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1. Introduction. Comtrans algebras were introduced [15] in answer to a
problem from differential geometry [3, Problem X.3.9], [10, p. 16]: finding the
algebraic structure in the tangent bundle corresponding to the coordinate n-ary
loop of an (n + 1)-web [4, §3.7]. The algebraic structure consists of a system
of comtrans algebras, interlaced with some of the “W-algebras” (now known as
Akivis algebras) that had been introduced earlier by Akivis in correspondence
with the coordinate binary loops of 3-webs [1], [3, §IX.6], [6]. A Lie group deter-
mines a special kind of 3-web, a group web [3, Defn. X.6.2], and the corresponding
Akivis algebra in this case is a Lie algebra. In this sense comtrans algebras are
general ternary analogues of Lie algebras. To some extent the theory of comtrans
algebras is modelled on, and may subsume, the theory of Lie algebras.

The purpose of the current paper is to provide a brief survey of the present
(early) state of the theory of comtrans algebras, placing particular emphasis on
physical applications. Basic definitions are given in Section 2. Section 3 is devoted
to presenting a number of examples of comtrans algebras, namely on Lie algebras,
spaces with bilinear forms, and spaces of rectangular matrices. Physical interest
here focuses on the comtrans algebra structure on Minkowski space-time that ex-
tends the vector triple product on R3. The fourth section describes the transposed
comtrans algebra that is (term) equivalent to a given comtrans algebra. Represen-
tation theory of comtrans algebras is discussed briefly in the fifth section, in terms
of the universal enveloping algebra. The final section presents a new example of
comtrans algebras, on spaces of Hermitian operators. The primary motivation
and application here is quantum mechanics. Formulating quantum mechanics in
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terms of comtrans algebras, the choice of sign of Planck’s constant is seen to re-
present no more than a choice between two (term) equivalent presentations of an
algebraic theory.

2. Comtrans algebras. Let R be a commutative ring with 1. A comtrans
algebra over R is a unital R-module E equipped with a trilinear operation

(2.1) [ , , ] : E3 → E; (x, y, z) 7→ [x, y, z]

called the commutator and a trilinear operation

(2.2) 〈 , , 〉 : E3 → E; (x, y, z) 7→ 〈x, y, z〉
called the translator. The commutator is left alternative, in the sense that

(2.3) [x, x, z] = 0 .

The translator satisfies the Jacobi identity

(2.4) 〈x, y, z〉+ 〈y, z, x〉+ 〈z, x, y〉 = 0 .

Finally, the commutator and translator together satisfy the comtrans identity

(2.5) [x, y, x] = 〈x, y, x〉 .
For a fixed ring R, the class R-CT of comtrans algebras forms a variety in the
sense of universal algebra. The notation R-CT (or just CT if R is implicit) is
also used for the category whose objects are comtrans algebras over R and whose
morphisms are homomorphisms between them. As a variety, R-CT is a Mal’cev
variety (in the sense of [14]), and thus has well-behaved centrality and cohomology.
A comtrans algebra is said to be abelian if its commutators and translators are
identically zero. Ideals in a comtrans algebra E are the congruence classes of 0.
A comtrans algebra is said to be simple if it is non-abelian, but has no proper
non-trivial ideals. These concepts are all analogous to their counterparts in the
theory of Lie algebras.

Given a trilinear operation

(2.6) E3 → E; (x, y, z) 7→ xyz

on a unital R-module E, the commutator of the operation is

(2.7) [x, y, z] = xyz − yxz ,
and the translator of the operation is

(2.8) 〈x, y, z〉 = xyz − yzx .
Under these operations, E forms a comtrans algebra. This is analogous to the
construction of a Lie algebra with commutator

(2.9) [x, y] = xy − yx
from a bilinear associative operation (x, y) 7→ xy. If 6 is invertible in the ring R,
each comtrans algebra over R is obtainable from the commutator and translator
of a suitably defined trilinear operation (2.6) [15, Prop. 3.3].
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3. Examples of comtrans algebras. Given a Lie algebra L over the ring R,
a comtrans algebra CT (L) is obtained by taking the commutator and translator
to be the repeated Lie algebra commutator:

(3.1) [x, y, z] = 〈x, y, z〉 = [[x, y], z] .

In this case, the Jacobi identity in the comtrans algebra CT (L) corresponds ex-
actly to the Jacobi identity in the Lie algebra L. If the Lie algebra L is abelian,
then so is the comtrans algebra CT (L). Simple Lie algebras provide the first
examples of simple comtrans algebras, and these comtrans algebras essentially
capture all the structure of the Lie algebras:

(3.2) Theorem [11, Th. 3.2]. A Lie algebra L is simple if and only if the
corresponding comtrans algebra CT (L) is simple.

The most elementary Lie algebra of physical significance is the 3-dimensional
real Lie algebra (R3,×) given by the “cross” or “vector” product of vectors. The
corresponding comtrans algebra CT (R3,×) is well known; its equal commutators
and translators are the “vector triple products”

(3.3) (x× y)× z = (x · z)y − (y · z)x .
The vector product is a notoriously “accidential”, exceptional phenomenon, and
there are no analogous Lie algebras on other normed spaces. However, the right
hand side of the identity (3.3) suggests a way of putting a comtrans algebra
structure CT (E, β) on a formed module (E, β), a unital module E over the com-
mutative ring R equipped with a bilinear form β : E × E → R. The algebra
CT (E, β) has commutator

(3.4) [x, y, z] = yβ(x, z)− xβ(y, z)

and translator

(3.5) 〈x, y, z〉 = yβ(z, x)− xβ(y, z) .

Except for the trivial cases, the comtrans algebra CT (E, β) encodes all the struc-
ture in (E, β). Define a formed space to be a formed module (E, β) whose under-
lying module is free of rank more than 1. Recall the definition of the radical :

(3.6) Radβ = {x ∈ E | ∀y ∈ E , β(x, y) = β(y, x) = 0} .
One then has the following

(3.7) Theorem [12]. Let (E, β) be a formed space, with corresponding com-
trans algebra CT (E, β). Then:

(a) Radβ = {x ∈ E | ∀y, z ∈ E , 〈z, y, x〉 = 0};
(b) the automorphism groups of (E, β) and of CT (E, β) coincide;
(c) CT (E, β) is simple if and only if Radβ = {0} and R is a field.

The theorem shows that the Lorentz metric on 4-dimensional real space-time
provides a simple comtrans algebra that extends the 3-dimensional vector triple
product comtrans algebra. Moreover, the Lorentz group is the automorphism
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group of this 4-dimensional comtrans algebra. In general, comtrans algebras pro-
vide the most compact and efficient algebraisation of bilinear forms. Other alge-
braisations, such as Jordan algebras and Clifford algebras, require an expansion of
the underlying module. The underlying module of a Clifford algebra, for instance,
is exponentially large compared to the underlying module of the space carrying
the quadratic form.

The comtrans algebras CT (E, β) of formed spaces (E, β) whose underlying
module has finite rank are special cases of comtrans algebra structure that is
carried by the set of rectangular matrices of a given size. Let Rnm denote the
R-module of (m × n)-matrices over the commutative ring R. Fix A in Rnn and
B in Rmm. Set E = Rnm. Then the commutator (2.7) and translator (2.8) of the
trilinear operation

(3.8) (X,Y, Z) 7→ XAY TBZ

on E give a comtrans algebra CT (A,B). Define

(3.9) R(A) : E → E; X 7→ XA

and

(3.10) L(B) : E → E ; X 7→ BX .

The simple comtrans algebras CT (A,B) are then described as follows.

(3.11) Theorem [11, Th. 4.7]. A comtrans algebra CT (A,B) is simple if and
only if R is a field , nm > 1, and KerR(A) ∩ KerR(AT ) = {0} = KerL(B) ∩
KerL(BT ).

4. Transposed algebras. Given a comtrans algebra E with commutator
[x, y, z] and translator 〈x, y, z〉, a new comtrans algebra Eτ , called the trans-
posed algebra, is defined on the same underlying module E, with commuta-
tor

(4.1) [x, y, z]τ = [z, y, x] + 〈y, z, x〉

and translator

(4.2) 〈x, y, z〉τ = −〈x, z, y〉 .

Note that Eττ = −E, so that the algebras E and Eτ are (term) equivalent in the
sense of universal algebra [16, p. 13]. This implies that E and Eτ have the same
ideals, so that E is simple if and only if Eτ is. A comtrans algebra E is said to be
symmetric if it is equal to its transpose, and antisymmetric if [x, y, z]τ = −[x, y, z]
and 〈x, y, z〉τ = −〈x, y, z〉. If 2 is invertible in the ring R, each comtrans algebra
E over R decomposes into the sum of a symmetric part (E + Eτ )/2, e.g. with
commutator

(4.3) ([x, y, z] + [x, y, z]τ )/2 ,
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and an antisymmetric part (E−Eτ )/2. Matrix transposition gives an isomorphism
between the comtrans algebras CT (A,B)τ and CT (BT , AT ) defined from (3.8).

Transposition provides a convenient way of recognizing which comtrans alge-
bras are the comtrans algebras CT (E, β) of a formed space:

(4.4) Theorem [12, Th. 4.1]. Let E be a comtrans algebra whose underlying
module is free of rank at least 3. Then there is a bilinear form β on E such that
E = CT (E, β)τ if and only if , for all x , y , z in E , one has [x, y, z] ∈ zR and
〈x, y, z〉 ∈ xR+ zR.

An interesting example shows the necessity of the rank condition in The-
orem 4.4. Let (H,α) be a non-degenerate 2-dimensional symplectic space (or
“hyperbolic plane” in the sense of [7, Def. II.9.7]) over a field R. Then

(4.5) [x, y, z] = −zα(y, x)

and

(4.6) 〈x, y, z〉 = xα(z, y)

define a comtrans algebra on H. Nevertheless, this comtrans algebra is not the
transpose of the algebra CT (H,β) for any bilinear form β on H [12, Ex. 4.2].

5. Representation theory. Fix a commutative ring R, and consider the
Mal’cev variety CT of comtrans algebras over R. As a category, CT is complete
and cocomplete [5, 32.14]. For a comtrans algebra E over R, define E[X] to be
the coproduct in CT of E with the free CT -algebra on a single generator X.
Identify E with its image in E[X]. For x, y in E, there are module endomor-
phisms

K(x, y) : E[X]→ E[X]; z 7→ [z, x, y] ,(5.1)
R(x, y) : E[X]→ E[X]; z 7→ 〈z, x, y〉 , and(5.2)
L(x, y) : E[X]→ E[X]; z 7→ 〈y, x, z〉 .(5.3)

The universal enveloping algebra U(E) is defined to be the subalgebra of the
R-module endomorphism ring EndRE[X] generated by

(5.4) {K(x, y), R(x, y), L(x, y) | x, y ∈ E} .

There are universal-algebraic ways of determining what a module over the com-
trans algebra E should be [14, p. 9], but it turns out that these modules are equiv-
alent to right modules over the universal enveloping algebra U(E) [13, Th. 3.10].
As an elementary illustration, consider the centre Z(E) of the comtrans alge-
bra E. Universal-algebraically, the centre is defined as the congruence class of
0 under the centre congruence ζ(E) [14, p. 42]. However, E is a submodule of
the right U(E)-module E[X], and Z(E) is then just the submodule of E fixed
by U(E) [13, Prop. 2.3]. If R is a field, then the universal enveloping algebra is
described by
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(5.5) Theorem [13, Th. 4.5]. Let E be a comtrans algebra over a field R. Let
V = (E ∧E)⊕ (E ⊗E)⊕ (E ⊗E). Then the universal enveloping algebra U(E)
of E is isomorphic to the tensor algebra T (V ) over V.

6. Comtrans algebras and quantum mechanics. Let E be a real vec-
tor space of Hermitian operators on a complex vector space, for example the
space of observables on the state space of a quantum mechanical system. Let
h̄ be a real number, for example Planck’s constant in suitable energy× time
units. The real space E is a Lie algebra under the normalised binary commu-
tator

(6.1) {x, y} = i(xy − yx)/h̄

and a Jordan algebra under the Jordan product

(6.2) x · y = (xy + yx)/2 .

Saizew [9, §2.2] points out the identities

(6.3) h̄2{y, {x, z}} = x · (y · z)− (x · y) · z
and

(6.4) {x · y, z} = x · {y, z}+ y · {x, z}
connecting the two operations, and regards E as a “Lie–Jordan” algebra under
them. The Lie–Jordan algebra structure is a useful framework for describing the
correspondence principle. However, it is non-uniform in the sense that the Lie
structure is infinitesimal, while the Jordan structure is not. In order to com-
prise the Lie and Jordan structures infinitesimally, one may instead introduce a
comtrans algebra on E with commutator

(6.5) [x, y, z] = 2x · (y · z)− 2y · (z · x) + h̄{x, y} · z
and translator

(6.6) 〈x, y, z〉 = 2z · (x · y)− 2y · (z · x) + h̄{x, y · z} .
This comtrans algebra has a number of interesting features that are worthy of fur-
ther exploration. The transposed algebra is again given by (6.5) and (6.6), except
that h̄ is replaced by −h̄. Physically, this corresponds to reversing the direction
of time [2]. The arbitrariness in the initial choice of sign for h̄ is absorbed by the
universal-algebraic term equivalence between E and Eτ .

The symmetric part of E describes physical relationships that are time-invar-
iant, for example the commutation relations for angular momentum operators
in R3 (e.g. [8, App. B]) that correspond to the vector triple product comtrans
algebra (3.3). Indeed, for a non-zero vector v in R3, let v denote v/|v| times the
angular momentum operator about an axis in the direction of v. By [8, B.1],
linearity, and (6.1), one has

(6.7) {x, y} = −x× y
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for vectors x, y in R3. Then by (4.3), (6.3) and (6.7), the commutator in the
symmetric part of E is

(6.8) 2h̄2{{x, y}, z} = 2h̄2((x× y)× z) .
On the other hand, the antisymmetric part of E describes physical relationships
that are directly time-dependent. For example, let H be the Hamiltonian operator
of a quantum system. Then the Heisenberg equation (e.g. [8, (13.35)]) may be
written in the form

(6.9)
d

dt
= L(1, H/h̄)

using the comtrans algebra representation notation of (5.3). Let A(t) denote the
operator corresponding to the observable A at time t. Then its evolution is de-
scribed by

(6.10) A(t) = A(0)
∞∑
n=0

tn

n!
L(1, H/h̄)n .

In other words, the evolution from A(0) to A(t) corresponds to applying the
element

(6.11)
∞∑
n=0

tn

n!
L(1, H/h̄)n

from the universal enveloping algebra U(E) of the comtrans algebra E.

References

[1] M. A. Akiv i s, Local algebras on a multidimensional three-web, Sibirsk. Mat. Zh. 17 (1976),
5–11 (in Russian); English translation: Siberian Math. J. 17 (1976), 3–8.

[2] I. Bia  lyn ick i-Biru la, A new approach to time reflection, Bull. Acad. Polon. Sci. Cl. III
5 (1957), 805–807.

[3] O. Che in, H. O. Pf lug fe lder and J. D. H. Smith (eds.), Quasigroups and Loops: Theory
and Applications, Heldermann, Berlin 1990.

[4] V. V. Goldberg, Theory of Multicodimensional (n+ 1)-webs, Kluwer, Dordrecht 1988.
[5] H. Herr l i ch and G. E. Strecker, Category Theory , Allyn and Bacon, Boston 1973.
[6] K. H. Hofmann and K. Strambach, Lie’s fundamental theorems for local analytical

loops, Pacific J. Math. 123 (1986), 301–327.
[7] B. Huppert, Endliche Gruppen I , Springer, Berlin 1967.
[8] P. T. Matthews, Introduction to Quantum Mechanics, McGraw-Hill, New York 1963;

Polish translation: PWN, Warszawa 1977.
[9] G. A. Sa izew, Algebraic Problems of Mathematical and Theoretical Physics, Nauka,

Moscow 1974 (in Russian); German translation: Akademie-Verlag, Berlin 1979.
[10] C. Sche iderer, Gewebegeometrie 10.6 bis 16.6.1984, Tagungsbericht 27/1984, Mathema-

tisches Forschungsinstitut Oberwolfach, 1984.
[11] X. R. Shen and J. D. H. Smith, Simple multilinear algebras, rectangular matrices and

Lie algebras , J. Algebra, to appear.
[12] —, —, Comtrans algebras and bilinear forms, Arch. Math. (Basel) 59 (1992), 327–333.



326 J. SMITH

[13] X. R. Shen and J. D. H. Smith, Representation theory of comtrans algebras, J. Pure
Appl. Algebra 80 (1992), 177–195.

[14] J. D. H. Smith, Mal’cev Varieties, Springer, Berlin 1976.
[15] —, Multilinear algebras and Lie’s Theorem for formal n-loops, Arch. Math. (Basel) 51

(1988), 169–177.
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