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1. Introduction. This paper exploits and illustrates techniques in duality
theory developed in the past ten years. It concerns certain varieties whose study is
motivated by predicate logic.A duality based on hom functors into a schizophrenic
object is presented for each of these varieties. As a byproduct, we are able to
describe free algebras.

The varieties in question appear in a recent paper of R. Cignoli [3] concerning
Q-distributive lattices. An algebra (A;∨,∧, 0, 1,∇) of type (2, 2, 0, 0, 1) is a Q-

distributive lattice if (A;∨,∧, 0, 1) is a bounded distributive lattice and the unary
operator ∇ is assumed to satisfy, for any a, b ∈ A,

(Q0) ∇(0) = 0,

(Q1) a ∧∇a = a,

(Q2) ∇(a ∧∇b) = ∇a ∧∇b,

(Q3) ∇(a ∨ b) = ∇a ∨∇b.

The laws (Q0)–(Q3) were introduced by P. R. Halmos (see [19]) in a quest for an
algebraic counterpart of the logical notion of an existential quantifier. Halmos’
investigations concerned quantifiers on Boolean algebras; Cignoli’s paper reveals
the richer structure that emerges if the Boolean negation is dropped.

It is established in [3] that the lattice Λ(Q) of subvarieties of the variety Q of
Q-distributive lattices forms an (ω + 1)-chain
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D00 ⊂

D10 ⊂ D01 ⊂

D20 ⊂ D02 ⊂ D11 ⊂

D30 ⊂ D03 ⊂ D12 ⊂ D21 ⊂

D40 ⊂ D04 ⊂ D13 ⊂ D22 ⊂ D31 ⊂ . . .

The subvariety Dpq is HSP(Dpq), where, up to isomorphism, the finite subdirectly
irreducible algebras in Q are Dpq, (p, q) ∈ ω × ω. These are given by

Dpq = (Bp × Cq;∨,∧, 0, 1,∇) ,

defined as follows. The algebra Bp is the p-atom Boolean lattice (p > 0), Cp :=
Bp ⊕ 1 (p > 1), and ∇ is the simple quantifier given by ∇(a) = 1 if a 6= 0,
∇(0) = 0.

To identify Λ(Q) Cignoli derived a dual category equivalence between Q

and a category YQ of structures (X,E), where X is a compact totally order-
disconnected space and E is an equivalence relation satisfying suitable condi-
tions. This is an extension of the duality due to Halmos in the Boolean case; we
elaborate below. For related work see [5], [17], [20]. Cignoli’s duality is obtained
by restricting Priestley duality for distributive lattices, and is similar in spirit
to dualities for many well-known varieties of distributive-lattice-ordered algebras.
While such hand-me-down dualities have the benefit of representing algebras con-
cretely by lattices of sets, they frequently have the major drawback that products
in the dual category fail to be cartesian. This happens for YQ, as is pointed out
by Cignoli in a note [4] which extends the arguments employed in [19] to give a
description of free algebras in Q.

We present a completely different approach to free algebras. This involves set-
ting up a natural duality, in the sense of Davey and Werner [14] (see also [6])
for each subvariety Dpq . Our procedures, and to some extent our results, parallel
those in [11], [12] for the ω-chain of proper subvarieties of distributive p-algebras.
The major difference is that here we require, except when q 6 1, the gener-
alised duality theory introduced in [9], employing a multi-faceted schizophrenic
object. As in [11] we make crucial use of Davey and Werner’s piggyback method
([15], [16]) in its generalised form from [9] to identify a suitable dual category.
We use Cignoli’s duality to find the relations required for piggybacking, thereby,
as in [11], exploiting the “logarithmic” character of distributive lattice duality.
This strategy enables us to perform, with computer assistance, calculations which
would be quite prohibitive otherwise. The duality machinery on which we rely is
considerable, but, as Section 3 shows, once this machinery is in place we can man-
ufacture dualities with extreme ease—in stark contrast to the treatment of the
first natural duality examples presented in [14], by algebraic methods adequate
only to handle, laboriously, varieties with very small generating algebras.

In the next section we summarise, very briefly indeed, the theory we need. Our
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recent survey article [23] (concentrating on distributive-lattice-ordered algebras)
and B. A. Davey’s introductory survey [7] provide fuller accounts.We should stress
that a complete understanding of this background material is not essential for an
appreciation of the applications we give. We shall, however, assume familiarity
with Priestley duality for distributive lattices, for which reference may be made
to [10] or [21].

2. Natural dualities. Let P be a finite algebra, and consider the variety

A := HSP(P ) .

We seek to define a category X of topological relational structures in such a
way that each algebra in A is concretely represented as an algebra of continuous
relation-preserving maps. Following the historical development of the theory we
consider first the special case in which the quasi-variety generated by P is in fact
a variety, so that

A = ISP(P ) .

This happens whenever A is an equational class in which every subdirectly ir-
reducible algebra is isomorphic to a subalgebra of some subdirectly irreducible
algebra P . (When A=Dpq we shall see later that this is so precisely when q 6 1.)

Let τ be the discrete topology on the underlying set P of P . Let R be a
family of relations on P such that each r ∈ R is algebraic in the sense that r is a
subalgebra of some finite power of P . We wish to form a structure ∼P = (P ; τ,R)

so that

(∀A ∈ A) A ∼= ED(A) ,

where D and E are well-defined hom functors given on objects by

D : A 7→ A(A,P ) ≤ ∼P
A ∈ X = IScP(∼P ) ,

E : X 7→ X (X,∼P ) ≤ PX ∈ A = ISP(P ) ,

and on morphisms by composition. Here ≤ means “is a substructure of”, and
the subscript c serves as a reminder that substructures in X are required to be
topologically closed.Operations (in P ) and relations (in ∼P ) are extended pointwise

to subsets of powers, and the topology on subsets of powers of ∼P is that induced

by the product topology derived from τ . We say that R yields a duality on A ∈ A
if A ∼= ED(A) and R yields a duality on A if R yields a duality on each A ∈ A.
We call D(A) the dual of A ∈ A.

If we can choose R to yield a duality on A then we have immediate access to
free algebras: for any κ,

FA(κ) ∼= X (∼P
κ,∼P ) .

In particular, the alter ego ∼P of P serves as the dual of FA(1); see [14] (or [23],

Lemma 2.3).
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Priestley duality fits into this framework as follows. We have A = D (bounded
distributive lattices) and X = P (compact totally order-disconnected spaces (=
Priestley spaces), with continuous order-preserving maps). Then

P = 2 := (2; 0, 1,∨,∧), the 2-element lattice in D ,

∼P = ∼2 := (2; τ,6), the 2-element chain in P .

We may identify each A ∈ D with the lattice of continuous order-preserving maps
from its dual D(A) := P(A,2) into ∼2, or, equivalently, with the lattice of clopen

up-sets of D(A). In particular, FD(κ) is the lattice of clopen up-sets of 2κ.

In general, it can happen that no choice of R yields a duality on A, although
it is the case that the assumption that the relations in R are algebraic at least
ensures that

(i) the functors D and E are well-defined and yield an adjunction, and

(ii) for each A ∈ A, the evaluation map eA : A → ED(A) is an embedding

(see [14], Section 1). Thus the point at issue is whether each eA is surjective. It
turns out that if P has a lattice reduct then R can be chosen to achieve this: the
NU Duality Theorem of Davey and Werner ([14], Theorem 1.18) implies that if
we choose R to consist of all subalgebras of P 2 then R yields a duality on A. Even
in the simplest cases this choice will be very uneconomical, in the sense that a
smaller set of relations will suffice (for example, taking R = S(22) for D would
give us two trivial relations (serving no purpose) and both 6 and >, either of
which alone suffices). We say that R generates a relation r′ 6∈ R if for each A ∈ A
any continuous map ϕ : D(A) → ∼P preserving each r ∈ R also preserves r′. Also,

for R1 ⊂ R, we say that R1 generates R if R1 generates each r ∈ R r R1. It is
obvious that if R yields a duality on A then so does any generating subset of R.

Before explaining how a good choice of R can be made we remove the re-
striction HSP(P ) = ISP(P ). We shall then consider redundancy of relations in
the more general setting. We shall continue to assume that P is finite, and shall
also assume that P has a lattice reduct. Birkhoff’s Subdirect Product Theorem
implies that

A = ISP(Π) ,

where Π is a finite set of subdirectly irreducible algebras. The single object ∼P of

the earlier theory is replaced by

∼Π = (Π; τ,R) ,

where Π means ˙⋃{P | P ∈ Π}, τ is the discrete topology and R is a set of
relations each of which is a subalgebra of Q1× . . .×Qn for some Q1, . . . , Qn ∈ Π.

For any set S,

ΠS :=
˙⋃
{PS | P ∈ Π}
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is given the obvious topology, and relations obtained by pointwise extension of
those in R; the resulting structure is referred to as ∼Π

S . More generally, we may

consider structures X = (X; τ,R) such that

X :=
˙⋃
{XP | P ∈ Π} ,

where τ is the union topology on X and for each relation

r ⊆ Q1 × . . . × Qn

in R there is an associated relation

r ⊆ X
Q1

× . . . × X
Qn

.

Given two such Π-indexed structures, X and Y, a morphism from X to Y is a
map which takes XP into Y

P
for each P ∈ Π and which is structure-preserving

in the obvious sense. We may now define X to be the category of all Π-indexed
structures which take the form of an isomorphic copy of a substructure of some
power ∼Π

S of ∼Π (in symbols, X := IScP(∼Π)).

To attempt to set up a duality between A and X we proceed as follows. For
each A ∈ A, let XP := A(A,P ). Then

D(A) :=
˙⋃
{A(A,P ) | P ∈ Π}

is an X -substructure of ∼Π
A. For each X ∈ X ,

E(X) := X (X,∼Π)

is an A-subalgebra of
∏

{QP | P ∈ Π} where QP is P raised to the power XP .
Just as in the case |Π| = 1 we then have contravariant functors

D : A → X and E : X → A

for which all the maps

eA : A → ED(A), eA(a) : x 7→ x(a)

are embeddings.

The definitions given earlier concerning the set R (yielding a duality on an
individual algebra or on the whole variety, and being generated by a subset) are
extended in the obvious manner to the present setting. The NU Duality Theorem
extends in the anticipated way and we deduce, given P has a lattice reduct, that
the set R yields a duality on A so long as R generates every subalgebra of P ×Q

for any choice of P,Q ∈ Π (see [9], Theorem 1.9). Further, one can establish that

∼Π
S is the S-fold power of ∼Π

S in X and is isomorphic to D(FS) ([9], Lemma 1.5).

We now turn to the problem of finding a good generating set for

S :=
⋃

{S(P × Q) | P,Q ∈ Π} .
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We assume that each algebra in A has a D-reduct, to which the duality for
D applies. This allows us to invoke Davey and Werner’s piggyback technique.
We shall not attempt to explain the method here. Accounts can be found in
[9], [15], [16] and in [23], where a self-contained proof is given of the following
theorem, derived from Theorem 2.5 of [9] and tailormade for our needs. We use
the following notation: given E ⊆

⋃

{A(P,Q) | P,Q ∈ Π} we let 〈E〉 be the subset
of

⋃

{A(P,Q) | P,Q ∈ Π} generated from E by forming all possible compositions
which are defined.

Theorem 2.1 (The Generalised Piggyback Duality Theorem, for distributive-
lattice-ordered algebras). Suppose that A = ISP(Π), where Π is a finite set of

finite algebras each having a D-reduct. For each P in Π let Ω
P

be a (possibly

empty) subset of D(P,2).

Let ∼Π = (Π; τ,R) be the topological relational structure on ˙⋃{P | P ∈ Π} in

which

(i) τ is the discrete topology ,

(ii) R is a generating set for S ∪ G, where

(a) S is the collection of maximal A-subalgebras of sublattices of the form

(α, β)−1(6) := {(a, b) ∈ P × Q | α(a) 6 β(b)} ,

where α ∈ Ω
P

, β ∈ Ω
Q

(P,Q ∈ Π), and

(b) G is the set of graphs of a set E ⊆
⋃

{A(P,Q) | P,Q ∈ Π } satisfying

the following separation condition:

(S) for all P ∈ Π, given a, b ∈ P with a 6= b, there exists Q ∈ Π,
u ∈ A(P,Q) ∩ 〈E〉 and α ∈ Ω

Q
such that α(u(a)) 6= α(u(b)).

Then R yields a duality on A.

As [11] and [12] strikingly show, even choosing R as prescribed in Theorem 2.1
may lead to a duality which is far from optimal. The test algebra technique
introduced in [12] allows us unequivocally to decide whether a given member of
R is redundant. Suppose we know that R yields a duality on A and wish to find
out whether Rr{r} generates R. This is certainly so if A ∼= ED(A) for all A∈A
(with the functors D and E taken relative to Rr{r}). It turns out that, instead of
having to try out Rr{r} on the whole class A, we only need to test it on a single

“test algebra”, namely r, by which we mean r qua member of A (remember our
relations are algebraic!). This observation is made precise in the following easy
theorem (proved, as stated here, in [23] (Theorem 2.7)).

Theorem 2.2. Let Π be a finite set of finite algebras, let A := ISP(Π) and let

R be a finite set of algebraic relations on Π. If R yields a duality on a subalgebra

r of Q1 × . . . × Qn (where each Qi ∈ Π), then R generates r.
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3. Natural dualities for the proper subvarieties of Q. For consistency
with our other papers using the piggyback method we shall use H and K to
denote the functors setting up Priestley duality, and for their restrictions to sub-
categories. Thus the dual of A ∈ D is H(A) := D(A,2), with relative product
topology from 2A, and pointwise order. When A is finite, the topology is discrete
(and so ignorable) and H(A) is just the set of join-irreducible elements of A, with
the reverse of the order induced from A (see Chapter 8 of [10]). The algebra A

will be identified with KH(A), the continuous order-preserving maps from H(A)
into ∼2 or, where more convenient, with the clopen up-sets of H(A). When A is

finite it is identified with the order-preserving maps from H(A) into a 2-element
chain, or, equivalently, the up-sets of H(A).

We now recall Cignoli’s duality for Q [3]. As Cignoli shows, quantifiers on an
algebra A ∈ D correspond bijectively with certain equivalence relations on H(A).
To explain how this works we need the following notation and definitions. Given
a set X and an equivalence relation E on X we denote, for each x ∈ X, the
equivalence class of x by [x]. We then let, for each U ⊆ X,

EU :=
⋃

{[x] | U ∩ [x] 6= ∅} .

Definitions 3.1 ([3], 2.4). A Q-space is a structure (X,E) (or, when we need
to emphasise the order, (X,E,6)) such that X ∈ P and E is an equivalence
relation on X satisfying the following conditions:

(E1) EU is a clopen up-set in X whenever U is a clopen up-set in X;

(E2) [x] is closed in X for each x ∈ X.

Given Q-spaces (X,E) and (Y, F ), a Q-map from (X,E) to (Y, F ) is a P-
morphism ϕ : X → Y such that, for every clopen up-set V ⊆ Y ,

E(ϕ−1(V )) = ϕ−1(FV ) .

A Q-map ϕ : X → Y is an isomorphism if it is a homeomorphism and order-
isomorphism for which (x, y) ∈ E if and only if (ϕ(x), ϕ(y)) ∈ F .

The category of Q-spaces and Q-maps will be denoted by YQ. There is then
a dual category equivalence between Q and YQ, as indicated by the following
theorem. There ∇(A) denotes the range of the quantifier ∇, viz. {∇(a) | a ∈ A}.

Theorem 3.2 ([3], §2). (1) Given (A;∨,∧, 0, 1,∇) ∈ Q, the structure

(H(A), E(∇)) belongs to YQ, where

E(∇) := {(x, y) ∈ H(A) × H(A) | x ↾ ∇(A) = y ↾ ∇(A)} .

(2) For each f ∈ Q(A,B), the P-morphism H(f) := −◦ f : H(A) → H(B) is

a YQ-morphism.

(3) Given (X,E) ∈ YQ, the algebra (K(X),E) belongs to Q.

(4) For each ϕ ∈ YQ(X,Y ), the D-morphism K(ϕ) : − ◦ ϕ : K(Y ) → K(X)
is a Q-morphism.
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(5) For each A ∈ Q and each X ∈ YQ,

A ∼= KH(A) ∈ Q and X ∼= HK(X) ∈ YQ ,

where ∼= in YQ means isomorphism in the sense defined in 3.1.

Note that in order to set up natural dualities for the varieties Dpq, and to
determine finitely generated free algebras, we only work with finite structures,
and the topology disappears. From here on we shall assume that all algebras and
spaces are finite.

To identify the subalgebras and homomorphisms to which the Piggyback Du-
ality Theorem refers we adopt the duality method which was first employed in [11]
and which is explained and illustrated in Section 4 of [23]. We need the following
facts from distributive lattice duality.

Proposition 3.3. Let A,B ∈ D and f ∈ D(A,B). Then

(i) H(A × B) = H(A)∪̇H(B) and H(A ⊕ 1) = 1 ⊕ H(A);

(ii) f is injective if and only if H(f) := − ◦ f is surjective.

Let (X,E), (Y, F ) ∈ YQ. The following facts are too elementary to need proof:
the quantifier E on K(X) is the simple quantifier if and only if E = X ×X, and,
in Q, K(X) × K(Y ) is isomorphic to (K(X∪̇Y ),G), where G = E ∪ F .

We next examine how these observations apply to the subvarieties Dpq =
HSP(Dpq) whose definition we recalled in Section 1. Henceforth we assume p+q >

0 (thereby excluding the trivial variety D00). We denote

(i) a p-element antichain with elements 1, . . . , p by Ap, and

(ii) the ordered set {0, 1, . . . , p, p + 1, . . . , p + q} (p > 0, q > 1) in which
{1, . . . , p + q} is an antichain and 0 < i (i = p + 1, . . . , p + q) by Tpq (Figure 1).

1 2 p p+ 1 p+ 2 q
· · · · · ·

Tpq

0

Fig. 1

We have

Dp0 = (K(Ap), Ap × Ap)

Dpq = (K(Tpq), Tpq × Tpq)

(p > 0),

(p > 0, q > 1),

Lemma 4.1 of [3] gives the following lemma.

Lemma 3.4. A surjective order-preserving map ϕ : (X,X×X) → (Y, Y ×Y ) is

a Q-map if and only if Max Y ⊆ Im ϕ, where Max Y denotes the maximal points

of Y .



NATURAL DUALITIES 299

It follows from this, and is implicit in Section 4 of [3], that Drs is a subalgebra
of Dpq if and only if r + s 6 p + q and at least one of the following holds:

(a) q 6 s,

(b) r + s 6 p + 1 and q > 2,

(c) p = 0.

Up to isomorphism, the subdirectly irreducible algebras in Dpq are those Drs

such that Drs ⊆ Dpq according to the chain ordering indicated in Section 1 and
specified precisely in [3], Remark 4.6. We deduce the proposition below. It implies
in particular that every subvariety Dpq of D30 is such that Dpq = ISP(Dpq) except
for D02.

Proposition 3.5. (1) Dpq = ISP(Dpq) if and only if q 6 1.

(2) Dpq = ISP(Dpq,D(p+q)0) if q > 1.

Define

Π =

{

{Dpq} if q 6 1,
{Dpq ,D(p+q)0} if q > 1.

Our next task is to consider how to choose the sets Ω
Q

(Q ∈ Π) and the subset

E of
⋃

{A(P,Q) | P,Q ∈ Π} so as to satisfy the separation condition (S) in
Theorem 2.1. Note that each Ω

Q
is a subset of some Ai or Tkl and so, by our

choice of labelling, may be designated by a subset of N ∪ {0}. By Theorem 3.2
we may identify Q(P,Q) with YQ(H(Q),H(P )). According to Lemma 3.4 this
set certainly contains all order-preserving maps ϕ from H(Q) to H(P ) such that
Im ϕ contains Max H(P ).

What follows is complicated only because we have to distinguish many differ-
ent cases. We let α1 be the point 0 in Tpq and let α2 be the point 1 in Ar for
r > 0. We denote the identity map on a set S by idS . We define homomorphisms
as follows.

(i) When r > 2 let fσ and fτ be the automorphisms of Br for which H(fσ)
is the permutation σ := (1 2 . . . r) and H(fτ ) is the permutation τ := (1 2), and,
similarly, let f ′

σ and f ′

τ be generators of the automorphism group of Cr.

(ii) Let g be the endomorphism of Bp × C1 for which H(g) is given by
H(g)(0) = H(g)(p) = 1 and H(g)(i) = i (1 < i < p). When p > 2 let gσ

and gτ be the automorphisms of Bp × C1 for which

H(gσ)↾{1, . . . , p} = (1 2 . . . p), H(gσ)(0) = 0, H(gσ)(p + 1) = p + 1, and

H(gτ )↾{1, . . . , p} = (1 2), H(gτ )(0) = 0, H(gτ )(p + 1) = p + 1 .

(iii) Let h be the homomorphism from Bp×Cq onto Bp+q for which H(h)(i) = i

for i = 1, . . . , p + q.

Proposition 3.6. Condition (S) in Theorem 2.1 is satisfied in each of the

cases below.
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(1) Let A := Dp0 = ISP(Π) where Π = {Dp0} (p > 0), let ΩDp0
:= {α2} and

let

E :=







∅ if p = 1,
{fσ} if p = 2,
{fσ, fτ} if p > 3.

(2) Let A := Dp1 = ISP(Π) where Π = {Dp1} (p > 0), let ΩDp1
:= {α1} and

let

E :=







{idTp1
, g} if p = 0,

{idTp1
, gσ} if p = 1,

{g, gσ , gτ} if p > 2.

(3) Let A := Dpq = ISP(Π) where Π = {Dpq ,D(p+q)0} (p > 0, q > 2), let

ΩDpq
:= {α1}, ΩD(p+q)0

:= {α2}, and let

E ⊆ Q(D(p+q)0,D(p+q)0) ∪ Q(Dpq,D(p+q)0) ∪ Q(Dpq ,Dpq)

be given by

E :=

{

{idTpq
, h, fσ} if p = 0, q = 2,

{idTpq
, h, fσ , fτ} if p + q > 2.

P r o o f. We prove (2), and indicate the modifications needed for (3); we omit
the (simpler) proof of (1). Note that σ, τ acting on {1, . . . , r} generate the per-
mutation group Sr if r > 3, and that σ (= τ) generates Sr if r = 2.

Consider (2), with p > 2 (the cases p = 0, 1 are similar, but simpler). Let a 6= b

in Dp1 (which we elect to regard as the up-sets of its dual space Tp1). We must
show that there exists e ∈ E such that α1(e(a)) 6= α1(e(b)), in other words such
that 0 belongs to just one of e(a), e(b). Remember that e(c) = (H(e))−1(c) for
any c ∈ Dp1. If 0 belongs to just one of a, b, we take e = idTp1

. Otherwise we may
assume without loss of generality that there exists i > 1 such that i ∈ arb. We can
find e ∈ 〈{gσ , gτ}〉 such that H(e)(i) = 1. Then 0 ∈ (H(e))−1(a) r (H(e))−1(b),
so 0 ∈ e(a) r e(b).

Now consider (3), with p + q > 2 (the case p + q = 2 is similar). We have two
cases to treat.

(i) If a 6= b in D(p+q)0 then there exists e ∈ 〈fσ, fτ 〉 such that α2(e(a)) 6=
α2(e(a)).

(ii) Suppose a 6= b in Dpq . If 0 belongs to just one of a, b then α1(idTpq
(a)) 6=

α1(idTpq
(b)). Now assume there exists i ∈ Max Tpq such that i ∈ arb. Then there

exists e ∈ 〈{fσ , fτ}〉 such that α2(e(h(a))) 6= α2(e(h(b))).

To set up a piggyback duality for Dpq we need to identify the maximal Q-
subalgebras of (αi, αj)

−1(6) for i, j ∈ {1, 2}. We use duality, in the manner
described in Section 4 of [23]. We can extract all the information we need by
considering Π = {Dpq,D(p+q)0}, ΩDpq

:= {0} and ΩD(p+q)0
:= {1} (p > 1,

q > 0). For P ∈ Π denote the single member of Ω
P

by βP . Denote H(P ) by WP ,

with order 6P .
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Fix P , Q (not necessarily distinct) in Π. Label the elements of WP by mem-

bers of N∪ {0} as before, and the elements of WQ by members of N∪ {0} with `

overset. As the dual of H(P )×H(Q) qua Q-algebra, WP ∪̇WQ carries the equiv-
alence relation E(P,Q) := (WP × WP ) ∪ (WQ × WQ). We denote the associated
equivalence relation on subsets by E(P,Q); see 3.1.

From here on it will be convenient to identify any A in D or Q with KH(A).
Let L be the D-subalgebra

(βP , βQ)−1(6) := { (a, b) ∈ P × Q | a(βP ) 6 b(βQ) }

of P ×Q. Note that (a, b) in P ×Q belongs to L if and only if a(βP ) = 1 implies
b(βQ) = 1.

Proposition 3.3 implies that H(L) = WP ∪̇WQ ordered by 6PQ, the transitive
closure of the relation 6P ∪ 6Q ∪(βP , βQ). The Q-subalgebras of L correspond
bijectively to surjective YQ-morphisms ϕ : WP ∪̇WQ → Z such that ϕ = ι ◦ η for
some η ∈ P(H(L), Z), where ι : H(P × Q) → H(L) is the dual of the natural
embedding:

H(P × Q)
ϕ

−→ Z

ιց
x

η

H(L)

Since the subalgebra associated with ϕ is determined by the image Z of ϕ we
denote it by S(Z). We have

S(Z) = {(a ◦ ϕ↾WP , a ◦ ϕ↾WQ) | a ∈ K(Z)} .

The Q-algebra S(Z) is maximal in L if the following holds: whenever Z ′ ∈ YQ,
ϕ′ ∈ YQ(H(P×Q), Z ′) is surjective, θ ∈ YQ(Z ′, Z) and ϕ = θ◦ϕ′, we have Z ′ ∼= Z

in YQ.

Suppose we construct (Z,F ) to satisfy the following:

(i) (Z,F ) is a Q-space whose underlying set is WP ∪̇WQ;

(ii) η : (H(L), E(P,Q)) → (Z,F ) is a Q-map.

Then S(Z) will be a Q-subalgebra of L, and it will be a maximal subalgebra
if and only if the ordering, 6∗, on Z is minimal (with respect to set inclusion
of relations) among partial orders on Z such that (i) and (ii) hold. The map η

will be order-preserving precisely when 6PQ ⊆6∗. Because η is a bijection, it
will then be a Q-map just when F is chosen to be E(P,Q). We therefore wish
to know which orders 6∗ make (Z,E(P,Q)) into a Q-space. We call such orders
admissible.

Lemma 3.7. Let Z := WP ∪̇WQ carry an order 6∗ containing 6PQ. Then

(Z,E(P,Q)) is a Q-space if and only if

(a) WQ is an up-set , and

(b) given any point x ∈ WP , there exists a point y ∈ WQ such that x <∗ y.
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P r o o f. Suppose the given condition is satisfied. By (b), every non-empty
up-set of Z meets WQ. Then for any up-set V of Z,

E(P,Q)V =







∅ if V = ∅,
WQ if ∅ 6= V ⊆ WQ,
Z if V ∩ WP 6= ∅.

Since (E2) is automatic in a finite space, (Z,E(P,Q)) is a Q-space.

Conversely, suppose (Z,E(P,Q)) is a Q-space. Then E(P,Q)↑x is an up-
set for each x ∈ Z, where ↑x := {y ∈ Z | y > x}. So, if there were x such
that ↑x ∩ WQ = ∅, then WP would be an up-set (and likewise with Q and P

interchanged). But we know WP is not an up-set, since βP <∗ βQ. Hence (b)
holds. Let x ∈ Max Z. If x were in WP we would have E(P,Q){x} = WP , which
is impossible. Hence x ∈ WQ and E(P,Q){x} = WQ, which must therefore be an
up-set. Thus (a) holds.

The next lemma is needed in our proof that every maximal subalgebra of L

is associated with an admissible order on WP ∪̇WQ.

Lemma 3.8. Let ϕ : (WP ∪̇WQ, E(P,Q),6PQ) → (Z,F,6) be a surjective,
but not injective, YQ-morphism. Then there exists an admissible order 6∗ on

WP ∪̇WQ such that ϕ : (WP ∪̇WQ, E(P,Q),6∗) → (Z,F,6) is a Q-morphism.

P r o o f. Assume first that ϕ(WP ) ∩ ϕ(WQ) = ∅. It is clear that, since ϕ is
a Q-map, the equivalence classes of F are ϕ(WP ) and ϕ(WQ). Then, by the
same argument as in the proof of Lemma 3.7, ϕ(WQ) is an up-set and each
element of ϕ(WP ) is majorised by some point of ϕ(WQ). For each x ∈ Max WP

let yx ∈ Max WQ be such that ϕ(x) < ϕ(yx). Let

6∗ := 6PQ ∪
⋃

x∈Max WP

{(βP , yx), (x, yx)} .

Then 6∗ is a well-defined admissible order and ϕ remains a Q-map when 6PQ is
strengthened to 6∗.

Assume now that ϕ(WP )∩ϕ(WQ) 6= ∅. Suppose, for contradiction, that there
exists x ∈ Max Z such that x 6∈ ϕ(WQ). Then

WP = E(P,Q)(ϕ−1({x})) = ϕ−1(F{x}) .

This is incompatible with our hypothesis that ϕ(WP ∩ WQ) 6= ∅. Thus every
maximal point of Z is in ϕ(WQ), and similarly in ϕ(WP ). Pick any z ∈ Max Z.
Then

WP ∪̇WQ = E(P,Q)(ϕ−1({z})) .

We deduce that F{z} = Z, whence F = Z × Z. It follows from these facts that
any order-preserving map onto (Z,F,6) from a Q-space (WP ∪̇WQ, E(P,Q),6∗)
with some admissible order 6∗ is automatically a Q-map. Because every point
of Z is majorised by an element of ϕ(WQ) we may, as previously, find for each
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x ∈ WP some point yx ∈ Max WQ such that ϕ(x) 6 ϕ(yx). Now define 6∗ in the
same way as above.

Theorem 3.9. The maximal Q-subalgebras of H(L) are in one-to-one corre-

spondence with functions θ : Max WP → Max WQ.

P r o o f. The two preceding lemmas imply that the maximal Q-subalgebras
correspond exactly to the admissible orders. As the proof of Lemma 3.7 shows,
each admissible order is determined by, and determines, a function θ : Max WP →
Max WQ.

We can now describe the relations which arise in our piggyback duality. We
shall incorporate among our relations the graphs of sufficient endomorphisms to
ensure that the graph of every automorphism of P and of Q is generated. This
means that we only need include “essentially different” maximal subalgebras of
(βP , βQ)−1(6). Here “essentially different” will mean, dually, “up to the permu-
tation of labels of maximal elements”, with the proviso that in Tpq we can only
permute 1, . . . , p and p+1, . . . , q among themselves. As in the case of the varieties
Bn of distributive p-algebras treated in [11], the essentially different maximal sub-
algebras can be labelled, dually, using partitions of integers. The notation here
gets rather complicated, but the ideas are simple, as the illustrative examples
after Theorem 3.10 show.

We adopt the notation for partitions used in [2]. We write (k1, k2, . . . , kr) to
denote the partition of n into parts k1 > k2 > . . . > kr > 0 (so k1 +k2 + . . .+kr =
n) and we let k0 = 0. Let (k1, k2, . . . , kr) be a partition of n > 0 and let n′ > 0.
Define

π(n, n′; (k1, . . . , kr))

=
⋃

16j6n

{(j, n′
⌣
+ i) | k0 + . . . + ki−1 < j 6 k0 + . . . + ki} .

To allow a uniform notation encompassing special cases we write (0) in place
of (k1, . . . , kr) if no partition is present, and let π(n, n′; (0)) = ∅. In definitions
(ii)–(iv) below we permit either (k1, . . . , kr) or (l1, . . . , ls) to be replaced by (0).
We define ordered sets as follows.

(i) O(p; (k1, . . . , kr)) has underlying set {1, . . . , p,
`

1, . . . ,
`
p} and order

π(p, 0; (k1, . . . , kr)) .

(ii) N(p, q,m; (k1, . . . , kr); (l1, . . . , ls)) has underlying set {0, 1, . . . , p + q,
`

0,
`

1, . . . , p
⌣
+ q} and order

π(m, 0; (k1, . . . , kr)) ∪ π(p + q − m, p; (l1, . . . , ls))

∪ {(0,
`

0)} ∪ {(0,
`

i ) | p + 1 6 i 6 p + q} ∪ {(
`

0,
`

i ) | p + 1 6 i 6 p + q} .
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(iii) M(p, q; (k1, . . . , kr); (l1, . . . , ls)) has underlying set {0, 1, . . . , p + q,
`

1, . . .

. . . , p
⌣
+ q} and order

π(q, 0; (k1, . . . , kr)) ∪ π(p, 0; (l1, . . . , ls)) ∪ {(0,
`

1)} .

(iv) L(p, q,m; (k1, . . . , kr); (l1, . . . , ls)) has underlying set {1, . . . , p+q,
`

0,
`

1, . . .

. . . , p
⌣
+ q} (m > q), and order

π(m, 0; (q, . . . , kr)) ∪ π(p + q − m, q; (l1, . . . , ls)) ∪ {(1,
`

0)}

∪ {(
`

0, i) | 1 6 i 6 p} .

As an immediate consequence of previous results we deduce our main theorem.

Theorem 3.10. Let τ be the discrete topology.

(1) For p > 1 let A := Dp0 = ISP(Dp0) and let ∼Dp0 := (Dp0; τ,R), where R

consists of the following relations:
(a) the set of subalgebras S(O(p; k1, . . . , kr)) where (k1, . . . , kr) is a par-

tition of p, and the graphs of the members of






∅ if p = 1,
{fσ} if p = 2,
{fσ, fτ} if p > 3.

(2) For p > 0 let A := Dp1 = ISP(Dp1) and let ∼Dp1 := (Dp1; τ,R), where R

consists of the following relations:
(a) the set of subalgebras S(N(p, 1,m; (k1 , . . . , kr), (m))) where 0 6 m 6

p + 1 and (k1, . . . , kr) is a partition of p + 1 if m < p + 1 and (0) if

m = p + 1, and

(b) the graphs of the members of






{g} if p = 0,
{gσ} if p = 1,
{g, gσ , gτ} if p > 2.

(3) For p > 0, q > 2, let A := Dpq = ISP(Π), where Π = {Dpq ,D(p+q)0},
and let

∼Π = (Dpq ∪̇D(p+q)0; τ,R)

where R consists of the following relations:
(a) subalgebras

S(O(p + q; (k1, . . . , kr))) ,

S(N(p, q,m; (k1, . . . , kr), (l1, . . . , ls))) ,

S(M(p, q,m; (k1, . . . , kr), (l1, . . . , ls))) , and

S(L(p, q,m; (k1, . . . , kr))) ,

where the parameters vary over all possible values, and
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(b) the graphs of the members of
{

{h, fσ , f ′

σ} if p = 0, q = 2,
{h, fσ , fτ , f ′

σ, f ′

τ} if p + q > 2.

Then R yields a duality on A.

We show explicitly how the partition-induced relations work out for the vari-
eties D30 (Figure 2) and D11 (Figure 3).

O(3; (1, 1, 1)) O(3; (2, 1)) O(3; (3))

Fig. 2

Fig. 3

For the beginning of the chain of subvarieties we have dualities with numbers
of relations as indicated in Table 1.

Table 1

Maximal subalgebras Endomorphisms

D10 1 0
D01 1 1
D20 2 1
D02 8 3
D11 4 1
D30 3 2
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The varieties Dp0 are exactly those generated by the finite simple algebras in
Q ([3], Corollary 3.8). Their dualities are less complicated than those for varieties
Dpq with q > 0. Nevertheless, the number of relations for the duality for Dp0

grows exponentially with p. Application of Theorem 2.2 in the cases p = 3 and
p = 4 proves that none of the relations can be discarded. These results, obtained
by computer, suggest that our duality for Dp0 is best possible, at least relative to
piggyback dualities. We have also shown by computer than none of our relations
can be discarded in the case of D11. The question of optimality will be pursued
further elsewhere.

4. Free algebras. In our introduction we alluded to Cignoli’s note [4] in
which he gives a construction of the Q-space dual to the Q-algebra freely gener-
ated by a member of D. This construction generalises that given by Halmos in [18]
(reproduced in Chapter IV of [19]) for the free monadic extension of a Boolean
algebra, and is similar in spirit to the dual construction of the free distributive
p-algebra generated by a member of D given by B. A. Davey and M. S. Gold-
berg in [8]. Cignoli has used his construction to show that FQ(1) is a 4-element
chain 0 < a < ∇a < 1 and that the Q-space dual to FQ(2) is as shown in
Figure 5(c).

We approach free algebras in quite a different way, via our natural dualities for
the varieties Dpq . We should emphasise that we are able to describe free algebras
in Dpq in total ignorance either of the identities which determine Dpq (so far
unknown beyond D01) or of a subcategory of YQ dual to Dpq. Indeed our results
may assist in finding the requisite laws (cf. [1], [22]). Theorem 4.2 implies, for
example, that D10, D20 and D11 are distinguished by 2-variable identities. We
shall pursue this topic further elsewhere.

We recall that, if A = ISP(Π) has a natural duality based on a schizophrenic
object ∼Π, then ∼Π

κ serves as the natural dual of FA(κ). Theorem 4.1 makes this

completely precise in the special cases we require. The theorem extends to free
algebras with infinitely many generators by adding the appropriate topological
ingredients.

Theorem 4.1. (1) Assume P is a finite algebra and that R is a set of algebraic

relations yielding a duality on A. Then for 1 6 n < ω, the algebra FA(n) is

isomorphic to the set of R-preserving maps from Pn (with relations in R extended

pointwise) to P , with operations inherited pointwise from PP n

.

(2) Assume P , Q are finite algebras and that

R ⊆ S(P 2) ∪ S(Q2) ∪ S(P × Q) ∪ S(Q × P )

yields a duality on A. Then for 1 6 n < ω the algebra FA(n) is isomorphic to

the set of R-preserving maps from Pn∪̇Qn which map Pn into P and Qn into

Q (with relations extended pointwise from P ∪̇Q), structured pointwise from PP n

and QQn

.
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The calculations involved in applying this theorem in practice require a com-
puter, except in the very simplest cases. We use the program for calculating
relation-preserving maps which was devised to test optimality of dualities for va-
rieties of distributive p-algebras; see [12] and [24]. The theorem below is obtained
by combining our computational results with Cignoli’s description of FQ(1) and
FQ(2). The first part can alternatively be derived from Cignoli’s results alone, by
noting that FQ(1) satisfies the identity ∇(a ∧ b) = ∇(a) ∧∇(b) for D01 given in
[3], Section 4. Before giving the theorem we get a trivial case out of the way: note
that D01 is defined by the law ∇a = a, whence it follows that FD10(n) = FD(n)
as a lattice.

Theorem 4.2. Let A be a subvariety of Q.

(1) If D01 ⊆ A ⊆ Q, then FA(1) = FQ(1), a 4-element chain 0 < a < ∇a =
∇2a < 1.

(2) FD01(2) and FD20(2) are shown in Figure 4(a) and (b). The associated

Q-spaces are shown in Figure 5. If D02 ⊆ A ⊆ Q, then FA(2) = FQ(2), as

shown in Figure 4(c).

Fig. 4
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Fig. 5

The free algebra FD01(3) has 980 elements and FD20(3) has 22,470 elements.

For the benefit of sceptics, and to give the flavour of our theory, we present
input and output data for the calculation of FD20(2). We have P = D20, a
4-element Boolean lattice whose elements we label as 1, 2, 3, 4 with 1 < 2 < 4,
1 < 3 < 4 and the simple quantifier. Our relations are the following subalgebras
of P 2: the graph of the endomorphism gσ, viz. {(1, 1), (2, 3), (3, 2), (4, 4)} and the
maximal subalgebras associated with the partitions (1, 1) and (2) of 2 given in
Figure 6.

(4, 4)
(4, 4)

(4, 2) (4, 3)
(2, 4) (3, 4) (2, 4)

(3, 2)
(2, 2) (1, 4) (3, 3) (2, 2) (2, 3)

(3, 1)

(1, 2) (1, 3) (1, 2)

(1, 1) (1, 1)

Fig. 6

Table 2 lists the 32 relation-preserving maps from the 16-element set ∼P
2 to the

4-element set ∼P . With lattice operations and quantifier inherited from P these

maps form FD20(2).
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Table 2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 2 1 2 1 1 3 3 1 2 3 4
3 1 1 1 1 1 2 1 2 1 1 3 3 1 4 4 4
4 1 1 1 1 1 2 1 4 1 1 3 4 1 2 3 4
5 1 1 1 1 1 2 1 4 1 1 3 4 1 4 4 4
6 1 1 1 1 1 2 2 2 1 3 3 3 1 4 4 4
7 1 1 1 1 1 2 2 4 1 3 3 4 1 4 4 4
8 1 1 1 1 1 2 3 4 1 2 3 4 1 2 3 4
9 1 1 1 1 1 2 3 4 1 2 3 4 1 4 4 4
10 1 1 1 1 1 2 4 4 1 4 3 4 1 4 4 4
11 1 1 1 1 1 4 1 4 1 1 4 4 1 4 4 4
12 1 1 1 1 1 4 2 4 1 3 4 4 1 4 4 4
13 1 1 1 1 1 4 3 4 1 2 4 4 1 4 4 4
14 1 1 1 1 1 4 4 4 1 4 4 4 1 4 4 4
15 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
16 1 1 1 1 2 2 2 4 3 3 3 4 4 4 4 4
17 1 1 1 1 2 2 4 4 3 4 3 4 4 4 4 4
18 1 1 1 1 2 4 2 4 3 3 4 4 4 4 4 4
19 1 1 1 1 2 4 4 4 3 4 4 4 4 4 4 4
20 1 1 1 1 4 4 4 4 4 4 4 4 4 4 4 4
21 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
22 1 2 3 4 1 2 3 4 1 2 3 4 1 4 4 4
23 1 2 3 4 1 2 4 4 1 4 3 4 1 4 4 4
24 1 2 3 4 1 4 3 4 1 2 4 4 1 4 4 4
25 1 2 3 4 1 4 4 4 1 4 4 4 1 4 4 4
26 1 2 3 4 2 2 4 4 3 4 3 4 4 4 4 4
27 1 2 3 4 2 4 4 4 3 4 4 4 4 4 4 4
28 1 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4
29 1 4 4 4 1 4 4 4 1 4 4 4 1 4 4 4
30 1 4 4 4 2 4 4 4 3 4 4 4 4 4 4 4
31 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
32 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
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[16] —, —, Piggyback-Dualitäten, Bull. Austral. Math. Soc. 32 (1985), 1–32.
[17] R. Goldb latt, Varieties of complex algebras, Ann. Pure Appl. Logic 44 (1990), 173–242.
[18] P. R. Halmos, Algebraic logic I : monadic algebras, Compositio Math. 12 (1955), 217–249;

reproduced in [19].
[19] —, Algebraic Logic, Chelsea, New York 1962.
[20] G. Hansou l, A duality for Boolean algebras with operators, Algebra Universalis 17 (1983),

34–49.
[21] H. A. Pr iest ley, Ordered sets and duality for distributive lattices, in: Orders, Descriptions

and Roles, M. Pouzet and D. Richard (eds.), Ann. Discrete Math. 23, North-Holland,
Amsterdam 1984, 39–60.

[22] —, The determination of subvarieties of certain congruence-distributive varieties, Algebra
Universalis, to appear.

[23] —, Natural dualities, in: Proc. Birkhoff Symposium 1991, K. Baker and R. Wille (eds.),
to appear.

[24] H. A. Pr iest ley and M. P. Ward, A multi-purpose backtracking algorithm, submitted.


