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Abstract. A “partial” generalization of Fine’s definition [Fin] of normal forms in normal
minimal modal logic is given. This means quick access to complete axiomatizations and decid-
ability proofs for partial modal logic [Thi].

Introduction. From the viewpoint of formal linguistics, cognitive science and
artificial intelligence, there appears to be a natural interest in the combinations of
partiality and modality [BaP] [Kam] [FaH]. Modal operators cover the uncertain
status of the informational content of propositional attitudes. Partiality is the
formal translation of the incomplete behavior of these attitudes. The sources of
uncertainty, multiple possible worlds (interpretations), do not have a two-valued
character such as in classical modal logic. We take these possible worlds to be
partial. They do not necessarily assign a Boolean truth value to all propositions.

In this paper we will define normal forms for partial modal logic, which is
induced by a “partial” generalization of Fine’s definition of normal forms in clas-
sical (total) modal logic [Fin]. It turns out that these normal forms for partial
modal logic are more difficult to handle in proving that all formulae are equivalent
to a disjunction of normal forms. This bad behavior can be explained by taking
normal forms to be full modal descriptions of worlds. In total possible world se-
mantics mutually coherent normal forms must be the same for this reason. In the
partial semantics this is not the case, and therefore the conjunction of two differ-
ent normal forms does not guarantee inconsistency. In partial propositional logic
it is guaranteed that two coherent normal forms produce a new unique normal
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form, but in the modal case this is certainly not true, as we will point out in the
paper. We can prove, however, that the conjunction of two normal forms has the
weaker disjunction property stated above, which turns out to suffice for proving
the disjunction property for the full language that we will use.

This disjunction property will give us the completeness and decidability result
for partial modal logic immediately, just as for normal modal logic in [Fin].

The following definition gives us the language, £, that we will use.

DEFINITION 1. L% is the smallest set such that

e P C £° where PP is a finite set of primitive propositions (P = {p,...,q});
o | €L7%
sepYveLf=—pel’ pANYpe L oyYeLl.

The members of L° are called formulae. The modal depth of a formula ¢, mep,
is determined by the following recursive definition: mp = m1l = 0, m—p = my,
me A1 = max{mep, My}, mop = me + 1. L), denotes {p € L” | mp < n}.

Partial possible worlds. Partial modal logic is the natural logic which arises
from “partializing” standard Kripke models for modal logic.

DEFINITION 2. Let F' = (W, R) be a Kripke frame, that is, W is a non-
empty set, and R is a binary relation on W (R C W x W). A partial Kripke
model M = (W, R, V) on F is the result of adding a partial valuation V' to the
worlds appearing in W. Formally, V : W x P ~ {0,1} (}). The truth/falsity
conditions are now fully determined by the following recursive composition. Let
weWw.

M,wEpiff V(w,p) =1forallpeP, M,w=piff V(w,p)=0 for all p € P,
M,w k1, M,w4 1L,

M,wE —p iff M,w = @, M, w4 - iff M,wE @,
MwEpAYiff MwE &M, wE1y, M,wa oAy iff M,w= @ or M,w4 1,
M,w Eogp iff Vo(R(w,v) = M,v E @), M,w=og iff Ju(R(w,v)&M,v = ¢).

Furthermore, ¢ is said to be a consequence of ¢, denoted by ¢ F 1, if every pair
M, w that supports ¢ (M, w E ¢) also supports 1.

Observation 1. The definition of consequence does not behave totally con-
trapositional. Note that p A =p = ¢ but =g ¥ —=(p A =p). The most important
shortage of partial logic is of course the omission of the law of the excluded
middle; the middle (undefined) is no longer excluded: M, w ¥ ¢ does not entail
M, w FE —p.

(1) ~ means that V is partial, that is, not defined for all the inputs on V (the pairs of
W x P).
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Axiomatizing partial Kripke models. In [Thi| it has been stated and
proved that the axiom-schema below, which is called MrL+ (2), is complete
and sound with respect to partial Kripke models. In this article the complete-
ness proof procedure follows the ordinary Henkin procedure. The “partializa-
tion” is induced by generalizing the notion of mazimal consistent sets to so-
called consistent saturated sets, which are sets of formulae that are deductively
closed, consistent and that obey the so-called disjunction property: if a disjunc-
tive formula is a member of this set, then the membership of at least one of
the disjuncts is guaranteed. We will follow Fine’s normal form method [Fin],
as was stated in the introduction. Both methods are still very close. A nor-
mal form can be interpreted as a unique representation of a consistent saturated
set.

The following definition pictures the system MrL+-.

DEFINITION 3. Let ¢ F 1 denote that v is derivable from ¢. By ¢ =1 we
abbreviate the relation of derivability in both directions. -, abbreviates I~ and its
contraposition: ¢ k¢, ¥ & ¢ =19 & - = —p. =, abbreviates the corresponding
equivalence relation.

Lk,
o,
T =9,
A Fep @,
eANYFp P,
e A2t AX) Zcp (2@ Ap) A= Ax)),
pADpk L,
pPp &Y x=eFx,
ey &otx=pFvAx,
phY & xkY = (e A-x) 9,
o(p A1) Zcpop Aoy,
8(=(e AY)) Fep ~(Ep A mB9),
—en(pA-p) E L,
pkFY=opkFoy & ~o-pk o),
“lFep=-1lFop.
Instead of =L F ¢ we also write - ¢, and call ¢ a theorem of MrL+. Note that

the class of theorems in MrL+ is very restricted and trivial.

In the rest of the paper we will abbreviate =L, =(—p A =) and ~o—¢ by T,
@ V¢ and o respectively.

(?) The logic is somewhat different here. In [Thi] L does not appear.
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Observation 2. We state the following important principles that hold in
MrL+.

De Morgan laws:

“(pAY) =V p and (e VY) = e Ay
Distribution of A over V, and vice versa:

eV AX)= (V) A(pVX) and @A (P VX) = (9 AD)V(9AX).
Idempotency of A and V:

p=pAp and Ve=¢p.

Commutativity:

pANY=9ypAp and eVYP=yY V.
Associativity:

eA@WAX)=(@AY)Ax and @V (¥ VX)=(pVY)VX.

Absorption:

kY ff p=pAYpandyp=pV.
Distribution of ¢ over V:

(V) =opVor.
o /¢ inter-relation:
a(p V) FopVvoey & opAopkolpAi).
The soundness of MrL+ is straightforward, and is therefore left (to the

reader).

Normal forms. The formalization of inference above gives us the syntactic
equipment for implementing the concept of normal form. Before introducing this
notion we first define some more syntactic abbreviation.

Let @ = {®1,...,pn} be a set of formulae. By A ® we mean the formula
©1 A ... N, (3), and \/ @ denotes o1 V...V p,. Incase of ® =), N\ =T
and \/® := L. By —~® we mean the set {—¢1,...,7¢,}. Analogously, o® =
{op1,...,00,} and @ = {o¢1,...,0p,}. Moreover, DAY = {p A | ¢ € P,
1 € ¥}. We take the A and \/ to be dominant over the ordinary connectives. So,
for example,

/\_\D@\/O\/é = (o1 A ATOpR)Vo(pr V... Vo).
We will also use indexed disjunctions and conjunctions:
Vei=\Heilien, Nei=Neiliel}.
il il

(3) Associativity legalizes the omission of parentheses. Associativity, commutativity and
idempotence makes A ¢ unambiguous (modulo =). It would be neater if we also ordered formulae
lexicographically, but we expect the reader to be permissive on this point.
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DEFINITION 4. The set N; of normal forms of degree i (i € N) is determined
by the following induction:

Nn:{/\oé/\m\/é/\w\ég./\/n_h WGNo}.

The pair |7, @] with 7 € Ny and & C N,,_; abbreviates the normal form A\ o® A
o\/®@ A7 (*). A normal form of degree 0, 7 = A\ P A A\ —Q, will also be referred
to as the pair (P, Q). Instead of [T, ®] (= [(0,0),?]) we will also use [D].

This definition is slightly different from Fine’s [Fin]. In this article the o-
conjunct is replaced by a set of = o-conjuncts. In total possible world semantics
after summing up all possible (accessible) world descriptions, the rest of the world
descriptions are not possible (—¢). Partial possible world semantics lacks this
comfort. As was stated in the introduction this is a technical disadvantage for
proving that disjunctions over normal forms cover the full language (modulo =).

Firstly, we show that normal forms, as defined above, are really full descrip-
tions of partial worlds. A partial world corresponds to a normal form which
uniquely generates the full theory of this world. This correspondence is embodied
by a sequence of functions {6;};en : W — N;, where W denotes all pairs M, w
with M = (W, R, V) being a partial Kripke model and w a world in M. The
definition of this sequence runs as follows:

Oo(M,w) = /\wJr A /\ﬂw* ,
where wt ={p e P |V(w,p) =1} and w™ ={p € P| V(w,p) =0} , and
0, (M, w) = [09(M,w0), {01 (M, v) | R(,v)}].

THEOREM 1. Let ¢ be a formula with modal depth at least as small as n

(e L3). Then
MwE < 0,(M,w)F ¢,
M,w= o< 0,(M,w)E —p.

Proof. The «<-direction is by soundness of MrL+ and the observation that
M,wE 6, (M,w).

The =-proof runs via induction on the construction of formulae, where only
the o-step deserves exposition.

M,wkop=Yv:R(w,v)= MuvkEp=0,1(M,v)F ¢ for all v such that
R(w,v) =\ Op_1 F o with ©,_1 = {0,_1(M,v) | R(w,v)} =0o\/Oy_1 Fop =
0, (M,w) Fop.

M,w=op= Fv: Rw,v) & M,v= ¢ < 0,1 F —p for certain 6,,_1 € O,
={0,—1(M,v) | R(w,v)} = ¢0,_1 F —op, and so 0, (M,w) F —op. =

M opi A Aopn Aol V...V on) AT if @ ={o1,...,on}.
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For proving the completeness of MrL+4 we need the model that arises natur-
ally from the definition of normal forms and their descriptive nature which was
stated in the theorem above. Normal forms as worlds directly convert semantics
into syntax, and vice versa.

DEFINITION 5. The triple M,, = (W,,, R,,V,,) is the partial Kripke model
such that

o W, is the set of normal forms of degree smaller than or equal to n;

o R, ([m,®],a) & a € d (°);

b Vn([<P7Q>’¢]ap) =lspeP & Vn([<P7Q>’¢]ap) =0&peq
&Vo((P,Q),p) =1 peP &V,((P.Q),p)=0&peQ.

Observation 3. We easily deduce that
0, (M,, )=«
o My,,aFpsatypforall pe ).

The following theorem states the disjunction property that we are looking for,
and gives us directly the completeness proof.

THEOREM 2. Every formula of modal depth n is equivalent to a disjunction of
normal forms of degree smaller than or equal to n ().

COROLLARY. MrL+ is complete with respect to the partial Kripke models.

Proof. Let ¢ ¥ v and let n be the maximum of the modal depths of ¢ and .
Let ¢ = \/ = such that the modal depth of the elements of = are not larger than
n (Theorem 2). Clearly \/ = ¥ v, and so there exists £ € = such that £ ¥ ¢ (7).
Observation 3 shows M,,,£ F ¢ and M,,,£ ¥ ¢, and so ¢ # 1. =

By the finiteness of M, and the completeness we also have decidability for
MrL+.

COROLLARY. MrL+ is decidable.

Because the proof of Theorem 2 needs a lot of inaccessible syntactic treatment,
we will outline the argumentation along some lemmas that turn out to be crucial.

LEMMA 1. Let ¥ and @ be two finite sets of formulae, with W C ®. Then

D\/qm/\owEW\/ (D\/E/\/\OE)E \/ (=]

CECo WCECS

(°) Note that normal forms of degree 0 have no successors, and so Ry = 0.
(6) Remember that the empty disjunction is defined as L.

Marp&éry=EeVeary.
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Proof. The proof runs by induction on the magnitude of /. The basic step,
& = ¥, is immediate, because the left-hand side of the equation has in this case
already the format of the right-hand side (disjunction over the singleton {[®]}).

Let #(®/¥) = n > 0 and & = {¢1,---, Pm, Pmt1s-- s Pminy and ¥ =

{€1y- -y Om}-
First we observea\/ @ Fo\/ ¥V\/ ¢ ®/¥ (Observation 2). By the propositional
rules the following sequence of =-equivalences holds:

o\/ PN N\o? = (m\/(p/\/\ow) A <m\/wv\/<>¢/w)
=\/ <m\/q5A/\<>(WU{gom+j})) Vv (D\/W/\/\OLT/) (®)

<
Il
—

= \/ ( \/ [E}) V [¥] (by induction hypothesis)
j=1 WwCEC®
Pm+j ez

YCECS

The following lemma needs some formal notation. By bt(X,Y) we mean the
set of all bi-total relations in X x Y. Bi-total relations in X x Y are those re-
lations in X x Y such that all members of X appear at least once in the first
argument, and all members of Y in the second: R € bt(X,Y) < Vre X Jye Y :
(m,y) € R& Vy € Y 3x € X : (x,y) € R. If R is a binary relation, R!
is the set of all first arguments of R: R! = {z | (z,y) € R for certain y}.
By R? we will refer to the set of all second arguments of R. Summarizing,
WX,Y)={RCXxY |R'=X, R2=Y}.

LEMMA 2. Let @ and ¥ be two finite sets of formulae. Then
o\/(@ro)A No(@ur)= \/ (D \/ rv)n N <>(g0/\w)>.
Rebt(o,7) (pY)ER (p¥)ER

Proof. To begin with, note that the following equivalence holds, as a conse-
quence of the preceding lemma.

1) e\ (@Arw)A \o(@uD)
=\ <a \V erv)n A <>(g0/\¢)/\/\<>(@UQ7)>.

RCOXW¥ (p,)ER (p)ER

Let R be a certain relation on @ x ¥ which is not bi-total. This means there
exists a ¢’ € @ such that ¢’ ¢ R'. Consider the disjunct on the right-hand side of

(®) By A/V-distribution, and “modal absorption”: ¢ ¢ = gp oy = o0p Aoy =op.
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the equivalence stated above, which belongs to this relation R. For this particular
disjunct the following sequence of derivations holds:

o\ (@eAd) A N elend)a \o(@uw)

(pP)ER (p)ER
Fo /(@A) A N olpng) Aoy
(o Y)ER (0, P)ER
=o \/ wro)n A eervine((V rw)ay)
(p)ER (pY)ER (p¥)ER

(by o Aorp = o(p A1)

=a \/ (rv)n N o(«pA@b)A( V (O(sko/\so’)))

(ph)ER (p,0)ER (p)ER

Fo Vo eana A eteno)a( Ve av)

(p)eR (p¥)eR Y’ ER?

=\ (o V @rov@a))a A elenw) noly Av)).

P ER? (p)ER (o) ER

From the derivation above we learn that the R-disjunct with ¢’ ¢ R! entails a
disjunct of other disjuncts appearing in the right-hand side of original equation
(1), which corresponds to relations in @ x¥ which have ¢’ as a first argument. The
same holds for relations R’ in @ x ¥ with R'? # ¥. Henceforth we may conclude
that the equivalence (1) holds also if we range only over bi-total relations in ¢ x ¥
(¢’ & R was arbitrarily chosen, and ¢ 1 < ¢ = V ). So,

o\/(@AT) A \o(@UWD)
=\ (m \V erv)n A <>(<,0/\¢)/\/\<>(95UW)>.

Rebt(PxV¥) (p,p)ER (p,Y)ER
Because o(p A ) F o and o(p A ) F o1 and because all @ and ¥ are fully
present in the first o-conjuncts, the last ¢-conjuncts get all absorbed by the first
o-conjuncts (¢ F ¥ < ¢ = pA1). We end up with the result that we were looking
for:

s\ (@A) A No(@uw)= \/ (m \V av)n A <>(cp/\1[))).l
Rebt(,¥)  (pp)ER (o ¥)ER
LEMMA 3. Every conjunct of two normal forms of degree n is equivalent to a

disjunction over a finite set of normal forms of degree n.

Proof. By induction on the degree of normal forms. The basic propositional
case is directly obtained. In this case we end up with either one disjunct, or zero,
which is defined as L.
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Let [, @] and [p, ¥] be two normal forms of degree n+1 (n > 0). By Lemma 2
we immediately have the following equivalence:

[, | Ao, ] =o\/&A NodAmrs\/TANoW A

ED(\/@/\\/W)/\/\O(@UW)/\W/\Q

D(\/(@/\![/))/\/\O(@UEP)/\TF/\Q
VoV eron A elenw))arne.

Rebt(®,¥)  (p¥)ER (o) ER

The induction hypothesis gives us the disjunction property for the pairs ¢ A ¢
(being normal forms of degree n). This disjunction will be referred to as \/ = y,
where every member of this disjunct is a normal form of degree n.

(2)  [m @] Ao, V]

= \/ ((D \/ (VE¢,¢>)A /\ <><\/Ewp>)/\7r/\g

Rebt(2,¥) (p)eR (pP)ER
=\ (<m \ (\/E%d,))/\ A (\/O(EM,)))AW\Q.
Rebt(2,¥) (p)eR (pY)ER

Before moving on, let us reduce the syntax somewhat. We first forget about
the propositional part m A o, because it does not influence the line of argument.
The general form of the disjuncts in (2) is now

o ( \/ \/d%) VAN /\ (\/O(ﬁz) (9>
i=1 i=1
First note that by distribution of A over V we obtain A", \/ @; = \/ co Ai2q ¢(Ds)

where C is the set of all distinct choice functions that select for every ¢ an element

of &;. And so,

S(VV#) 2 A (Vo)

3

D<Z:\71\/¢Z> A \/ 7\<>c(4’>i)

i=1 ceCi=1
= \/ (D\/\/@Z)/\/\OC(@Z)
ceC i=1 i=1

All the disjuncts in the last formula are of the form o\/ @& A A o¥ with ¥ C .
Application of Lemma 1, and the fact that all formulae in @; are normal forms (1Y),
show us that every disjunct in the formula is equivalent to a disjunction of normal
forms. This ends the proof of the lemma, having a disjunction of a disjunction of

(%) The empty cases m = 0 and &; = ) are left to the reader.
(19) Note that also ¢(®;) € &;.
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a disjunction of normal forms. Readers who are interested in the final result may
consider the final equivalence:

melnfowl= \/ \/ \ [re3] (M),

REbL(P,W) ceC c(0)CECO

with @ = J 24,4, V Zp,0 = ¢ A9 with all members of =, being normal forms
of degree n (induction) and C being the collection of all distinct choice functions
that pick an element of =, , for every pair p € ®,9 € ¥, and ¢(O) = {c(Zy ) |
peP, YT} n

We have proved that conjoining two normal forms of degree n amounts to a
disjunct of normal forms of degree n. The following lemmas (4, 5) guarantee that
we are in fact independent of the degree of those normal forms. This will be forced
by proving that every normal form of degree n is equivalent to a disjunction of
normal forms of arbitrary larger degree m (> n). First we need the disjunction of
normal forms that contain no information, that is, they are theorems in MrL+.

LEMMA 4. Let To = {T} and T,, = {[®] | & C T,,—1}. The disjunction over
such a set T, s a theorem in MrL+:

VneN:l—\/Tn.

Proof. By induction on n. The case n = 0 is even an axiom (see Def. 3).
Let n > 0. The induction hypothesis gives us - \/ T,,—1. The last inference rule
in MrL+ (Def. 3) yields - o\/T,,_1, and by Lemma 1 this can be rewritten as
FVecr, [®]. This last formula is, by definition of T;,, the same as \/ T},. m

LEMMA 5. Every normal form of degree n is equivalent to a disjunction of
normal forms of degree n +m (m € N).

Proof. By induction on n. For the case n =0, we take m = \/gcp [T, D],
which can be proved by a straightforward accommodation of the proof of Lemma 4.

Let n > 0. Suppose [r,®] is a normal form of degree n. We may apply the
induction hypothesis to every member of @, being a normal form of degree n — 1.
We have

V@E@:@E\/EW

with every member of =, being a normal form of degree (n — 1) + m. Therefore,
[, @] must be equivalent to a disjunction of normal forms of degree n + m, by

(*1) 7 A g does not have to be a normal form of degree 0. If 7 A ¢ = L we have the empty
disjunct, and therefore the same result. In the other case we take [(P U P’,Q U Q’), 5] for the
disjuncts with 7 = (P, Q) and ¢ = (P, Q).
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the following derivation:
[, D] :D\/QS/\ /\045/\7T
=o \/ \/EQD/\ /\ <>\/ELP/\7r

peP peP

m\/ \/E@/\ /\ (VOE@>AW

wed wed

V (s VEon NocE) am) (2)

ceC ped

E\/ \/ [, Z]. m

c€Cc(5,)CECH

COROLLARY. The conjunction of two normal forms is equivalent to a disjunc-
tion of normal forms.

At last we have gathered enough syntactic equipment for proving the central
theorem.

Proof of Theorem 2. By induction on the modal depth of formulae. In
the basic propositional case, we immediately find the desired result by proposi-
tional reasoning (the principle of the excluded middle is not necessary here). Let
© be an arbitrary formula with modal depth n > 1. To begin with, we translate
@ by using the propositional part of MrL+4 as for n = 0, into a “propositional
disjunctive normal form”, that is, a disjunction over conjunctions, such that the
resulting conjuncts are only of the form o, ¢t (with modal depth of i) being
smaller than n), —p or p (p € P). The propositional cases are left, because they
will not bother us. Because of the corollary stated above, we only have to prove
that o\/ @ and ¢\/® with & being normal forms of degree smaller than n are
equivalent to a disjunction of normal forms. The first case follows immediately
from Lemma 1, only the ¢-case needs some clarification. This is done with the
help of Lemmas 4, 5 and Lemma 1. First, we may put \/ outside the ¢-scope:

o\/@z \/o@.

Let & be a disjunct in the last formula, and let m < n be the modal depth of &.
Since Fo\/ T,, the following equivalences hold:

ogzm(\/vag)Aog; \/ =L
§EECTU{E}

Having used the induction hypothesis we arrived at an equivalent ¢ = \/ A\/®1.
A/V-distribution reformats this into \/ A @2, and finally we obtain ¢ = \/ @3 by

(12) With C being the class of distinct choice functions which pick for any ¢ € @ an element
of Zy.
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Lemma 3 and its generalization summarized in the corollary above (®;’s being all
sets of normal forms of degree n). m

Conclusions and implications. Normal forms as introduced in modal logic
in [Fin] have been transposed to partial modal logic, by giving them a slightly
different format. We could state that the enterprise has been a relative success.
The meta-theoretical results which were obtained in [Fin] were adopted, but the
road has been disproportionately troublesome. This is due to the disturbing role
of the partial negation. Semantically speaking, negation is no longer interpreted as
the technically more accessible complement, but as a so-called quasi-complement
[Ras], that is, a complement that obeys de Morgan equations, and coherence
(p A —p = 1), but which does not necessarily behave according to the law of the
excluded middle (pV —p = T) (13).

A very important implication of the results above is that we have direct access
to the class of formulae that have precisely one minimal interpretation. These
are precisely the normal forms modulo =. This minimality is guaranteed by the
embedding of partial Kripke models into the model of all normal forms.

THEOREM 3. Let ¢ be a formula of modal depth n. ¢ is equivalent to a normal
form of degree n iff ¢ has a minimal interpretation, that is, there exists a world w
in a model M = (W, R, V') such that M,w =¥ iff o E (¢ b ) for all formulae

be L (1),
Proof. Let ¢ = ¢’ with ¢’ being a normal form of degree not larger than

n. Clearly M,, ¢’ E 1 < ¢ F 1 for all formulae 1) with modal depth not larger
than n. =

This kind of minimality is relevant if we want to find minimal representations
for propositional attitudes that we would like to model in partial modal logic.

The informational (theoretical) order = on normal forms can also be deter-
mined structurally, in a relatively easy way.

Observation 4. Let (P,Q) and (P’,Q’) be two normal forms of degree 0.
We define
<P7Q> SO <P/7Q,>®PQP/&QQQ/
Let [m,®] and [o,¥] be two normal forms of degree n. We order them by the
following recursive definition:
[, @] <n [0 ¥] &7 <o0&
Voe @I eV :p<, 10 &V ebdped: p<, 19.

(13) A way to overcome this problem is to take a partial accessibility in the Kripke frames
as well [Mus]. We avoided this approach because our intuitions about the role of possible worlds
in interpreting propositional attitudes do not fit with such an interpretation. Besides that, the
resulting logic is of course different, due to the less restricted interplay of the modal operators.

(") 0n (M, w) = .
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It turns out that this structural order precisely follows the theoretical order:
[0, V] E [r,?] & [0,¥] F [7,P] & |7, D] <, [0,¥].

The pre-order <,, intuitively tells us that a world w is theoretically or infor-
mationally richer than another world w’ if both the objective propositional part
of w is larger (>¢) than w’, and all successors of w are larger (>,_1) than some
successor of w’ and all successors of w’ are smaller (<,,_1) than some successor
of w. The first relation preserves objective information, the second takes care of
o- and the third of o-preservation. We will not give a proof of this observation.
It can simply be done by induction on the degree of normal forms. In [Jas| one
will find an elaborate exposition of how to compose minimal interpretations in
partial modal logic. In this paper partial modal structures have been used, after
the idea of modal structures in [FaV], which is just a syntactical variant of the
normal forms in [Fin].

Another issue that we like to point at is our definition of consequence. In
partial logic one also finds the so-called double barreled consequence relation
[Bla]. % is a double barreled consequence of ¢ iff all models M and all worlds
w that support ¢ also support ¥, and all such pairs that reject 1 also reject ¢
(M,w 4 ¢ = M,w = ¢). This can be encoded in our system by ¢ F ¥ &
—1) = —p. This consequence relation restores contraposition. The resulting logic
is MrL+, without the ex falso rules ¢ A —p = L and o(p A —=p) = L. A complete
axiomatization can be given by adding weaker versions: ¢ A —¢ F ¥ V =) and
o(pA-p) Fo(yp V=) [Thi]. Besides this double barreled definition, there is more
freedom here [Thi] (e.g. M,w E ¢ = M,w # ). But still, in these approaches
normal forms can be used as the semantic unit for extracting meta-theoretical
results for different consequence relations. Normal forms are the precise syntac-
tic representation of the = and = behavior of worlds. This insight makes normal
forms a useful tool in partial modal logic.
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