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1. Introduction. This paper can be read two ways. It can be read as a
paper about algebraic logic, in particular cylindric algebras, and/or it can be read
as a paper about transformation semigroups and their presentations or defining
relations. On the cylindric algebraic level, we look at the so called substitution
operations, the sij ’s (which in polyadic algebra theory are denoted as s[i/j]’s).
When applying algebraic logic to first order logic, sij is the operation which sends
the formula ϕ to ϕ(vi/vj) obtained from ϕ by replacing every free occurrence of
vi with vj (replacing bound variables to avoid collision, if needed). The formula
ϕ(vi/vj) is equivalent with ∃vi(vi = vj ∧ ϕ). This is why, in cylindric algebra
theory, sij(x) = ci(dij · x).

We will look at the “abstract” class CAα of cylindric algebras. Let ESα be
the set of those equations in the language of CAα which involve only the sij ’s. So
e.g. s01s

0
1x = s12x is in ESα (if α > 2) though it is not valid in CAα. In [HMT],

§1.5 explores the question, which elements of ESα are valid in CAα. Indeed,
a great number of such equations are listed there. Here we will give a simple
characterization of those elements of ESα which are valid in CAα (Theorem 3.6).
This characterization provides an easy decision procedure, too.

Let us, next, look at representable CAα’s (RCAα’s). Strictly more elements of
ESα are valid in RCAα than in CAα. Our axiom system Σ in §2 below provides a
complete axiomatization of the elements of ESα valid in RCAα. The same applies
to representable quasi-polyadic algebras (RQPAα’s) in place of CAα (cf. Sain–
Thompson [ST]). The following result, taken from an early version of [S], can be
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provided with a simpler proof using the semigroup-theoretic results herein. Let
RSCAα be the class of subreducts of RCAα containing only the sij ’s (i, j ∈ α)
as extra-Boolean operations. (We note that RSCAα is the same kind of sub-
reduct of RQPAα, too.) Then the equational theory of RSCAα is axiomatized
by postulates Σ from §2 herein together with the Boolean axioms and an ax-
iom (schema) stating that the sii’s are Boolean endomorphisms. Sain’s original
proof of this relied on the main theorem of [J] as quoted in [HMT II], but it can
be given a direct proof on the basis of Theorem 3.3 herein. Other examples for
simplifying proofs of cylindric algebraic theorems are given below Theorem 3.3.
For a recent overview of the kind of algebraic logic mentioned so far see Németi
[N91].

The main purpose of the semigroup-theoretic part of this paper is to provide
a set of defining relations for full semigroups of finite non-permutational trans-
formations. We deal with the mappings of a set I into itself. To avoid triviality,
we will apply throughout this paper the restriction that I contains at least 2
elements. For each such set I there is a set NP(I) consisting of all mappings f
of I into itself which are finite transformations—that is, f(x) = x for all but
finitely many elements x of I—and, in addition, are not permutations of I. In
particular, we exclude, as a matter of convenience, the identity on I; the changes
in this paper necessary to include this specific permutation in NP(I) are fairly
trivial, and we assume that the reader can see how to make them. In partial
compensation, we do take account of the empty word on the semigroup genera-
tors.

Our method can be used to give a direct proof of the adequacy of Jónsson’s
defining relations for the semigroup of all finite transformations of a set into itself,
which is the main theorem of Bjarni Jónsson’s paper [J]. The reader of Jónsson’s
paper may also notice that in the last section of that paper he gives an applica-
tion of his main theorem to cylindric algebras; the non-permutational semigroups
considered in this paper are even more suitable for use in studying cylindric alge-
bras. In fact, in a subsequent paper, we will report our study (based on the results
of the present paper) of semigroups obtained by deleting some of the relations
needed to define NP(I); these semigroups correspond to cylindric algebras (or
weaker systems of algebraic logic, such as in [N]) that are not (relativized) set
algebras.

With a few exceptions we will use the notation of [HMT], [HMT II]. In par-
ticular, for a given set I (which will be fixed throughout most of our subsequent
discussion) [x/y] will be, for given distinct elements x and y of I, the finite trans-
formation of I such that [x/y](i) = i for i ∈ I such that i 6= x, and [x/y](x) = y.
This transformation [x/y] will be called the replacement of x by y in I , or—more
generally—a replacement on I. We note that in Jónsson’s paper [J] the replace-
ment of x by y in I is represented by exactly the opposite notation (there is also
a printing error on page 79 in clause (iv) of his main theorem). We will, however,
adopt, for use in Definition 2.1 and §4, Jónsson’s notation for the transposition of
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x and y in I , which we will designate by [x, y] and define as the finite transforma-
tion of I such that [x, y](x) = y, [x, y](y) = x, and [x, y](i) = i for i ∈ I such that
i 6= x, y. Such a transposition will be called, more generally, a transposition on I.
(The notation [x, y] also appears on p. 68 of [HMT II].) In the composition of
functions we will take (f ◦ g)(i) = (fg)(i) to be the same as g(f(i)). (By f ◦ g we
denote what is usually called the relational composition of f and g, and is denoted
by f |g in [HMT].) The empty set is ∅. As in [HMT], A ∼ B is the set-theoretic
difference of A and B (those elements belonging to A but not to B) and A ⊂ B
is proper inclusion (that is, A ⊆ B but A 6= B). Throughout, Edm(σ), or the
essential domain of σ, is {i ∈ I : σ(i) 6= i} for σ a transformation of I into itself.
Also, |A| is the cardinality of A, and Rg f in the proof is, of course, the range
of f .

In the rest of the present introductory section we will establish some auxiliary
propositions about semigroups we will need later. They are not really new; for
the case when I is finite they were already proved in Howie [H].

For completeness (and because we need them for infinite I too) we include
their proofs below.

Proposition 1.1. Suppose that σ is a mapping of the set I into itself which is
not a permutation, and i ∈ I is such that σ(i) 6= i. Then either σ is a replacement
on I or there exists some mapping σ′ of I into itself such that σ′ is also not a
permutation, |{i ∈ I : σ′(i) 6= σ(i)}| ≤ 2, Edm(σ′) ⊆ Edm(σ), and i 6∈ Edm(σ′),
and σ is either %σ′, σ′τ , or %σ′τ , where % and τ are either replacements on I or
products of two replacements on I.

P r o o f. Let σ be a mapping of I into I which is not a permutation, and let
i ∈ I be such that σ(i) 6= i.

C a s e 1: i 6∈ Rg σ. If either there is some k 6= i such that k 6∈ Rg σ, or
else there is not exactly one j ∈ I such that j 6= i and σ(j) = σ(i), we can
set: σ′(i) = i, σ′(m) = σ(m) for m 6= i (σ′ will not be a permutation, as either
there is some k 6= i such that k 6∈ Rg σ and so k 6∈ Rg σ′, or there is no j ∈ I
such that j 6= i and σ(j) = σ(i), and so σ(i) 6∈ Rg σ′, or there exist j, k ∈ I
with j 6= k and i 6= j, k such that σ(j) = σ(i) and σ(k) = σ(i)—and then
σ′(j) = σ(j) = σ(i) = σ(k) = σ′(k)) and note that σ = σ′[i/σ(i)] (using the
fact that i 6∈ Rg σ). Otherwise, for n 6= i we have n ∈ Rg σ, and there is exactly
one j ∈ I such that j 6= i and σ(j) = σ(i). If there is some n 6= i, j such that
σ(n) 6= n we set: σ′(i) = i, σ′(n) = n, σ′(m) = σ(m) for m 6= i, n (σ′ will not be
a permutation since, as n ∈ Rg σ, there is some k ∈ I such that σ(k) = n, with
k 6=n as σ(n) 6=n, so either k 6= i and thus σ′(k) = σ(k) = n = σ′(n), or k = i and
σ′(j) = σ(j) = σ(i) = σ(k) = n = σ′(n)) and note that σ = [i/j][n/i]σ′[i/σ(n)]
(using the facts that i 6∈Rg σ and σ(i) = σ(j)). Finally, if σ(n) = n for all n 6= i, j
then σ(i) = j (as σ(i) 6= i, so that if σ(i) 6= j then σ(σ(i)) = σ(i), which implies
σ(i) = j) so that σ is the replacement [i/j].
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C a s e 2: i ∈ Rg σ. If there is some j ∈ I such that j 6= i and σ(j) = σ(i) we
can set: σ′(i) = i, σ′(m) = σ(m) for m 6= i (σ′ will not be a permutation since,
as i ∈ Rg σ, there is some k ∈ I such that σ(k) = i, with k 6= i as σ(i) 6= i,
so σ′(k) = σ(k) = i = σ′(i)) and note that σ = [i/j]σ′ (using the fact that
σ(i) = σ(j)). Otherwise, if σ is not one-one there will be some j ∈ I such that
j 6= i, σ(j) = σ(k) for some k ∈ I such that k 6= i, j, and σ(j) 6= j. Then we
can set: σ′(i) = i, σ′(j) = σ(i), and σ′(m) = σ(m) for m 6= i, j (σ′ will not be
a permutation since, as i ∈ Rg σ, there is some n ∈ I such that σ(n) = i, with
n 6= i as σ(i) 6= i, so either n 6= j so that σ′(n) = σ(n) = i = σ′(i), or n = j
and σ′(k) = σ(k) = σ(j) = σ(n) = i = σ′(i)) and note that Edm(σ′) ⊆ Edm(σ)
(as σ(j) 6= j) and σ = [j/k][i/j]σ′ (using the fact that σ(j) = σ(k)). Finally,
if σ is one-one then—as it is not a permutation—there is some k ∈ I such that
k 6∈ Rg σ, and some unique j ∈ I such that σ(j) = i; since k 6∈ Rg σ, k 6= σ(i) and
k 6= i (as i ∈ Rg σ). Then we can set: σ′(i) = i, σ′(j) = k, and σ′(m) = σ(m) for
m 6= i, j (σ′ will not be a permutation since σ(i) 6∈ Rg σ′, as σ is one-one so that
σ(i) 6= σ(m) = σ′(m) for m 6= i, j, and σ(i) 6= i = σ′(i) and σ(i) 6= k = σ′(j))
and note that Edm(σ′) ⊆ Edm(σ) (as σ(j) 6= j since σ(j) = i and σ(i) 6= i) and
σ = σ′[i/σ(i)][k/i] (using the facts that k 6∈ Rg σ and σ(n) = i if and only if
n = j).

Corollary 1.2. Every element of NP(I) is a replacement or a product of
replacements.

P r o o f. For |I| < ω, Corollary 1.2 is proved as Theorem 1 in Howie [H].
Let |I| be infinite and σ ∈ NP(I). Let E = Edm(σ), and τ = σ � E. Then
τ ∈ NP(E) and |E| < ω. Hence, by [H, Thm. 1], τ = [i1/j1]◦ . . .◦ [in/jn] for some
i1, . . . , in, j1, . . . , jn ∈ E, with [i1/j1] understood in E. But the same remains true
if we interpret [i1/j1] in I and hence σ = [i1/j1]◦. . .◦[in/jn] in I as was desired.

Proposition 1.3. If σ is a (non-empty) product of replacements on I, then
there exist i, j ∈ I with i 6= j such that σ(i) = σ(j), and there exists some k ∈ I
such that k 6∈ Rg σ.

P r o o f. Obvious.

From the corollary and the proposition above we immediately obtain

Corollary 1.4. NP(I) is a semigroup under functional composition, and it
consists of just those finite transformations of I into itself which are r e p l a c e-
m e n t s on I or (non-empty) p r o d u c t s o f r e p l a c e m e n t s on I. Also,
NP(I) consists of just those finite transformations on I which are not one-one.
Finally , NP(I) consists of just those finite transformations σ on I for which
I 6= Rg σ.

In connection with the last corollary see [CP, Exercise 3 of §1.7, p. 23, p. 2].
In the following sections we will often use Corollary 1.2, Proposition 1.3, and

especially Corollary 1.4 without explicit mention. The main theorems are proved
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in §3; preliminary notions and results appear in §2. The reader’s attention is
particularly directed to the distinction made in §2 between so called peripheral
elements and core elements of NP(I). This distinction is somewhat like that
between the finite transformations of I into itself which are permutations and
those which belong to NP(I). In §2 we will show that there are two distinct
subsets of our defining relations (which will be in terms of generators that can
be interpreted as replacements on I), neither including the other set, such that
in deriving equalities between words corresponding to a peripheral element we
use one subset, and in deriving equalities between words corresponding to a core
element we use another subset.

2. Preliminary results. We will now consider various semigroups given by
a set of generators determined by I, and satisfying various sets of relations. For
a fixed choice of I the set of generators will be designated by F or H (in a more
general context, by F (I) or H(I)). The generators belonging to H consist of the
elements tij , for all i, j ∈ I with i 6= j, and the generators belonging to F consist
of these elements together with the elements qij , for all i, j ∈ I with i 6= j. In the
proofs below we will often rely tacitly on the fact that if tij belongs to H (or qij
belongs to F ) then i and j are distinct elements of I. Also, when u and v are
words on H (or on F ) and we write “u = v” we usually have some particular
set of relations in mind from which the equality u = v is derivable; we express
the fact that the words u and v are the same word on H (or on F ) by writing
u ≡ v. The following definition indicates the meaning which we usually assign to
the generators.

Definition 2.1. Suppose w is a word on the generators belonging to H or
F . Then the associated transformation for w, designated by ŵ (or by the form
(w)̂ when w is a complicated expression), is the identity transformation on I if
w is the empty word, and otherwise is defined recursively as v̂[i/j] if w ≡ vtij for
some word v, and as v̂[i, j] if w ≡ vqij for some word v. The length of w is 0 if w
is the empty word and is defined recursively as n+ 1 if for some word v of length
n (and some i, j ∈ I) w ≡ vtij or w ≡ vqij . (Thus, if w is the word ti1j1 . . . t

in
jn

on
H, w has length n and ŵ is the element [i1/j1] ◦ . . . ◦ [in/jn] of NP(I).) The
vocabulary of w, or Voc(w), is the subset of I consisting of all indices appearing
in w.

The relations we will now be concerned with involve words on H; these rela-
tions will include various instances of some of the following schemas, where the
assumption is made that all indices appearing in a schema are distinct from each
other, and it is assumed that—subject to this condition—the indices can be ar-
bitrary elements of I. (Note that, if |I| is less than 4, schemas—as for instance
(QUAD)—will be considered to hold “vacuously” when |I| is too small for the
required distinct indices to exist.)
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The schemas are as follows:

(B1) tijt
i
j = tij , (B6) tijt

m
n t

i
j = tmn t

i
j ,

(B2) tijt
i
k = tij , (EXC) tijt

k
j = tkj t

i
j ,

(B3) tijt
j
i = tji , (DEXC) tijt

m
n = tmn t

i
j ,

(B4) tijt
j
k = tikt

j
k , (TRI) tki t

j
kt
i
j = tikt

j
i t
k
j t
i
k ,

(B5) tijt
k
j t
i
j = tkj t

i
j , (QUAD) tni t

k
nt
j
kt
i
j = tint

j
i t
n
j t
k
nt
i
k .

We will letΣ (or, more generally, Σ(I)) be the set of all the relations appearing
in the schemas above. By the superficial relations we mean the set Σ1 of all the
relations appearing in the schemas (B1), (B2), and (B3); by the core relations we
mean the set Σ2 of all the relations appearing in the schemas (B1)–(B6), (EXC),
and (DEXC); and finally, by the peripheral relations we mean the set Σ3 of all
the relations appearing in the schemas (TRI) and (QUAD), together with the
relations appearing in the schemas (B1), (B2), and (B3).

By examining the relations belonging to Σ it is apparent that, if u = v is such
a relation, then û = v̂; thus Proposition 2.2 below holds (this proposition will
sometimes be used without explicit mention):

Proposition 2.2. If u and v are non-empty words on H such that u = v
is derivable from Σ then û = v̂. In other words, the function hat : (H∗/Σ) →
NP(I), with hat(u/Σ) = û for all u ∈ H∗, is a homomorphism (where H∗/Σ is
the semigroup presented by Σ and generated by H).

Proposition 2.3. Suppose w and w′ are words on H, and i and j are distinct
elements of I. Then ŵ(i) = ŵ(j) if w ≡ tijw′, and i 6∈ Rg ŵ if w ≡ w′tij.

P r o o f. Immediate by the definitions.

The next proposition is merely inserted for convenient future reference, but
the definitions and theorems following it concern the basic notions that will be
involved in the proofs appearing in §3.

Proposition 2.4. Suppose i and j are distinct elements of I and u is a word
on H. Then:

(i) If i ∈ Rg û then Rg(utij)̂ = {j} ∪ (Rg û ∼ {i}), and if i 6∈ Rg û then
Rg(utij)̂ = Rg û.

(ii) If i 6∈ Voc(u) then û(i) = i and û(j) 6= i.

P r o o f. Obvious.

Definition 2.5. A block is a word on H of length 2 which is tab t
c
d for some

a 6= c, d.

Definition 2.6. A non-empty word on H will be called a core word if there
is a (contiguous) subword which is a block; otherwise such a non-empty word will
be called a peripheral word.
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Definition 2.7. If σ is an element of NP(I) (so that Rg σ 6= I) then we will
say that σ is a peripheral element just when |I ∼ Rg σ| = 1, and a core element
just when |I ∼ Rg σ| > 1.

Definition 2.8. If σ is a transformation of I into itself we will say that i ∈ I
is isolated under σ just in case σ(i) 6= σ(j) for all j ∈ I such that i 6= j.

Theorem 2.9. If w is a non-empty word on H then the following conditions
are equivalent :

(1) There are at most 2 elements of I which are not isolated under ŵ.
(2) ŵ is a peripheral element.
(3) w is a peripheral word.

P r o o f. First of all, (1) yields (2). For if σ = ŵ is a core element of NP(I)
then by Definition 2.7 there exist m,n∈ I with m 6= n such that m 6∈ Rg σ and
n 6∈ Rg σ. By Proposition 1.3 there is some i ∈ I which is not isolated under
σ. We can set: σ′(i) = m, σ′(x) = σ(x) for x 6= i (where x ∈ I); σ′ belongs
to NP(I) as n 6∈ Rg σ′ (since n 6= m and n 6∈ Rg σ), and i is isolated under
σ′ (as if σ′(x) = m for x 6= i, then σ(x) = σ′(x) = m, which is impossible
as m 6∈ Rg σ). By Proposition 1.3 there exist j, k ∈ I such that j 6= k and
σ′(j) = σ′(k), so that j and k are not isolated under σ′ and thus i 6= j, k. But
then σ(j) = σ′(j) = σ′(k) = σ(k), so that j and k are not isolated under σ either,
and thus i, j, and k are 3 distinct elements of I which are not isolated under σ.

Next, (2) yields (3). For if w is a core word then w is (by Definitions 2.5 and
2.6) utab t

c
dv for some (possibly empty) words u and v on H and some a, b, c, d ∈ I

such that tab t
c
d is a block, and thus a 6= c, d. By Proposition 2.3, c 6∈ Rg t̂, where t

is the word utab t
c
d, and a 6∈ Rg(utab ) so that a 6∈ Rg t̂ by Proposition 2.4(i) (since

a 6= d); we conclude, as a 6= c, that t̂ is a core element. As from Proposition
2.4(i) it follows that, for m,n ∈ I with m 6= n, and every word s on H, |I ∼
Rg(stmn )̂| ≥ |I ∼ Rg ŝ |, we must have (as w ≡ tv) |I ∼ Rg ŵ| ≥ |I ∼ Rg t̂ | ≥ 2,
so that ŵ is also a core element.

Finally, (3) yields (1). For (1) holds if w has length 1, as (for i, j∈I with i 6=j)
i and j are the only elements of I not isolated under [i/j]. Proceeding by induction,
if w has length greater than 1, then w ≡ utab t

c
d for some word u on H and some

a, b, c, d ∈ I with a 6= b and c 6= d, and with a ∈ {c, d} as w is a peripheral word
(so that tab t

c
d is not a block). By the inductive hypothesis, it is enough to show,

for all m,n ∈ I with m 6= n, that if ŵ(m) = ŵ(n) then (utab )̂(m) = (utab )̂(n).
But, if ŵ(m) = ŵ(n) then [c/d]((utab )̂(m)) = ŵ(m) = ŵ(n) = [c/d]((utab )̂(n)),
so that either (utab )̂(m) = (utab )̂(n) or else {c, d} = {(utab )̂(m), (utab )̂(n)},
which is impossible (as a 6∈ Rg(utab )̂ by Proposition 2.3, so that a 6∈ {c, d} would
follow).

Theorem 2.10. For every word w on H , if i ∈ I but i 6∈ Rg ŵ, and j ∈ I is
such that i 6= j, then wtij = w is derivable from (B1), (B2) and (EXC).
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P r o o f. We proceed by induction on the length of w. Suppose the theorem is
true for all shorter words, and i and j are distinct elements of I with i 6∈ Rgw.
Then w is not the empty word, so that w ≡ vtmn for some word v on H and
some distinct m,n ∈ I. If m = i then wtij = w is derivable using (B1) or (B2).
If n = i then, as i 6∈ Rgw, both m 6∈ Rg v and i 6∈ Rg v follow by Proposition
2.4(i); hence w ≡ vtmn = v = vtij = vtmn t

i
j ≡ wtij is derivable using the induction

hypothesis. If i 6= m,n then, since we can derive tint
m
n t

i
j = tint

m
n using (EXC),

then (B1) or (B2), and then (EXC) again, we can use the induction hypothesis to
derive wtij ≡ vtmn t

i
j = vtint

m
n t

i
j = vtint

m
n = vtmn ≡ w (as i 6∈ Rgw and Proposition

2.4(i) again yields i 6∈ Rg v). So, in all cases, the theorem is also true for w, and
thus is true in general, by induction.

Theorem 2.11. For every word w on H , if i and j are distinct elements
of I such that ŵ(i) = ŵ(j), then tijw = w is derivable from (B1)+((B3)–(B6)).

P r o o f. This follows by induction on the length of w: suppose w is a word on
H and i, j ∈ I are distinct, with ŵ(i) = ŵ(j), and the theorem is true for all words
on H which are shorter than w. As ŵ(i) = ŵ(j), w is not the empty word, so that
w ≡ tmn v for some word v on H and some distinct m,n ∈ I. If {i, j} = {m,n}
then tijw = w is derivable from (B1) or (B3). If m = i but n 6∈ {i, j} then
v̂(n) = v̂([i/n](i)) = ŵ(i) = ŵ(j) = v̂([i/n](j)) = v̂(j) so that v = tnj v is derivable
(by the induction hypothesis), and as we can derive tijt

i
nt
n
j = tint

n
j (using (B4),

then (B1), and then (B4) again) it follows that we can derive tijw ≡ tijt
i
nv =

tijt
i
nt
n
j v = tint

n
j v = tinv ≡ w. Similarly, if m = j but n 6∈ {i, j} then tjiw = w is

derivable, from which we can derive tijw = tijt
j
iw = tjiw = w using (B3). And

finally, if m 6∈ {i, j} then v̂(i) = v̂([m/n](i)) = ŵ(i) = ŵ(j) = v̂([m/n](j)) = v̂(j)
so that v = tijv is derivable (by the induction hypothesis), and as we can derive
tijt

m
i t

i
j = tmi t

i
j (using (B4), then (B5), and then (B4) again) it follows that we

can derive tijw ≡ tijtmn v = tijt
m
n t

i
jv = tmn t

i
jv (using, if n = i, tijt

m
i t

i
j = tmi t

i
j , (B5) if

n = j, and (B6) if n 6= i, j) = tmn v ≡ w. So (in all cases) the theorem holds for
w, and thus in general, by induction.

3. Main results. It is not difficult, in regard to Lemma 3.2(i) below, to
convince oneself that the lemma must be true for the associated transformations
in NP(I) when the non-empty word w and i ∈ I are such that either w is a core
element or i is isolated under ŵ; the condition that w is not i-initial is enough
(see Definition 3.1), because of Proposition 2.3 and Theorem 2.9, to ensure that
this is so. Thus, if Σ were taken to be all the relations holding in NP(I), part
(i) of the lemma would hold. But what is really significant is the first part of the
proof of the lemma, where it is shown that the lemma holds in general if it holds
for all words w of length less than or equal to 4; this means that only a finite
subset of the relation schemes holding in NP(I) need actually be required, so we
can look at Σ as the result of choosing among the relations valid in NP(I) so as
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to make this proof work, and regard (TRI) and (QUAD) as the most surprising
of the relations that we need.

Definition 3.1. Suppose w is a word on H and i ∈ I. Then w is i-initial
just in case there are c, d ∈ I and a word w′ on H such that w is tcdw

′ (so that
c 6= d) and either i = c or i = d.

Lemma 3.2 (Standard form lemma). (i) Suppose w is a non-empty word on
H , and i ∈ I is such that w is not i-initial. Then there is some non-empty word u
on H such that i 6∈ Voc(u), and some word v on H which has length less than 2, or
is tiat

b
i for some a, b ∈ I with i , a, and b distinct , such that w = uv is derivable

from Σ and Voc(uv) ⊆ Voc(w). Furthermore, v can be chosen so that if ŵ(i) = i
then v is either the empty word or is tbi for some b 6= i, and if ŵ(i) = a 6= i then
either v is tia and i 6∈ Rgw, or v is tiat

b
i for some b ∈ I with b 6= i, a.

(ii) If w is a word on H , i ∈ I is such that i 6∈ Rg ŵ, and w is either a core word
or not i-initial , then there is some word w′ on H such that Voc(w′) ⊆ Voc(w),
i 6∈ Voc(w′), and w = w′tij is derivable from Σ, where j = ŵ(i). Furthermore,
w′ can be chosen non-empty.

P r o o f. (i) First of all, the last sentence follows from the rest. For if u and v
are as in the lemma, ŵ = (uv)̂ by Proposition 2.2, and so by (ii) of Proposition
2.4, ŵ(i) = v̂(û(i)) = v̂(i). Hence, if v is tia for some a 6= i then i 6∈ Rg ŵ, by
Proposition 2.3, and ŵ(i) = v̂(i) = [i/a](i) = a 6= i, and similarly if v is tiat

b
i

for some a, b ∈ I with i, a, and b distinct then ŵ(i) = v̂(i) = [b/i]([i/a](i)) =
[b/i](a) = a 6= i; otherwise ŵ(i) = v̂(i) = i since either i 6∈ Voc(v) (when v is the
empty word or is tmn for some distinct m,n ∈ I with i 6= m,n) or v is tbi for some
b 6= i, so that v̂(i) = [b/i](i) = i. Note that the case where v is tmn and i 6= m,n
can be disregarded, as we can then re-define u as utmn and v as the empty word.

Assuming that i is a fixed element of I, we will prove (i) by induction on
the length of w. We observe that it is actually sufficient to prove the lemma for
words of lengths 3 and 4 (if w has length less than 3 we can take u to be the
word of length 1 such that w ≡ uv for some word v)—more particulary, for words
which are, for some a, b, c, d, e, f ∈ I with i 6= c, d and c 6= d, a 6= b, and e 6= f ,
either tcdt

b
at
e
f (these are just the words of length 3 which are not i-initial) or (with

i 6= a, b also) tcdt
i
at
b
i t
e
f . For if w is not i-initial and has length greater than or

equal to 4 it is (for some e, f ∈ I with e 6= f) w′tef for some word w′, also not
i-initial, of length greater than or equal to 3, so that by the inductive hypothesis
w′ = u′v′ is derivable from Σ, and thus w = u′v′tef also, for some words u′ and v′

such that Voc(u′v′) ⊆ Voc(w′) ⊆ Voc(w), i 6∈ Voc(u′), u′ is non-empty—so that
u′ ≡ u1t

c
d for some word u1 on H and some c, d∈ I with c 6= d and i 6= c, d—and

v′ is either the empty word (when we can take u to be u′v′ and v to be tef )
or is, for some a 6= b, either tba or (with i 6= a, b also) tiat

b
i . In these last two

cases, taking w∗ to be tcdt
b
at
e
f or tcdt

i
at
b
i t
e
f respectively, the existence of u∗ and v∗

such that w = u∗v∗ is derivable from Σ (and so w∗ = u′v′tef ≡ u1w
∗ = u1u

∗v∗ is
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derivable), Voc(u∗v∗) ⊆ Voc(w∗) ⊆ Voc(u′v′) ⊆ {e, f}∪Voc(w), u∗ is non-empty,
and i 6∈ Voc(u∗), while v∗ either has length less than or equal to 1 or is tixt

y
i for

some distinct x, y ∈ I with i 6= x, y, allows us to take u to be u1u
∗ and v to be

v∗ (since Voc(u1) ⊆ Voc(u′) ⊆ Voc(w), and i 6∈ Voc(u1) as i 6∈ Voc(u′)) and so
satisfy (i) of the lemma.

So we have a limited number of cases to deal with. (And these would be cut in
half if we required w in (i) of this lemma to be a peripheral word; then (ii) of this
lemma would have to be proved directly for the case where w is a core word—one
such proof uses Theorem 2.9 and Theorems 2.10 and 2.11.) The important ones
are those in which tcd plays a role; in the routine cases we will omit the specification
of u, and of v also, except when it is of length 2.

For tcdt
b
at
e
f , where i 6= c, d and c 6= d, a 6= b, and e 6= f , we note that if i 6= a, b

in addition then we can put u∗ ≡ tcdt
b
a and v∗ ≡ tef . So in the following cases we

will assume that either a = i or b = i.

C a s e (1): b = e. Then tbat
e
f = tba follows from (B1) or (B2).

C a s e (2): b 6= e, and i 6= e, f . Then tbat
e
f = tef t

b
[e/f ](a) using (DEXC), or

(EXC) and possibly (B4).

C a s e (3): b 6= e, f and i 6= e, or i = f . Then (as i = a or i = b) a = i so
tbat

e
f = tb[e,f ](a)t

e
f using (B4).

C a s e (4): b 6= e, b = f , a = e. Then tbat
e
f = tef follows from (B3).

C a s e (5): b 6=e, b=f , a 6=e, b= i. Then we can put v∗ ≡ tiatei as tbat
e
f ≡ tiatei .

Special Case (I): b 6= e, b = f , a 6= e, a = i. Then, if b = c, we have
tcdt

b
at
e
f = tcdt

e
f (using (B2)) and we can put u∗ ≡ tcd, v

∗ ≡ tef ; if b 6= c then
tcdt

b
at
e
f ≡ tcdtbi teb = tcdt

c
i t
b
i t
e
b (using (B2)) = tcdt

b
i t
c
i t
e
b (using (EXC)) = tcdt

b
ct
c
i t
e
b (using

(B4)), and if c = e then tcdt
b
ct
c
i t
e
b = tcdt

b
ct
c
i (using (B2)) so we can put u∗ ≡ tcdt

b
c

and v∗ ≡ tci , while if c 6= e then tcdt
b
ct
c
i t
e
b = tcdt

b
ct
e
bt
c
i using (DEXC), and we can put

u∗ ≡ tcdtbcteb and v∗ ≡ tci .
For tcdt

i
at
b
i t
e
b, where i 6= c, d and c 6= d, a 6= b, e 6= f , and i 6= a, b, we have

these cases:

C a s e (6): b = e. Then tiat
b
i t
e
f = tiat

b
i follows from (B1) or (B2); put v∗ ≡ tiatbi .

C a s e (7): b 6= e, f and i 6= e, f . Then tiat
b
i t
e
f = tiat

e
f t
b
i (using (DEXC)) =

tef t
i
[e/f ](a)t

b
i (using (DEXC), or (EXC) and possibly (B4)); put v∗ ≡ ti[e/f ](a)t

b
i

(b 6= [e/f ](a) since b 6= a and b 6= f).

C a s e (8): b 6= e, f and i = e or i = f . Then [e, f ](i) 6= i (as e 6= f , and either
i = e or i = f), so tiat

b
i t
e
f = tiat

b
[e,f ](i)t

e
f (using (B4)) = tb[e,f ](i)t

i
at
e
f (using (DEXC)

or (EXC)), and if e = i then tb[e,f ](i)t
i
at
e
f = tb[e,f ](i)t

i
a (using (B1) or (B2)), while

if f = i and a 6= e then tb[e,f ](i)t
i
at
e
f ≡ tb[e,f ](i)t

i
at
e
i and we can put v∗ ≡ tiat

e
i , and

finally if f = i and a = e then, using (B3), tb[e,f ](i)t
i
at
e
f = tbet

e
i .
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C a s e (9): b 6= e, b = f , and e = i. Then tiat
b
i t
e
f ≡ tiat

b
i t
i
b = tiat

i
b (using (B3))

= tia (using (B2)).
Special Case (II): b 6= e, b = f , e 6= i, and c = b. Then tcdt

i
at
b
i t
e
f = tbdt

i
at
b
i t
e
b =

tiat
b
dt
b
i t
e
b (using (EXC) or (DEXC)) = tiat

b
dt
e
b (using (B2)) = tbdt

i
at
e
b (using (EXC)

or (DEXC)) = tbdt
e
bt
i
[e/b](a) (using (DEXC), or (EXC) and possibly (B4)), and we

put v = ti[e/b](a) and u = tbdt
e
b.

Special Case (III): b 6= e, b = f , e 6= i, and c 6= a, b. Then, using (B1) or
(B2), (DEXC), (B4), and (EXC), tcdt

i
at
b
i t
e
f = tcdt

i
at
b
i t
e
b = tcdt

c
bt
i
at
b
i t
e
b = tcdt

i
at
c
bt
b
i t
e
b =

tcdt
i
at
c
i t
b
i t
e
b = tcdt

i
at
b
i t
c
i t
e
b = tcdt

i
at
b
ct
c
i t
e
b ((B4) again) = tcdt

b
ct
i
at
c
i t
e
b (using (DEXC)

again). If e = c then tcdt
b
ct
i
at
c
i t
e
b = tcdt

b
ct
i
at
c
i using (B2), and we put u∗ ≡ tcdt

b
c

and v∗ ≡ tiat
c
i (as c 6= a). If e 6= c then tcdt

b
ct
i
at
c
i t
e
b = tcdt

b
ct
i
at
e
bt
c
i (using (DEXC))

= tcdt
b
ct
e
bt
i
[e/b](a)t

c
i (using (DEXC), or (EXC) and possibly (B4)), so that since

c 6= [e/b](a) (because c 6= a, b) we can put u∗ ≡ tcdtbcteb and v∗ ≡ ti[e/b](a)t
c
i .

Special Case (IV): b 6= e, b = f , e 6= i, c = a, and a = e. Then tcdt
i
at
b
i t
e
f ≡

tadt
i
at
b
i t
a
b = tadt

a
i t
b
at
i
bt
a
i (using (TRI)) = tadt

b
at
i
bt
a
i (using (B2)), and we can put

u∗ ≡ tab tba and v∗ ≡ tibtai . This case uses (TRI).
Special Case (V): b 6= e, b = f , e 6= i, c = a, and a 6= e. Then tcdt

i
at
b
i t
e
f ≡

tadt
i
at
b
i t
e
b = tadt

a
et
i
at
b
i t
e
b (using (B1) or (B2)) = tadt

e
at
b
et
a
b t
i
at
e
i (using (QUAD)), and we

can put u∗ ≡ tadteatbetab and v∗ ≡ tiatei . This case uses (QUAD).

P r o o f o f (ii). Suppose first that w is a word on H, i ∈ I is such that
i 6∈ Rg ŵ, and w is not i-initial. Then, by (i) of this lemma, there are words u and
v such that w = uv is derivable from Σ, Voc(uv) ⊆ Voc(w), u is a non-empty
word, i 6∈ Voc(u), and, with a = ŵ(i) 6= i (for ŵ(i) 6= i as i 6∈ Rg ŵ), v is either
tia or (for some b ∈ I with b 6= a) tiat

b
i . But, if v is tiat

b
i , so that w = utiat

b
i is

derivable from Σ, b 6∈ Rg(utia)̂ (as otherwise i ∈ Rg ŵ, by Proposition 2.4(i))
and thus w = utiat

b
i = utia is derivable from Σ by Theorem 2.10. So, as Voc(u) ⊆

Voc(uv) ⊆ Voc(w) and i 6∈ Voc(u), we can take w′ to be u in either case. Note:
w′ is non-empty.

Now suppose that w is a core word, so that (by Theorem 2.9) there are at
least 3 elements of I which are not isolated under ŵ, and thus there are m,n ∈ I
such that m 6= n, i 6= m,n, and ŵ(m) = ŵ(n) (either ŵ(k) = ŵ(i) for every
k ∈ I which is not isolated, and so ŵ(m) = ŵ(i) = ŵ(n) for any m,n ∈ I which
are not isolated under ŵ, or there will be some m ∈ I which is not isolated such
that ŵ(m) 6= ŵ(i), and some n ∈ I such that m 6= n but ŵ(m) = ŵ(n), so that
n is also distinct from i and not isolated). So w = tmn w is derivable from Σ by
Theorem 2.11, and thus (tmn w)̂ = ŵ (by Proposititon 2.2). And then, as we
proved above, since tmn w is not i-initial and i 6∈ Rg ŵ = Rg(tmn w)̂, tmn w = w′tij is
derivable from Σ, where j = (tmn w)̂(i) = ŵ(i), for some word w′ on H such that
i 6∈ Voc(w′) and Voc(w′) ⊆ Voc(tmn w) ⊆ Voc(w) (in view of Proposition 2.4(ii),
m,n ∈ Voc(w) as m 6= n and ŵ(m) = ŵ(n)). Thus w = tmn w = w′tij is derivable
from Σ, and w′ is as required. (And w′, chosen as above, is a non-empty word.)
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Theorem 3.3 (Main semigroup-theoretic result). For all non-empty words s
and t on H , ŝ = t̂ if and only if s = t is derivable from the set of relations Σ.

P r o o f. The “if” part follows from Proposition 2.2 (which will be used repeat-
edly below, without further mention). For the “only if” part we will assume that
ŝ = t̂ and proceed by induction on |Voc(s)|+ |Voc(t)|. As s and t are non-empty
words on H, |Voc(s)| ≥ 2 and |Voc(t)| ≥ 2. So, if |Voc(s)| + |Voc(t)| ≤ 4 we
have |Voc(s)| = 2 = |Voc(t)|, and by using (B1) and (B3) repeatedly we can
derive s = tab and t = tcd for some a, b, c, d ∈ I. As ŝ = t̂, [a/b] = [c/d], so that
a = c and b = d, and thus s = t is derivable from Σ. Now let us assume that
|Voc(s)| + |Voc(t)| ≥ 5, and that for all non-empty words s′ and t′ on H such
that |Voc(s′)| + |Voc(t′)| < |Voc(s)| + |Voc(t)| and ŝ ′ = t̂ ′ we can derive s′ = t′

from Σ.

C a s e 1: Either s is a core word, or there is some i ∈ I with i 6∈ Rg ŝ and
neither s nor t is i-initial. In view of Proposition 1.3 there is some i ∈ I with i 6∈
Rg ŝ = Rg t such that, applying Lemma 3.2(ii), we can obtain words s′ and t′ on
H for which s = s′tij and t = t′tij are derivable from Σ, where j = ŝ(i) = t̂(i), and
such that Voc(s′) ⊆ Voc(s), Voc(t′) ⊆ Voc(t), i 6∈ Voc(s′), and i 6∈ Voc(t′). Then
|Voc(s′)| + |Voc(t′)| < |Voc(s)| + |Voc(t)| as i ∈ Voc(s) because of Proposition
2.4(ii) (since i 6∈ Rg ŝ), and ŝ ′ = t̂ ′ (as for all k ∈ I, if ŝ ′(k) 6= i and t̂ ′(k) 6= i
then ŝ ′(k) = [i/j](ŝ ′(k)) = ŝ(k) = t̂(k) = [i/j](t′(k)) = t′(k), but ŝ ′(k) = i if and
only if k = i, and t̂ ′(k) = i if and only if k = i, by Proposition 2.4(ii)) so with s′

and t′ chosen non-empty (as Lemma 3.2(ii) allows) s′ = t′ is derivable from Σ by
the induction hypothesis, and thus s = s′tij = t′tij = t is derivable from Σ.

C a s e 2: For every i ∈ I such that neither s nor t is i-initial, i ∈ Rg ŝ,
and s is a peripheral word. It follows, by Theorem 2.9, that ŝ is a peripheral
element of NP(I) and that there are at most 2 elements of I which are not
isolated under ŝ. As s and t are non-empty words on H, s ≡ tcds1 and t ≡ tef t1
for some words s1 and t1 on H and some c, d, e, f ∈ I with c 6= d and e 6= f .
Note that ŝ(c) = ŝ(d) and similarly ŝ(e) = t̂(e) = t̂(f) = ŝ(f), using Proposition
2.3, so that {c, d} = {e, f} as ŝ has at most 2 elements that are not isolated
under it. If |Voc(s)| + |Voc(t)| ≤ 4, then s = t is derivable from Σ, as we saw
above. Otherwise either |Voc(s)| > 2 or |Voc(t)| > 2, and thus there is some
k 6∈ {c, d} = {e, f} (so that k is isolated under ŝ) such that either k ∈ Voc(s)
or k ∈ Voc(t). As neither s nor t is k-initial, it follows by the hypothesis of this
case that k ∈ Rg ŝ. By Lemma 3.2(i) there exist words s′ and s∗ on H such
that s′ is non-empty, k 6∈ Voc(s′) (so that ŝ ′(k) = k by Proposition 2.4(ii)),
Voc(s′s∗) ⊆ Voc(s), and s = s′s∗ is derivable from Σ. Furthermore, if ŝ(k) = k
then s = s′ is derivable from Σ (this is immediate if s∗ is the empty word; if
s∗ is tbk with b 6= k then b 6∈ Rg ŝ ′—as if m ∈ I is such that ŝ ′(m) = b then
ŝ(m) = [b/k](ŝ ′(m)) = [b/k](b) = k = ŝ(k) so m = k, as k is isolated under ŝ,
and thus b = ŝ ′(m) = ŝ ′(k) = k—and then s = s′tbk = s′ is derivable from Σ by
Theorem 2.10) and if ŝ(k) = a 6= k then s = s′tkat

b
k is derivable, where b is the
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unique element of I such that b 6∈ Rg ŝ (here s∗ cannot be tka, as k ∈ Rg ŝ, so
s∗ is tkat

b
k with b 6∈ Rg ŝ by Proposition 2.3, and then we note that b is uniquely

determined as ŝ is a peripheral element). Similarly, there is a non-empty word t′

on H such that k 6∈ Voc(t′) and Voc(t′) ⊆ Voc(t), and if t̂(k) = k then t = t′

is derivable from Σ and so, as ŝ(k) = k (since ŝ = t̂ ), ŝ ′ = ŝ = t̂ = t̂ ′, while
if t̂(k) = a 6= k (and so ŝ(k) = a 6= k) then t = t′tkat

b
k is derivable, where b is

the unique element of I such that b 6∈ Rg ŝ = Rg t̂, and so ŝ ′ = t̂ ′ here also.
(For by Proposition 2.4(ii), ŝ ′(k) = k = t̂ ′(k), and for n ∈ I with n 6= k both
ŝ ′(n) 6= ŝ ′(k) and t̂ ′(n) 6= t̂ ′(k) so that [b/k](ŝ ′(n)) = [b/k]([k/a](ŝ ′(n))) =
ŝ(k) = t̂(k) = [b/k]([k/a](t̂ ′(n))) = [b/k](t̂ ′(n)), and thus ŝ ′(n) = t̂ ′(n) for n 6=
k, as {ŝ ′(n), t̂ ′(n)} = {b, k} is impossible.) Thus s′ = t′ is derivable from Σ
by the induction hypothesis, for |Voc(s′)| + |Voc(t′)| < |Voc(s)| + |Voc(t)| as
either k ∈ Voc(s) or k ∈ Voc(t); so finally, if ŝ(k) = k then s = s′ = t′ = t
is derivable from Σ, and if ŝ(k) 6= k then s = s′tkat

b
k = t′tkat

b
k = t is derivable

from Σ.

The theorem just proved can be used as a more efficient substitute for the
use of Jónsson’s theorem in the theory of cylindric algebras. Namely, the proof of
Theorem 3.2.53 in [HMT II], the representation theorem for cylindric algebras of
positive characteristic, can be modified to use the (fairly easily proved) fact that in
all cylindric algebras of positive characteristic the analogs of (TRI) and (QUAD)
hold (the rest of the schemas in Σ hold in arbitrary cylindric algebras); this avoids
the 9 pages required to show that the analogs of transpositions can be defined
(in a rather complicated way) and demonstrated to have the properties required
by Jónsson’s theorem. Another use of our Theorem 3.3 is to obtain Lemma 1 in
[AT] as an immediate corollary, avoiding Andréka’s lengthy argument required to
adapt Jónsson’s theorem, in Andréka’s proof of the Resek–Thompson geometric
representation theorem for cylindric algebras (cf. also [A]). So, our theorem can be
used to improve Andréka’s short proof (in [A] and [AT]) of the Resek–Thompson
theorem.

Other kinds of applications to algebraic logic can be obtained as follows. Let
us define tij in cylindric algebras by letting tij(x) = dij · cix. Then (B1)–(DEXC)
hold in arbitrary cylindric algebras (CA’s). Hence the consequences of (B1)–
(DEXC) exhibited herein are all valid in CA’s. Actually, they can be used to
characterize those equations involving only the sij ’s (or equivalently, the tij ’s) as
basic operations that hold in all CA’s. E.g. a transparent decision algorithm for
these equations follows from the results in this paper. We turn to formulating this
result. This formulation is intended to be self-contained only for those readers who
are somewhat familiar with the basic concepts of CA theory.

Let α be an ordinal. If w is a word over H(α) then w(x) is a CAα-term, since
tij(x) was defined above as a CAα-term.

Corollary 3.4. Let w, u be words over H(α). Then CAα � w(x) = u(x) iff
(i) or (ii) below holds.
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(i) ŵ is a core element and ŵ = û.
(ii) Using o n l y (B1)–(B3), we can “reduce” w to w′ and u to u′ with

w′ ≡ u′.

P r o o f. The proof uses the definition tij(x) = dij · cix of the tij ’s and re-
lated considerations immediately preceding the statement of the present corol-
lary. Further, CAα � ((B1)–(DEXC)) is proved in [HMT, 1.5], while for CAα 2
[(TRI) or (QUAD)] see [HMT II, 3.2.71 and 3.2.88(2),(3), p. 101]. (TRI) and
(QUAD) are called the merry-go-round identities, cf. e.g. [HMT II, 3.2.88]. The
results we quote from [HMT], [HMT II] are stated there in terms of the sij ’s
instead of the tij ’s, but, as Lemma 3.5 below says, these are equivalent (from
the point of view of validity of equations). Recall that below Definition 2.1 we
called (B1)–(DEXC) the core relations (and ((B1)–(B3))+(TRI)+(QUAD) the
peripheral relations). The reason for this was that in the semigroup-theoretic
part of this paper (ending with Theorem 3.3) we proved that if ŵ is a core el-
ement and ŵ = û then ((B1)–(DEXC)) ` w = u. Hence CAα � w(x) = u(x)
in this case, too. On the other hand, if ŵ is not a core element and ŵ = û
then [((B1)–(DEXC)) ` w = u iff ((B1)–(B3)) ` w = u], i.e., of the core rela-
tions only (B1)–(B3) are useful in proving peripheral (i.e., non-core) equalities.
This was again established in the semigroup-theoretic part of the present paper.
Putting all these together yields Corollary 3.4.

Note that in (ii), w′ is a subword of w. Moreover, one can regard (B1)–(B3) as
rather simple postulates saying that certain letters in a word are “superfluous”.
So (ii) says that dropping the superfluous letters from both sides, we obtain the
same word on both sides. In other words, (B1)–(B3) define a normal form. And
then part of Corollary 3.4 says that an equation between peripheral words is true
in CAα only if their normal forms coincide. Note that replacing the tij ’s with sij ’s
in Corollary 3.4 makes no other change than reversing the order of the letters (in
the words w and u). This way one can obtain a theorem saying

CAα � si1j1 . . . s
in
jn

(x) = sk1m1
. . . skr

mr
(x)

iff the (naturally) corresponding version of (i) and (ii) holds. The proof of Corol-
lary 3.4 is straightforward, using the results in this paper and in [HMT, §1.5
(pp. 189–198)].

To make Corollary 3.4 directly applicable to sij ’s, we state the following simple
lemma.

Lemma 3.5. CAα � si1j1 . . . s
in
jn

(x) = sk1m1
. . . skr

mr
(x) if and only if

CAα � tinjn . . . t
i1
j1

(x) = tkr
mr

. . . tk1m1
(x).

P r o o f. We will prove more. Let A = 〈A, . . . , sij , tij〉i,j∈α be a Boolean algebra
with operators (BAO for short) in the Jónsson–Tarski sense (cf. e.g. [HMT], or
[ANS], or [ST]). Assume that sij and tij are conjugates in the standard BAO sense,
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i.e. A � tijs
i
jx ≤ x ≤ sijt

i
jx, for all i, j ∈ α. (These conditions are always true for

tij and sij in CAα’s.)
Let s = si1j1 . . . s

in
jn

, s1 = sk1m1
. . . skr

mr
, and t = tinjn . . . ti1j1 , t1 = tkr

mr
. . . tk1m1

.
Then

Claim 3.5.1. A � s(x) = s1(x) iff A � t(x) = t1(x).

We prove direction “⇒” assume A � s(x) = s1(x). Then A � t(s(x)) =
t(s1(x)). Substituting t1(x) for x, we obtain t1(x) ≥ (ts)t1(x) = tst1(x) =
ts1t1(x) = t(s1t1(x)) ≥ t(x) by conjugacy (i.e. y ≥ ts(y) and s1t1(x) ≥ x) and
monotonicity of the operators sij , t

i
j . By symmetry (i.e. by applying t1 to both

sides first and then substituting t(x) for x) we proved A � t1(x) = t(x).
Direction “⇐” is completely analogous. (We apply s to both sides first, and

then substitute s1(x) for x, etc.)

Theorem 3.6 (Main cylindric-algebraic result). Consider NP(α). Assume that
[i1/j1] ◦ . . . ◦ [in/jn] = [k1/m1] ◦ . . . ◦ [kr/mr] = f ∈ αα are such that |α ∼ Rg(f)|
≥ 2. Then, CAα � si1j1 . . . s

in
jn

(x) = sk1m1
. . . skr

mr
(x).

P r o o f. Assume f is as above. Let w= tinjn . . . t
i1
j1

and u= tkr
mr

. . . tk1m1
. Since (i)

of Corollary 3.4 is satisfied by w and u, Corollary 3.4 yields CAα � tinjn . . . t
i1
j1

(x) =
tkr
mr

. . . tk1m1
(x). Then, by Lemma 3.5, CAα � si1j1 . . . s

in
jn

(x) = sk1m1
. . . skr

mr
(x) as was

desired.

The paper [Sh], together with the ones quoted in [Sh], contain investigations
related to the ones in the present paper. The results, however, do not overlap
with those in the present paper, and therefore we refrain from going into more
specific discussion of the connections with [Sh].

Acknowledgements. Thanks are due to H. Andréka, I. Németi, and I. Sain
for extensive help in preparing this paper.
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