' If any of the x,,’s are equal to i, delete
them, forming thereby subsequences (y1,...,yp) of (z1,...,24) and (vi,...,vp)

of (u,...,uq). Then it is clear that

h, = (J’T'f)yl---yp

Y/ VL.V
as desired.
Finally, suppose that h. has been defined, where v > 1; we want to define
g~v—1. Assume the notation of (2), (a), and (b),. There is a v € U such that

k 7;771
(hfy)vw S Sjo_q - Ca T,

and so we can let g, = (h,y):f”; thus

921 = (FDm ik

1..-UqV )
as desired.

So the construction is complete. Applying it to hy, we see that h; € ¢, x and
hi has the form

ha = (F)i

sUg?
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where x,, = ¢ for all u (but possibly ¢ = 0). Note that .7:1f = f o7. Hence from
hi € cix and f € [[;c i dirqy we get f € c;x, as desired.

We now turn to the second part of the proof. Suppose that 2l is an atomic
model of X, and denote by At the set of all atoms of 2. We shall define a function
rep from At into P(V') (for some set V' of functions with domain «) so that the
following conditions will hold for all a,b € At and i,j € a:

(I) rep(a) N rep(b) =0if a #b.

(I) rep(a) #

(1) rep(a) C D[ Vif a < d, and rep(a) N DY = 0if a £ d.
(IV) rep(a) C C rep( ) if a < b

(V) rep(a) N [ ]rep(b) =0if a £ cM'b.
(VI) UaeAt rep( )=V.

If we manage to do this, then rep can be extended to all of A by defining, for any
x € A,
rep(x) = U rep(a).
a€At, a<lzx

Then it is routine to check that rep is the desired isomorphism from 2 onto a
Crs,, with unit V.

For every a-sequence f let ker(f) = {(i,j) € axa : f; = f;}, and for every a €
At let ker(a) = {(i,j) € a x a: a < d3}. Both of these are equivalence relations
on «, using for ker(a) the axioms (7)—(9) from X,. Now (III) is equivalent to

(IIT") If s € rep(a) then ker(s) = ker(a).
We also notice that (IV) is equivalent to
(IV') If s € rep(a) and a < ¢'b, then s!, € rep(b) for some wu.

Now we shall construct the set V' and the function rep step-by-step. Let W =
{(a,b,i) : a,b € At, a < ¢;b, i € a}. We claim:

(%) There is an infinite cardinal £ and a function o : K — W x & such that for
all w e W and A < & there is a v such that A <v < k and o(v) = (w, A).

To prove (x), take k to be any infinite cardinal at least as big as |W|, let g
be any function from x onto W x k and let 7 be a one-one function from s onto
kX k. If x € K X Kk, we write © = (zg,x1). Define o(v) = g(7(v))o. Clearly this
works for ().

Now we really begin the construction. Let repg(a) = 0 for all a € At, and also
let Vo = 0.

Assume that v < k, and V,,, rep, : At — P(V,), and p¢ for all £ < v have
been defined. Write o(v) = (a,b,i,\). First we define p,.

Casel: A <vandpy € rep,(a). If b < dQl for some j # 1, choose the smallest
such j and let u = py(j); if b £ d for all j 7é i, then let u be a new object, not
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in the range of any of the functions p¢ for £ < v. Under either possibility define
pu to be (px)?.

Case 2: A > v or py € rep,(a). In this case let p, be a sequence with the
same kernel as b and with range consisting of entirely new objects, not in the
range of any of the functions p¢ for £ < v.

This defines p,,. Then we define

repy+1(b) = rep, (b) U {p, };
rep,+1(a’) = rep,(a’) for any atom a’ # b;
Vy+1 = Vy U {p,/}

That describes the step from v to v+ 1. Now if v < k is a limit ordinal and rep;
has been defined for all £ < v, we set

repy(a) = Ug, repe(a) for every atom a;
VV = U£<V ‘/5
Finally, let rep = rep, and V = V.
Now we start checking the conditions (I)—(VI).

(VI) This is obvious from the definitions.

(IT1") Suppose that s € rep(a). Then for some v < k, s was constructed as p,
in the passage from v to v + 1, with “a” in the role of “b”. It is straightforward
to check that ker(p,) = ker(a).

(IT) Given an atom a, let v be such that o(v) = (a,a,0,0). Then Case 2 in
the definition applies, and we get p, € rep(a).

(IV') Suppose that s € rep(a) and a < ¢;b, where a and b are atoms. By
the construction, s = py for some A < k. Choose v < k with A < v such that
s(v) = (a,b,i,\). Then by construction, p, € rep(b) and p, has the form (py)?,
for some u, as desired.

That takes care of the easy ones—the ones that really were forced to be true
by the construction. It remains to show that (I) and (V) hold; this amounts to
showing that in the construction no unwanted connections arose between repre-
sentatives of atoms. Before proceeding with the proofs of (I) and (V) we need an
auxiliary statement (%), whose formulation depends on the following definition.

Let s,z € V and a,b € At. We say that (sg,$1,...,5n), (G0,a1,...,an),
(i1,...,in) is a chain (of length n) leading from s,a to z,b provided that the
following conditions hold:

(a) s = S0, 2 = Sp, a = ag, and b = a,,.

(b) For all m < n, 8,41 differs from s,,, exactly at i,, 11, .., Smi1 = (Sm)u
for some u # Sy (imt1)-

(€) ams1 < CippyrGm, Sm € Tep(ap,), and Rng(s) N Rng(z) € Rng(sy,). (For
any function g, Rng(g) is the range of g.)

Here is the statement (x):
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(%) Suppose that s€rep(a), ac€rep(b), and Rng(s) N Rng(z) # 0. Then there
is a chain leading from s, a to z,b.

Proof of (x). For each v < k, let (x), denote the statement we obtain from
(x) by replacing rep by rep, in it and in the corresponding definition of a chain
leading from s,a to z,b (where rep is mentioned once). Then (%) is (x),, and we
shall prove (%), for all ¥ < k by induction on k. Clearly (x)o holds and (%), is
preserved in limit steps.

Let v < k and assume that (*), holds; also, assume the hypothesis of (*),11. If
s,z € V,,, then we are through by our induction hypothesis (x),, since rep, (a’) =
rep,+1(a’)NV, for any o’ € At. If both s,z € V,,, then s = z = p,, and a = b, since
only one element is added at the (v + 1)-st stage, and it is determined by o(v).
But then we are done, since there is a chain of length 0 from s,a to s,a. Thus
we may assume that one of s, z is in V,, and the other not. Now the statement to
be proved is symmetric in s, z, since there is a chain leading from s,a to z, b iff
there is one leading from z,b to s, a. Here one needs to use the fact that [a < ¢;b
iff b < ¢;a] for all a,b € At and all i € «, which follows from (2)—(6).

So, assume without loss of generality that s € V,, and z € V,11\V,. Now
Rng(s) N Rng(z) # 0, so our construction lands in Case 1. Thus there exist
a’, i and A < v such that o(v) = (d,b,i,)\), px € rep,(d’), and z = p, =
(pa):, # px for some u such that either u € Rng(py) or u &€ Rng(s). There-
fore Rng(s) N Rng(z) € Rng(py). Hence by the induction hypothesis there is
a chain (s,s1,...,pa), (z,a1,...,d'), (i1,...,i,) leading from s,a to py,a’. So
(Sy...yDr, 2)y (ay...,a’,b), (i1,...,im,1) is a chain leading from s,a to z,b, as
desired. This finishes the proof of (x).

Now we are ready for the proofs of (V) and (I).

Proof of (V). Suppose that s € rep(a), z € rep(b), and z = s!, for some u. We
have to show that a < ¢*b. From « > 2 it follows that Rng(s) N Rng(z) # 0. By
(*) then, let (sg,...,Sn), (@o,...,an), (i1,...,in) be a chain leading from s,a to
z,b. We will define j1,...,jn, k1, ..., ky such that

b< S;chn . sj-llckla- H dir(1)s
leK
where i1,...,1,7, K satisfy the conditions in our equation (11) in X,. Then b<
c?a by (11) and hence a < ¢?b, and we will be done.
Let K = {i1,...,in}\{i} and K+ = K U {i}. Note that |[KT| > |K|. We will
define j,, and k,, for 1 < m < n by induction on m so that by letting
Tm = lim/Jm] o ... 0 [i1/j1]
we will have for all m < n the following:
so(l) < s (i (1))  forall l € K,

7 +1
W1 < 800 Chypyi @ and kg € KT\7,.[K].
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Let m < n and assume that j; and k; have been defined for all t with 1 <t <m
so that the above properties hold (m = 0 is allowed).

Casel: $p(im+1) € Rng(Sm+1), say Sm(im+1) = Sm+1(J)- Since Sp41(im+1)
# Sm(im+1), we have j # ipy1. Therefore s,,(j) = sm+1(J) = sm(im+1). Hence
by (IIT') we get a,, < diQ‘m«}»lj’ and hence a,,+1 < S;m“am. We let jpmi1 = 7,

and we let k,,+1 be any member of K+\7,,[K] (recall that |[K*| > |K]|, so that
K \7[K] # 0).

Case 2: Sy(ims1) € Rng(sm+1). This time we let jir1 = kg1 = dmy1.
Note that for any [ € K we have [ # i and hence

Sm(Tm (1)) = so(l) = z(I) € Rng(s) N Rng(z) € Rng(Sm+1),
and hence 4,41 # T (1).

In either of these two cases it is easy to see that the above requirements
are satisfied for m + 1. It follows that b < sjﬁckn e szllckla. Also, z(1) = s(l) =
50(l) = sn(Tn(l)) = 2(7(l)) for all I € K. Then it follows from (III') that b < d;- ()
for all [ € K. This is as desired, finishing the proof of (V).

Proof of (I). Let a,b € At and assume that s € rep(a) N rep(b); we want to
show that a = b. By (x), there is a chain (sg,...,8n), (@0,...,an), {i1,...,0n)
leading from s,a to s,b. If n = 0, then a = b and we are done. Assume that
n>0. Let d/ = ap_1, @ = iy, and z = s,_1. Then the facts that z and s differ
exactly on i, s € rep(a), and z € rep(a’) imply by (V) that a < ¢;a’. Then by
use of (2)—(6) we derive from a’ < ¢;b that a < ¢;b. Next, since z(i) # s(i) and
Rng(s) € Rng(z) (by virtue of one of the conditions on the chain from s,a to
s,b), it follows that s(i) = z(j) = s(j) for some j # i. Hence a < d%— and b < d%—
by (III'). Thus by (10), a < d?lj C?(d?][ -b) < b. Since a and b are atoms, it follows
that a = b. This finishes the proof of (I) and hence of the Theorem. =

10. Ultraproducts. As is to be expected, discussion of ultraproducts of Crs;’s
requires some involved notation. Let F' be an ultrafilter on a set J, U = (U; :
j € J) a system of sets, and I any set. By an (F, U, I)-choice function we mean a
function ch mapping I x [[;.; U;/F into [ ], ; U; such that for all i € I and all
y € [1;c, U;j/F we have ch(i,y) € y.

If ch is an (F, U, I)-choice function, then we define ch™ mapping /(][]
into [, ., 'U; by setting, for all ¢ € '([[,¢, U;/F) and all j € J,

jeJUj/F)

(ch™ q); = (ch(i,q;); : i € I).

LEMMA 10.1. Let A = (A; : j € J) be a system of sets such that A; C P('U;)
for all j € J, and let ch be an (F,U,I)-choice function. Then there is a function
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r mapping [1;c; A;/F into P('(I],¢,; U/ F)) such that for any a € [];c; A;

r(a/F) = { (HU/F):{jeJ (ch* q); eaj}ep}

Proof. To show that there is such a function, suppose that a/F = b/F and
g€ (1, Uj/F). Then {j € J:a; =b;} € F, and so

{jeJ:(chtq);€a;}€F iff {jeJ:(chTq);€b;} €F,
as desired. m

The function given in Lemma 10.1 will be denoted by Reppyrach, Where we
will usually leave off all of the subscripts, or most of them. The basic result on
ultraproducts of cylindric set algebras, corresponding to Los’s theorem in logic,
is the following somewhat technical result:

LEMMA 10.2. Let F be an ultrafilter on a set J, U = (U; : j € J) a system
of non-empty sets, and I a set. Let ch be an (F,U,I)-choice function. Further,
let A € /Crsy, where each 2, has base U; and unit element V;, and set V = (V; :
jeJ).

Then Rep,y, s a homomorphism from HjEJQlj/F into a Crsy. Furthermore,
for every non-zero x € [[,;c; A;j/F there is an (F,U,I)-choice function ch such
that Rep,x # 0. Namely, ifx =a/F, Z € F, s € ngJ i, 8j € a; for all
jEZ,

w=((sji:jeJ)y:iel), q=(w;/F:iel),
and ch(i,w;/F) = w; for alli € I, then q € Rep .

Proof. Let f = Repy,, X = [[;c,;U;/F, and T = f(V/F). Clearly f pre-
serves +. Next we show that f preserves —. Clearly f(—z) C T\ fx. Now let
x = a/F and suppose that ¢ € T\ fz. Thus

{jedJ:(chtq);eV;}€F and {jeJ:(chq); €a;} ¢F,

ie., {j € J:(chtq); € V;\a;} € F. Therefore q € f(—x), as desired.

So, f is a Boolean homomorphism. Next we show that f preserves dy;. Since
diy < V/F we have fdy C T. Now let ¢ € T. Then {j € J: (ch ¢q); € V;} € F,
and

g€ fdy iff {jeJ:(chtq);eDY}eF
iff {jeJ:((ch"q);)k=((ch"q);)}eF
ifft {jeJ:ch(k,qr); =ch(l,q);} eF

iff Jr = qi iff qGD,[g],

as desired.

Next we check preservation of cylindrifications. Suppose i € I. First suppose
that ¢ € f(c;a/F). Hence M { €J:(chtq), € Ci[vj]aj} is in F. So, there
is an s € [[..;U; such that [(ch™ ¢);]}. € a; for all j € M. Let u = s/F; we

JEJ S5
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show that ¢!, € f(a/F), thus finishing this inclusion. Since ch(i,u) € u, the set

7% {jeJ:s;=ch(i,u);} is in F. Now for any j € J, if k € I\{i}, then

ch(k, (¢;)x); = ch(k,qr); = ((ch™ q);)k,
and

Ch(i’ (qzu)l)J = Ch(iv u)j;
hence for any j € Z N M we have

(ch™ qy); = (ch(k, (@)r)j : k € I) = [(ch™ @) ]tns,0), = [ch™ @);]3, € aj,
as desired.
Second, suppose that g € C’Z[T]f(a/F). Thus ¢ € T and there is a u € X

such that ¢/, € f(a/F). Let M = {j € J : (ch* ¢’); € a;}; thus M € F.

Also, since ¢ € T, the set Z < {j € J: (chtq); € V;}isin F. Now let

j € MNZ. Then (ch® q); € V; and (ch' q); | (I\{i}) C (ch" ¢}); € a;, proving
that (ch™ q); € Cl-[vj]ai. Thus ¢q € f(c;a/F), since M N Z € F. This finishes the
first part of the proof.

For the “Furthermore” part, assume everything mentioned in the hypothesis

of “Namely”. Let f = Rep,,. For any j € Z we have
(ch™ q); = (ch(i,q;); : i € I) = (ch(i,w;/F); :i € I)
—{(w); i€ D) =s; €ay,
so q € f(a/F), as desired. m

With the aid of this lemma we can prove the following basic theorem alluded
to earlier:

THEOREM 10.3. For |I| > 1, any homomorphic image of a Crsy is isomorphic
to a Crsy.

Proof. Let 2 be a Crsy, and let f be a homomorphism from 2l onto some
algebra B (of course, B is not necessarily a Crsy, but is merely similar to a Crsy,
in the sense of universal algebra). By Theorem 9.1 it suffices to take any element
x of A such that fr # 0 and find a homomorphism ¢ from 2l into a Crs; such
that gz # 0 and gy = 0 for all y such that fy = 0.

We are going to set up things to apply Lemma 10.2, in particular its last part.
Let J={y € A: fy =0} Let F be an ultrafilter on J such that {y € J: z C
y} € F for all z € J; clearly such an ultrafilter exists. Let U be the base of 2.
Now = & J, so for all z € J we have z Z z, and so we can choose s, € x\z. Let
w=((syi:z¢€J):i€l). Let ch be an (F,(U : z € J), I)-choice function such
that ch(i,w;/F) = w; for all i € I. For each y € Alet = (y: z € J), and set
hy = Rep(y/F), where

Rep = Repp(v:ze sy r(a:zesyen

Let ¢ = (w;/F : ¢ € I). We take it as a matter of universal algebra that the
mapping y — ¥/ F is an isomorphism from 2l into 2A/F. Hence by Lemma 10.2,
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h is a homomorphism of 2 into some Crs; ®, and ¢ € hz. Let V = hl and
W = U{C’Eg]...C[V] {¢} :mew, up,...,um—1 € I}.

Um—1
Then Cl.[V}W = W for all i € I, so W is a zero-dimensional element of P(V).
Hence by Proposition 5.1, rly is a homomorphism from © onto some Crs; €.
Let g = rly oh. So g is a homomorphism from 2 onto €, and gx # 0. It remains
only to take any z such that fz = 0 and show that gz = 0. Let m € w and

UQ, .-+, Um—1 € I; we want to show that hz N CL‘S] ... C’gj_l{q} = (. It suffices

to show that {¢} N C'Q[X,},l ...Cq[)g]hz =0, i.e., that ¢ & ng/n]fl ...Cq[t‘g]hz. Now

tdéfcumfl...cuozezf, so{veJ:tCwv}eF. Ift CveJ, then s, & v, hence

Sy €t. Thus {v e J:s, €t} € F. Now for any v € J such that s, € t we have
(cht @)y = (ch(i,q)p i € I) = ((w;)y : 1 €I) = (spi:i €I) =5, &1t
Thus g ¢ Rep(t/F) = ht, as desired. m

There are many other useful and interesting facts about ultraproducts of cylin-
dric set algebras; see the basic references mentioned in the introduction.

11. Cylindric set algebras. We finally come to the actual topic of these lec-
tures: cylindric set algebras, a specialization of cylindric-relativized set algebras.
A cylindric set algebra is a cylindric-relativized set algebra whose unit element
has the form YU. So, these have already been discussed, without having a special
name for them. For any structure 9, the algebra €s9 is a cylindric set algebra.
Let Cs; be the collection of all cylindric set algebras with dimension set I. This
class forms a closer algebraic approximation to the class of all algebras €s 9. For
example, the simple law coc1x = c¢1cox holds in all Csy’s, but not in the larger class
Crsy. For example, let I = w, V = {(0,0,0,0,...),(0,1,0,0,...),(1,1,0,0,...)},
z={(0,0,0,0,...)}. Then (1,1,0,0,...) € ¢V lcla\clVclVa.

All of the theory developed in the preceding sections can be specialized to the
class Csy, and some natural new questions and results arise. Some of these will
be developed in the next few sections. We mention the main facts about cylindric
set algebras:

I. The cylindric set algebras derivable from logic can be characterized from
among all cylindric set algebras of dimension w by two additional set-theoretical
conditions: regularity and local finiteness.

II. The class of isomorphs of cylindric set algebras of a given infinite dimension
is not even an elementary class, contrasting strongly with the case of cylindric-
relativized set algebras.

III. The variety generated by Cs; is not finitely axiomatizable when |I| > 2,
much like the case of cylindric-relativized set algebras.

IV. This variety can be characterized set-theoretically by means of certain
generalized cylindric set algebras.
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V. If we restrict ourselves to cylindric set algebras of a fixed infinite dimension
with infinite bases, then the unfortunate situation of II no longer holds: we get a
variety, just like the case of cylindric-relativized set algebras.

VI. An equation holds in all cylindric set algebras of dimension w iff it holds
in all algebras €s M, M a first-order structure.

Results I, IV, and VI are due to Henkin and Tarski; result V is due to Henkin
and Monk; results II and IIT are due to Monk. Important versions of all of these
results will be proved in these notes.

We first mention the following obvious consequence of Theorem 5.4 and its
proof.

THEOREM 11.1. Let 2 be a Cs; with base U (and hence unit element 1U).
Let k be an infinite cardinal such that |A| < k < |U|. Assume that S C U and
|S| < k. Finally, assume that kMl = k. Then there is a W such that S C W C U,
|W| =k, and A is ext-isomorphic to a Cs; with base W. m

While the class of Crs;’s is a variety according to Section 9, the class Csy is not
even elementary for I infinite (this is the result IT mentioned above). To see this,

let A be the Cs; of all subsets of 72. Let J be a set with more than 92" elements,
and let F be an ultrafilter on J such that |/ A/F| > |J|. We claim that “21/F is not
isomorphic to a Csy. For, suppose that f is an isomorphism from 72(/F onto a Cs;
B. Say that B has base U. Now in 2 the equation cocyca(—dpr - —dp2 - —d12) =0
holds, so it holds in 9B, too. But this means that |U| < 2, and hence |B| < 22"l
a contradiction.

The same example shows that Theorem 9.1 does not extend to Csy’s for [
having at least three elements. Now we consider the variety RCA; generated
by Cs;; members of RCA; are called representable. Theorem 9.3 does extend to
this variety. This is an old result of the author, and is more important than
Theorem 9.3 itself since the notion of cylindric set algebra is more natural than
that of a cylindric-relativized set algebra. We now give a proof of this result,
due to Andréka [1] (the first version of her proof was developed in 1986). Her
theorem is actually stronger. This time the proof in the infinite-dimensional case
is easier; in my opinion this case is more important anyway, and we give only this
case. The original proof of the author remains of interest in showing a connection
with combinatorial structures which has been further worked on by Comer and
Maddux. This theorem is the major part of the result III mentioned above.

THEOREM 11.2. Let I be infinite. Then RCA; cannot be axiomatized by a set
X of quantifier-free formulas such that only finitely many variables appear in X.

Proof. For simplicity of notation we assume that I is an infinite ordinal «.
For each positive integer k we shall construct an algebra 2 with the following
two properties:

(1) A & RCA,;
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(2) Every k-generated subalgebra of 2 is in RCA,,.

(An algebra B is k-generated if it has a set of generators with at most & elements.)
An easy argument shows that the theorem follows from (1) and (2). Fix k in
order to do a construction yielding (1) and (2); and fix an integer m > 2*. Let
(U; : i € «) be a system of pairwise disjoint sets each with m elements. Let
U =U,e,Uiand fix g € [[,c, Us. (Here and further on, ][] denotes the Cartesian
product of sets.) Further, let

R= {26 HUi {i€ea:z #q}is ﬁnite}.
ISt
Another way of putting this definition, using the notation U9 from the end of
Section 4, is: R = ([],c, Ui) N1U%. Finally, let A be the subalgebra of P(*U)
generated by the element R. Observe now that R is an atom of 2’. To see this,
note:

(3) If s,z € R, then there is a permutation o of U such that o o s = z and
R={ocop:pe R}

In fact, there is a permutation o such that os; = z; and oz; = s; for all i € «
and ok =k for all k & {s;,z; :i € a}. Clearly o is as desired in (3).
Note the following fact about permutations of U:

(4) If o is a permutation of U and R = {oop:p € R}, thena = {oop:p € a}
for alla € A,

In fact, the collection of a such that the conclusion of (4) holds has R as an
element and is closed under all of the operations of ', so (4) holds.

Now we prove that R is an atom of 2'. Suppose a € A’ and 0 # a N R.
Fix s € an R. To show that R C a, let z € R be arbitrary. By (3) let o be a
permutation of U such that o os = z. Since s € a, it follows from (4) that z € a,
as desired.

Of course 2’ is not the algebra we want, since it is a Cs,. We now extend
A’ to yield the desired algebra. There clearly is a BA 2l obtained from B[’ by
replacing R by m + 1 new atoms R;, j < m; thus R = Zj<m R;. We expand
2 to an algebra similar to Crs,’s as follows. Let the cylindrifications of 2 be
denoted with small letters to distinguish them from the “real” cylindrifications
of 2, which are denoted by big letters as in the first part of these notes. For any
x € A we define ¢;x as follows:

o Cix if R-2 =0 (then z € A’);
T\ Ci(R+x) ifR-z#0 (always R+az € A').
The diagonal elements of 2 are defined to be the same as those of 2. (Note that

RND;; =0 for all distinct ¢, j < a.) So, this defines A fully, as a structure similar
to Cs,’s. We mention for later reference some elementary properties of 2:

(5) = <c¢m.
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(6) ci(z+y)=ciz+cy.
(7) If z € A, then ¢;x = Cjx.
(8) cixeA.
(9) cicix = ¢x.
(10) If x < y then ¢;x < ¢y.
(5) and (8) are obvious. (6) is easily shown by considering cases. (7) is pretty
immediate from the definition since R is an atom of 2’, and (9) follows from (7)
and (8). Finally, (10) is shown like this:
iy =ci(x+y) =cr+cy.
Note from (7) that 2 is a subalgebra of 2.
Now we prove (1). We need some special notation: sz = c;(d;; - ) for i # j,
stz = x. Consider the following term 7(z):
H s?cl e CpT H —d;j.
i<m 1<j<m
We want to see the meaning of 7(R) in 2. To this end, note, in 2,
Cy...C,R= Uy x "U X Uppg1 X ...)N*U;
901 ...CuR = ("U x Uy x ™U X Uppge1 X ...)NYUL (i < m);
H S?Cl .ChR= (m+1U0 X Up41 X .. ) n«Ue.

i<m
Now since |Ug| = m, it follows that 7(R) = 0 in 2. Since 2’ is a subalgebra of
2, also 7(R) =0 in 2.

Suppose that 6 € RCA,. Then there is a homomorphism h of 2 into a Cs,, B
such that AR # 0. Choose t € hR. Now for each i < m we have R < ¢oR;, and so
hR C CyhR;, and so there is a u; such that tgi € hR;. Since the R;’s are pairwise
disjoint, the wu;’s are pairwise distinct. Also note that ¢;...¢,,R; = C1...C,, R
for any ¢ < m. Hence

(U, Uty -y Uy bt 1 tt2y - - ) € T(RR) = h7(R) =0
in B, a contradiction. Thus (1) holds.

We turn to the proof of (2). Let G C A with |G| < k. Now we define
i=j iff i,j<mandVgeG(R; <giff R; <g).

Clearly = is an equivalence relation on m + 1. We claim that it has at most 2*
equivalence classes. To see this, let f(i/=) = {g € G : R; < g} for all i < m.
Clearly f is well defined, mapping the set of equivalence classes into P(G). And
f is clearly one-one by the definition of =; this proves the claim. Let p be the
number of equivalence classes. Recall also that 2¥ < m. Now define

B={a€ A:Vi,j <m(ifi=j then (R, <aiff R; <a)}.
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We now show that B is closed under the operations of 2. Clearly it is closed under
the Boolean operations. Since R; £ dj for all distinct ¢,/ < a and all j < m,
it follows that d;; € B. Since R is an atom of 2, it follows that A’ C B; since
cia € A’ for all a € A, it follows that ¢;b € B for all b € B. Thus, indeed, B is
closed under the operations of 2. Note also that we have shown that A’ C B.

We let B be the subalgebra of A with universe B. Clearly G C B, so it suffices
to show that 8B € RCA,. We shall, in fact, show that 28 is isomorphic to a Cs,
with base U (see the beginning of the construction).

Let e, ...,e,—1 be all of the equivalence classes under =. For each j < p let
y;j = > {Rk : k € ej}. Then (y; : j < p) is a partition of R in B, ¢;y; = C;R for all
i < cvand all j < p, every element of B is a join of certain y;’s and elements of A’,
and the y;’s are atoms of B. We now consider m (which is {0,1,...,m—1}) along
with addition + modulo m; actually any group operation on m with identity 0
will do. For each 7 < « let f; be a one-one function mapping U; onto m such that
figi = 0. For each j < m let

<o
(Note that for 2 € R, fiz; = 0 except for finitely many i < «.) Clearly the R’’s
are pairwise disjoint and C’Z'R;- = C;R for all i < o and all j < m. Next we define

Si=Rjif j<p-1, S,u= |J R}
p—1<j<m

Now we define the desired isomorphism h: for all b € B,
hb=(b-—R) U\ (S, : < p. w; < b},

Clearly h preserves the Boolean operations and the D;;’s, and h is one-one. To
show that h preserves ¢;, first note the following two facts:

(11) Czhb = Cz<b . —R) U ijgb CZ'S]';
(12) hClb = (Czb . —R) U ijgcib Sj.

(11) and (12) follow from the definition of h. Now we consider two cases.

Case 1: y; < b for some j. Then by (10) and the definition of ¢;, C;R =
¢iy; < ¢;ib; and C;S; = C;R. So by (11) and (12),

hcib = (Czb . —R) UR= Cib,
as desired.

Case2: y; £ bforall j < p. Thenb-R=0, so by (11), C;hb=C;(b- —R) =c;b.
Now we take two subcases. Subcase 2.1: y; < ¢;b for some j. Then R C C;R =
¢iyj < ¢ib, so by (12), heib = (¢;b- —R)UR = ¢;b, as desired. Subcase 2.2: y; £ ¢;b
for all j < p. Then ¢;b- R =0, so by (12) again, hc;b = ¢;b- —R = ¢;b, finishing
the proof. =
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12. Local finite-dimensionality and regularity. A Crs; 21 is locally finite-
dimensional if Ax is finite for all x € A. Thus each algebra €59 is locally
finite-dimensional; this is a consequence of each formula in a first-order language
being of finite length. Also note that if I is finite, then 2{ is automatically locally
finite-dimensional. An element a € A is finite-dimensional if Aa is finite. Now let
A be a Cs; with base U. We call 2 regular provided that for all a € A, all f € a
and all g € U, if f | Ax = g | Az then g € a. It is easy to see that each algebra
Cs M is regular. At first glance, one might think that every Cs; is regular. If I is
finite, then it is easy to check that this is the case. But for I infinite we now give
a counterexample. Let 2 be the Cs; of all subsets of 72, and let

a={xecl2:{icl:x;#0} is finite}.

Then Aa = 0, from which it is clear that 2 is not regular. We understand in an
obvious sense an element a € A being regular.

We now give another algebraic form of the downward Léwenheim—Skolem
theorem.

THEOREM 12.1. Let 2 be a reqular Cs; with base U and unit element Z = 'U.
Define X to be the least infinite cardinal greater than each |Aa|, a € A. Let k
be an infinite cardinal such that [A] <k <|U| and k = 3, k. Assume that
S CU and |S| < k. Then there is a set W such that S CW C U, |W| = &, and,
with V. =1W, rl% is an isomorphism from A onto a reqular Cs; B with base W.

Proof. The proof, while basically similar to that of Theorem 5.4, has to be
modified from that one. Let well-orderings of U and U be given. Fix u€U. For
each a € A\{0}, let k, be the first element of a such that k,i = u for all i € I\ Aa;
that there is such a k, follows from the regularity of 2. Note that the range of
k. has fewer than A elements. Hence there is a set Ty such that |Ty| = &, S C Ty,
u € Ty, and k, € T for all a € A\{0}. Now suppose that 0 < 5 < k and T, has

been defined for all a < . Let M = Ua</8 T, and let

Tz =M U{v € U : there exist a € A, i € Aa, €M,
such that v is the first element of U with the property that
y € a for some y € 'U such that z¢ C y}.

Finally, let W = T,, = |J,., Ta- Note that in forming T}, at most one element
is added to M for each choice of the following: an element a € A; an element
i € Aa; and a function x € 4%M. Thus if we assume that |M| = , we get that
also |T3| = k. Hence it follows by induction that |Ti,| = & for all @ < k. By the
definition of T it is clear that rl% is one-one. To prove that rl preserves C};, by the
comment before Proposition 5.1 it suffices to take any a € A and z € C'Z-[Z]a nv
and show that z € Ci[v] (anNV). We may assume that i € Aa. Now 2! € a for some
veU. Let x = z | Aa. Now |Aa| < X, hence 4% = k, hence |Aa| < cf &, hence
there is a 8 < k such that z € 2Tp. It follows that there is a w € Ty C W
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such that y € a for some y € 1U with 2%, C y. So 2!, | Aa =y | Aa, hence by the
regularity of 2, 2, €anNV, so z € sz(a NV), as desired.

So 1l is an isomorphism from 2 onto some Cs; B with base W. As to the
regularity of 9B, suppose that a € A, x € anNV,y € 'W, and z | Aa =y | Aa.
Then y € a by the regularity of U, and hence y € a NV, as desired. m

We can now give the result I about cylindric set algebras mentioned above.

THEOREM 12.2. Let A be a Cs,,. Then A has the form €s 9 for some first-order
structure M iff A is locally finite-dimensional and regular.

Proof. We have already observed that €s9) is always locally finite and reg-
ular. Now assume that 2( is a locally finite and regular Cs,,, say with base M.
For each a € A let r, be the smallest natural number such that Aa C r,. Let £
be the first-order language having, for each a € A, an r,-ary relation symbol R,.
We make M into an L-structure 9 by setting, for each a € A,

R™ = {ze"M:xz Cy for some y € a}.

We claim that €597t = 2. Obviously both are Cs,,’s with base M, so it suffices
to show that their universes are the same. Given a € A, we show that a =
(Rqvp - - .vra_l)fm; this will show D. In fact, for any x € “ M we have

z € (Ravg...vp,_1)™ iff 9MMERGuo...v,_1[z]
iff (zo,...,7,,_1) € R
iff (zo,...,2r,—1) Cy for some y € a
iff x€a;

in the last equivalence we use the regularity of 2.

For the other inclusion it suffices to show that ¢™ € A for every formula ¢,
by induction on ¢. We may assume that the atomic parts of ¢ have the standard
form mentioned in the FACT formulated prior to Theorem 3.3. Then the atomic
case is easy. All of the inductive steps are easy exercises, too. m

The following simple result will be needed later. The proof is straightforward.

LeEMMA 12.3. If 2 is a Cs; generated by a collection of reqular finite-dimen-
sional elements, then A is regular and locally finite-dimensional. m

13. Generalized cylindric set algebras. Let 2 be a Crs; with unit element
V. We call % a generalized cylindric set algebra provided that V has the form
UjEJIYj, where Y; # 0 for each j € J and Y;NY}, = 0 for all distinct j,k € J. And
we denote by Gs; the class of all generalized cylindric set algebras of dimension I.
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Here is some general algebraic notation: for any class K of similar algebras,

IK = {2 : 2 is isomorphic to some B € K};
HK = {2 : 2 is the homomorphic image of some B € K};
SK = {2 : 2 is a subalgebra of some B € K};
PK = {2 : 2 is the product of some system of elements of K}.

LEMMA 13.1. IGs; = SPCsy for all I with at least two elements.

Proof. The proof is essentially contained in the proof of Theorem 9.1. Thus
suppose that (; : j € J) is a system of Cs;’s; say the base of ; is U; for
each j € J. We may assume that U; N U, = 0 for all distinct j,k € J. Let
W = U,e; 'Uj. Then define f : [];c; Aj — P(W) by setting fz = |, ; for
any x € [] jed Aj. Now, apart from notation, the proof proceeds as in the proof
of Theorem 9.1. This proves that SPCs; C IGs;.

For the other inclusion, suppose that 2 is a Gsy, say with unit element V =
UjeJ IUj, where each Uj is non-empty and U; N Uy = 0 for all distinct j,k € J.
jGJP(IUj) by setting, for any a € A and j € J,
(ga); = anN!U;. The details that g is an isomorphism from 2 into a product of
Cs;’s are very similar to the details in the proof of Theorem 9.1, and are left to
the reader. m

Define g mapping A into []

The following lemma holds for I finite with at least two elements as well as
for I infinite, but we restrict ourselves to the case of I infinite. In its proof we
need the following notation. For any finite subset K of I,

CKa::CkO...Ck x

m—1*")
where K ={ko,...,kn—1}. We depend on the context to determine whether Cx
refers to this generalized cylindrification for a subset K of I or just to the ordinary
cylindrification, usually using big letters for the former, and small ones for the
latter. For a Gs; with I infinite, the order of enumeration of K is easily seen to
be unimportant in this definition.

LEMMA 13.2. HGs; C IGs; for I infinite.

Proof. Let 2 be a Gs; and let f : 2 — B be a homomorphism. To prove the
theorem it suffices to take any a € A such that fa # 0 and find a homomorphism
h from 2 onto some Cs; such that ha # 0 but hz = 0 whenever fx = 0.

Since 2 is a Gsy, its unit element V has the form J,_,; 1U; where U; # 0 for
all j € J, and U; N Uy = 0 for all distinct j,k € J. Let

M={xecA: fr =0} x {K CI:K is finite}.
Let F' be an ultrafilter on M such that if (z, K) € M then

TxK(ﬁf{(y,L)GM:xSy, K CL}eF.

JjeJ
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Clearly there is such an ultrafilter. Let W = J;.; Uj, and set X = MW/F. Let
a well-ordering of MW be given. Since fa # 0, there is an 7 € MV such that for
all (z,K) € M we have r(z,K) € aN —Cxz. Then there is a function j € ¥.J
such that for all (z,K) € M we have r(z,K) € Uj( ). Let Q = {k/F : k €
[Ler Uim} and w = ({(rm); : m € M) : i € I). So w;/F € Q for all i € I.
Now we define ch : I x MW/F — MW as follows. (a) ch(i,w;/F) = w; for all
i€l (b)Ifye MW/F, ic I, and y # w;/F, let y' be the first member of y
which is in J], .y, Ujm if ¥ € Q, otherwise just the first member of y, and for
each (z,K) € M let

. [y ifi e K,
ch(i,y)ex = {r(m,K)z‘ ifi ¢ K.

Note that always ch(i,y)/F = y. This is obvious if y = w;/F, while otherwise

Togiy C {(z, K) : ch(i,y)ox = y;K}:

and hence ch(i,y)/F = y. Thus ch is an (F,(W : m € M), I)-choice function.
And note the following three properties of ch, for any i € I:

(1) ch(z,wZ/F) = W;;
(2) if y € @, then ch(i,y) € [],,crr Ujm;
(3) if (z,K) € M and i ¢ K, then ch(i,y).x = r(z, K);.

Let ¢ = Reppw.mem)r(amemyen- For any x € Alet 7 = (x : m € M).
Finally, let hz = g(z/F) for all z € A.

By Lemma 10.2, h is a homomorphism from 2 onto some Crsy 9B, and ha # 0.
Now suppose that fy = 0; we show hy = 0. It suffices to show:

(%) For all ¢ € 1 X and all m € T, (ch™ ¢)m € v.

To prove (%), say m = (z, K), where y < z and fz = 0. By (3), ch(i,¢;)m =
(rm); for all i € I\K. Thus (ch® q),, | (I\K) =rm | (I\K). Since rm ¢ Ckz, it
follows that (ch q),, & Ckz, and hence (ch™ ¢),, € y. This proves (x).

It remains only to show that AV = Q. To do this, we first note:

(4) For any ¢ € X and any m € M, (ch™ q),, € V iff (ch™ @) € 1Ujn.

For, write m = (z, K); then by (3), (ch™ ¢),, [ (I\K) = rm | (I\K), and (4)
follows.

Now suppose ¢ € 1Q. By (2), (ch ¢),, € Ujp, for all m € M, and so by (4),
(ch® q),n € V for all m € M, and hence ¢ € hV. On the other hand, suppose
that ¢ € AV. Then the set Z < {m € M : (ch q),, € V}is in F. By (4),
(ch® ¢)m € TUjm for each m € Z, i.e., ch(i,q;)m € Ujp for all i € I and all
m € Z. Thus ¢ € 1Q, as desired. m

Combining Lemmas 13.1 and 13.2 we obtain the following theorem, which
gives an important part of the result IV mentioned in Section 11:
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THEOREM 13.3. For I infinite, the wvariety generated by Cs; is equal to
IGS[. | |

The following lemma leads immediately to the result VI mentioned in Sec-
tion 11.

LEMMA 13.4. If A is any Cs,,, then 2 is in the variety generated by the class
of regular locally finite-dimensional Cs,,’s.

Proof. It suffices to take any Cs, 2 and any non-zero element a € A and
find a homomorphism f of 2 into an ultraproduct B of regular locally finite-
dimensional Cs,’s such that fa # 0. Let U be the base of 2. Fix z € a.

For a while we will work with a fixed but arbitrary finite subset K of w. For
eachy € lU let y* = (y | K)U (z | (I\K)). Forall b€ Alet fgb= {y € 'U :
y* € b}. Clearly fx is a homomorphism from B2l into the BA of all subsets of
IU. Since z* ==, it is clear that fxa##0. It is also clear that fxD;j=D;; for all
1,7 € K. We claim that also fxC;b = C; fxb for all ¢« € K. In fact, suppose that
y € fxC;b. Thus y* € C;b, so thereis au € U such that (y*)?, € a. Sinceie K, we
have (y*)!, = (y%)*. Hence y!, € fxb, and so y € C; fxb. The converse is similar.
For any b € A, fxb is a finite-dimensional element of B(!U); in fact, Afxb C K.
And it is easy to check that fxb is regular. It follows from Lemma 12.3 that the
Cs, B generated by fx[A] is regular and locally finite-dimensional.

Now let J = {K : K is a finite subset of w}, and let F' be an ultrafilter
on J such that {L € J: K C L} € F for all K € J. For each b € A let
gb={(fkb: K € J)/F. It is easy to check that g is an isomorphism from 2l into
[Ixcs Br/F, as desired. =

COROLLARY 13.5. An equation holds in all cylindric set algebras of dimension
w iff it holds in all algebras €sM, M a first-order structure. m

14. Cylindric set algebras with infinite bases. In this section we prove
the result V mentioned at the beginning of Section 11. The proof depends on
the notion of a weak cylindric set algebra, which is one of the important notions
concerning set algebras. But we are not going to develop the theory of these set
algebras much, merely proving what is needed for the result V.

Recall the definition of ‘UP from Section 4. A weak cylindric set algebra is
a cylindric-relativized set algebra 2 whose unit element has the form UP. Note
that U is the base of 2 (see Section 4).

PROPOSITION 14.1. Let A be a Gs; with unit element V = UjeJIUj such
that U; N Uy = 0 for distinct j,k € J. Then we can write V=], c TwPe | where
TWPE N IWP = 0 for distinct k,l € K. Moreover, for all k € K there is a j € J
such that Wy, = Uj.

Proof. Fix jeJ. We define p = q iffp,qGIUj and {i€ : p; = ¢;} is finite.
Clearly = is an equivalence relation on 1U ;- Let KCj consist of exactly one element
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from each =-class. Then V = Uje ;U
pFq. m

Another notion we will need is well known in set theory. An ultrafilter F' on
a set X is regular if there is an a € X F such that zem @z = 0 for every infinite
subset M of X. Another way of saying this is that thereisan h € X{M : M C X,
M finite} such that {z : y € ha} € F for all y € X. [To see the existence of h,
let he = {y: x € a,} for all z € X. Assuming that such an h exists, to see the
existence of a, let ay, = {x : y € ha} for all y € X .| It is known that for every
infinite set X there is a regular ultrafilter on X (in fact, “most” ultrafilters are
regular). Moreover, for any infinite set A, |XA/F| > 2/XI. For more on regular
ultrafilters see Chang, Keisler [2] and Comfort, Negrepontis [3].

The following version of the upward Lowenheim—Skolem—Tarski theorem is
crucial in the proof of V.

TP, and 'UT 01U = 0if j # k or

pEICj J

THEOREM 14.2. Suppose that |I| > 2. Let A be a weak cylindric set algebra
with infinite base U. Let k be a cardinal such that max(|Al, |U|) < & and k! = k.
Then 2 is sub-isomorphic to a Cs; with base of power k.

Proof. Let 2 have unit element V Iyp, and let A = max(|I],x). It is

convenient to assume that I C A. Let F' be a A-regular ultrafilter on A. So there
isan h € M{I" C I : I finite} such that {a: i € ha} € F for all i € I. For each
a€Alet §a= (a:a < \)/F. Thus § is an isomorphism from 2 into 12/ F. Also,
for each u € U let eu = (u: a < \)/F. Let X = *U/F. Now we define a function
c: I x X — AU as follows: for any i € I, x € X, and a < ), write x = y/F with
y=(u:a <) if z =cu, and let
. p; if i € ha;

ol T)o = {ya otherwise.
Since {« : i € ha} € F, it follows that c(i,z)/F = y/F =z, so cis an (F,U, I)-
choice function. Let f = Rep(c). So by Lemma 10.2, f o ¢ is a homomorphism
from 2 onto some Crsj.

(1) f6V =1X.

In fact, C is true by the definition of f. Now let ¢ € 1X; we want to show
that {& < A: (cTq)u€V}EF. In fact, (ctq)q €V for all @ < A\. For, if i € I,
then ((¢c*q)a)i = c(i,qi)a € U, s0 (¢Tq)o € TU. And if i € ha, then ((c*q)a)i =
c(iyqi)a = pis 0 {i € I : ((¢tq)a)i # pi} € ha, which is finite, so (¢tq), € 'UP =
V, as desired in (1).

(2) If u € TUP then there is a I' € F such that (c*(cou))y =uforalla € I'.

In fact, let M be a finite subset of I such that u; = p; for all ¢ € I\M. Let
I'={a<AX:M Cha}. SoI' € F. Then i € ha implies that ¢(i,eu;)o = u;, and
i € ha implies that c(i,eu;)q = pi = ui. So ((¢T(eou))n)i = c(i,eu;)q = 14 for
all i € I, and (2) follows.
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(3) f o4 is one-one.

For, let a be a non-zero element of A; say u € a. Taking " as in (2), we get
(ct(eou))o =u€aforall @ € I', and hence € o u € fda, as desired in (3).
Let Z = 1(¢[U])*°P. Then the following statement is clear:

(4) eV =Z.
(5) rlzof 0 =E.

To prove (5), suppose a € A and ¢ € Z. Say q = ¢ o u with u € TUP. Choose
I' in accordance with (2). Then

qgerly féa iff g€ fda
iff {a<X:(ctq)a€a}eF
if {ael:(ctq)a€a}eF
iff {a<AX:u€a}leF
iff vea
if elogca
ift ¢ € ea,

as desired.

By (5), f o is a sub-base-isomorphism. By Proposition 6.4, there is a base
isomorphism A’ and an ext-isomorphism ¢’ such that (f o d)~! = ¢’ o h’. Say A’
is a base isomorphism of % onto €. Clearly then € is a Cs; with a base T such
that |T'| = | X|. Moreover, ¢’ = rly is an ext-isomorphism from € onto 2. Note
that |T| = |X| = 2*. Thus |A] < k < 2* = |T]. And U C T with |U] < &.
Therefore by Theorem 11.1 there is a W such that U C W C T, |W| = &, and
rlyy is an ext-isomorphism from € onto a Cs; with base W. Clearly then rly is an
isomorphism from € onto 2, as desired. m

Let o Csy be the class of all cylindric set algebras of dimension I with infinite
base, and let ,,Gs; be the class of all generalized cylindric set algebras of dimen-
sion I with unit of the form | J._; 7Y, the Y;’s infinite and pairwise disjoint. The
result V now reads as follows:

jeJ

THEOREM 14.3. For [ infinite, HSP(5Csr) = I(cGsr) = I(scCsy).

Proof. First note that HSP (o Cs;) = I(ocGsy) by reading over the proofs of
Lemmas 13.1 and 13.2. So we just have to show that every .,Gs; is isomorphic to
an .Csy. Let 2 be an ,.Gsy. By Proposition 14.1 we can write the unit element
of A in the form UjeJVj, where V; = IUJZ-’j, each Uj infinite, V; NV = 0 for
distinct j, k. Choose j € 4J so that a NV, # 0 for all a € A\{0}. For all a € A
let B, be the Crs; of all subsets of Vj, ; so B, is a weak cylindric set algebra.

Let h, = rl%}j . By Proposition 5.1, h, is a homomorphism from 2l into 9B,, and
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hea # 0. Let

r=1uJIulu | 1Bl
jeJ acA\{0}
Let (Wy : a € A) be such that 2% = (J,c 4 Wa, |[W,| = 2% for all a € A, and
W, N W, = 0 for all distinct a,b. By Theorem 14.2, 9B, is isomorphic to a Cs;y
¢, with base W, for each a € A; let k, be an isomorphism from B, onto &,.
Choose z € 4(1(2%)) so that z, € kqhaa for each a € A\{0}. For each a € A\{0}
let X, = 1(2%)%, and let Xo = I(2”)\UQGA\{O} X,. Note that each X, is a zero-

dimensional element in the Cs; of all subsets of /(2%). Since |I| < &, for every
a € A\{0} there is a one-one function f, from W, onto 2% such that f,z,i = 240
for all ¢ € I. Let fy be any one-one function from Wy onto 2”. Finally, for all
a € A let
ga = U rlx, fokvhoa.
becA

We claim that g is an isomorphism from 2 onto a Cs; with infinite base. It is
straightforward to check everything except one-one-ness and preservation of Cj.
If a # 0, then z, € rlx, fokohaea, showing that g is one-one. To check that g
preserves C;, suppose that t € C;ga. Say « € 2% and t!, € ga. Choose b € A such

that tfl € rlx, fkbhba. In particular, tg € Xp. From the form of the definition
of X, it follows that also ¢t € X,. Hence t € C’Z-[X"] rlx, fkyhya. Then the fact

that all of the functions rlx,, f, ky, and h, are homomorphisms easily yields that
t € gC;a. The converse is similar, so the proof is finished. =
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