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0. Introduction. The finitization problem is one of the problems considered
important in algebraic logic. Since it is often misunderstood, it seems desirable
to try to develop a better understanding of what it is and what it is not about.

The finitization problem is (at least partly) motivated by the following ob-
servations (1)—(3): (1) The natural algebraic counterpart of propositional logic is
the variety of Boolean algebras which is axiomatizable by finitely many equations.
(2) The natural algebraic counterpart of first-order logic L, is the variety RCA,,
of representable cylindric algebras which is very far from being axiomatizable
by a finite schema of equations, cf. [HMT], Theorem 4.1.3, and Andréka [A91].
(3) The algebraic counterpart of L, without equality is the variety RQPA,, of
representable quasi-polyadic algebras which is also not axiomatizable by a finite
schema, see Sain—-Thompson [ST]. (Similar negative results apply to the finite-
variable fragments of L. The algebraic counterparts here are finite-dimensional
representable cylindric or polyadic algebras and relation algebras.) The negative
results (2) and (3) do have purely logical consequences motivating the (non-
algebraic) logician to look into the question, cf. e.g. §4 of Sain [S87], Simon [S90],
[S91], Venema [V90], [V92], Németi [N91], but see also the present Appendix A.

Observations (2) and (3) above are in contrast with (1). So there seems to be a
sharp contrast between the behaviour of propositional logic and quantifier logics.
It is natural to ask whether the nonfinitizability in (2) and (3) is an unavoidable
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consequence of having quantification in our logics, or perhaps the negative results
(2), (3) are only consequences of “historical accidents” which have led to the gen-
erally accepted formulation of L. A more tangible formulation of this question
is Problem 0 below. But first we need a definition.

In this paper we let the algebraic counterpart Alg(L;) of the logic L be
the quasivariety generated by the class LT(L;) of semantical Lindenbaum—Tarski
algebras of theories of L, where (i) and (ii) below are important to keep in mind:
(i) The operations of Alg(Ly) are exactly the logical connectives of Ly. (Note that,
in general, if C' is an n-ary logical connective, then C(¢1,...,p,) is a formula
whenever ¢1,...,¢, are formulas. So for example 3 is not a logical connective
in L, but 3z is one, for each individual variable z.) (ii) When forming the
Lindenbaum—Tarski algebra of a theory, say T of Li, we factor out with the
semantical equivalence =7 defined by ¢ = ¢ iff (T F ¢ < @), for every pair
¢, of Li-formulas (1).

PROBLEM 0. Is there a logic L; satisfying conditions (1)—(4) below?

(1) Ly has the same models as L.

(2) The logical connectives of L, are definable in L;.

(3) Ly satisfies the most basic axiom of Abstract Model Theory (cf.e.g. Bar-
wise—Feferman [BF]), namely the satisfaction relation of L; is invariant under
isomorphisms of models.

(4) The algebraic counterpart Alg(L;) of L; is a finitely axiomatizable
variety. m

We note that though Problem 0 is only an approximation of the finitization
problem, it seems inevitable that any solution of the finitization problem should
solve Problem 0, too. For a careful recent formulation of (different versions of)
the finitization problem see Németi [N91] (?). Appendix A herein contains further
information on the problem not available in [N91]. The problem was published in
Henkin—-Monk [HM], cf. also Monk [M70]. The purely logical form was presented
by Henkin to Andréka, Németi and Sain at the 1987 Algebraic Logic Conference
in Asilomar (cf. Problem 2 in Appendix A herein).

As pointed out e.g. in Maddux [M], the problem itself is fairly complex and
is easy to misunderstand. As we said before, here we will try to develop a better
understanding of what the problem is and what it is not about. To this end
we will look at a very natural-looking interpretation, one which comes to one’s
mind very easily when reading about finitization. We will see that no matter

(1) The present definition of Alg(L) is in the spirit of the (more careful) definitions in the
basic literature, cf. [HMT], §5.6, [ANS] or Blok-Pigozzi [BP]. (Refined versions of our Alg(L1)
are implicit in the present Appendix A.)

(2) Cf. the following parts of that paper: Remark 2, the last two pages of §4, especially
Problems 2.1, 2.2, the part beginning with Theorem 16 and containing item (5.1) and Problem
3 in §7(9).
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how tempting, this is still not strong enough to be a reasonable version of the
finitization problem.
Consider

TASK (x). Find a finitely axiomatizable variety V and a computable function
F mapping all first-order formulas to the set of equations in the language of V
such that the following holds.

For every first-order formula p, we have

Fo ifft VEF(p).
An additional requirement is that

(xx)  F should be “semantically satisfactory” in the following “one way” sense:
There is a function Alg associating with every model 9 an algebra
Alg(90t) € V' such that for every formula ¢ of L., the meaning of ¢ in
ML can be identified somehow (3) with the meaning of F(p) in Alg(IM). =

We call (%) a “one way” condition because the elements of V' are not required
to be translatable back to models or to anything obtained from models. By con-
trast, every element of RCA,, corresponds to a set of models (cf. [HMT], 4.3.9,
4.3.52 and in general §4.3 therein). So in the RCA,, case we have a stronger, “two
way” semantical connection.

Our reason to formulate Task () when trying to clarify the finitization prob-
lem is the following:

Incarnations of Task (%) with or without (x*) come up frequently (as e.g.
reasonable variants) in connection with the finitization problem in the literature
and in related discussions. Also, in view of our having motivated the finitization
problem by listing items (1)—(3), Task (x) looks quite appealing, because its con-
clusion holds for propositional logic; therefore one is tempted to think that what
we are asking for in Task (x) is the property of propositional logic which has been
lost when we moved to L. That Task (x) is not a reasonable variant of the
finitization problem is perhaps best shown by actually solving this task and then
contemplating what logical significance the solution has. In particular, whether it
solves the above mentioned logical problem, which, as far as we know, motivated
at least one of the originators of the finitization problem. (This logical problem
will be recalled as Problem 2 in Appendix A, but Problem 0 above is a good ap-
proximation of it.) We will find that the answer to this question is in the negative,
and at the end of this paper we will try to spell out the reason why. In §1 below
we show that Task (x) admits almost trivially easy solutions, while in §2 we do
the same for the stronger version of Task (*) reinforced with condition (sx). In
our opinion, the solutions we give are of the difficulty of a perhaps tedious, but

(3) For example, if we take V to be RCA,, then we can choose F(g) to be of the form
Fi(p) = 1. To a model I there corresponds an algebra Alg(T) € RCA,, together with a
valuation k of the (algebraic) variables of F}(¢) such that the value of Fj () in Alg(IT) at the
valuation k coincides with {g € “ M : D E p[q]}. See [HMT], §4.3 for details.
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deterministic exercise for someone familiar with the pre-1960 logic (or, in the case
of (xx), algebraic logic) background. Consequently, to us it seems quite unlikely
that this task could be the well known (and publicized) finitization problem.

We should point out that the purpose of this paper is entirely different from
solving Task (x). Solutions for it have been known for quite a while before this
paper was conceived. E.g. Maddux [M], Theorem 23, also contains a solution of
Task (*) without () and Theorems 21, 22 therein together also solve Task (x)
with (x%). Sometimes Veloso-Haeberer [VH] is also quoted in this connection.
(Actually, a letter Tarski wrote to Quine in 1942 seems to imply that he, and
therefore, in our opinion, the authors of [HMT], were aware of solvability of Task
(%) all the time while working on [HMT] and on related papers, cf. Tarski-Givant
[TG], p. 165.)

1. Solution of Task (x) (via elementary recursion theory). In this section
we will show that without (xx) there is a very easy solution, almost as easy as
the following. Let V' be any finitely axiomatizable variety and let F'(¢) be z = x
if ¢ is valid and & = y otherwise. This obviously works (and is obviously quite
useless). The only reason why this is not yet a solution of Task () without (k)
is that F' is not computable. But by using Gédel’s completeness theorem and a
few similarly old facts this can be easily corrected so that the idea remains the
same. Here is one way to do that:

By Godel’s completeness theorem the validity problem of L, is reducible to
the halting problem of a Turing machine M. By the standard textbook proof
(originating with Post from the 1940’s) of the unsolvability of the word problem
of semigroups, the halting problem of any Turing machine is reducible to the
validity of quasiequations in the variety Smg of semigroups. So the only work left
to be done is reducing validity of quasiequations in Smg to validity of equations in
a perhaps different (finitely axiomatizable) variety. For this, there are many easy,
well-known methods. One possible way is to add a new discriminator function to
Smg. Another one is elaborated below.

First we recall Post’s lemma mentioned above (see [D] (in the Handbook of
Mathematical Logic), Theorem 2.4 and Lemma 3.2, for a slightly different but
equivalent formulation). Let Fm be the set of formulas of L, and let T" be any
Turing machine taking elements of Fm as inputs. Let Eqlang(Smg) be the set of
equations in the language of semigroups.

LEMMA (Post, 1947). There is a finite set E C Eqlang(Smg) and a com-
putable function f : Fm — Eqlang(Smg) such that for all ¢ € Fm

T halts for the input ¢ < SmgkE (/\E) — f(p).
(Note that (N E) — f(¢) is a quasiequation.)

First we apply Post’s lemma to the machine M fixed above. Next we reduce
validity of quasiequations to that of equations by expanding the variety Smg
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with new constant symbols. Let T = (xg,...,zr) be the sequence of all variables
occurring in E. Let ¢ = (co,...,ck) be a sequence of new constant symbols. We
add € to the language of Smg, obtaining Smg™*. Let Smg” be the subvariety of
Smg" defined by F(¢/Z), where (¢/7) is the operation of substituting ¢; for all
occurrences of x; for each i < k. Clearly

smg (/\E) = flp) = Smg” F [(¢)(c/a).
Now, Post’s lemma implies
(0) E o & M halts for ¢ < Smg” E f(¢)(E/7),

for all ¢ € Fm.

Let F(¢) © f(¢)(¢/F). Then

COROLLARY 0. For all ¢ € Fm we have
Fo < Smgl EF(p).

Further, Smg” is a finitely aziomatizable variety and F is a computable function
sending formulas to equations.

Proof. Immediate by statement (0) above (i.e. by Post’s lemma and our
having replaced variables with constant symbols). m

Corollary 0 above is clearly a solution of Task (x). At the same time, in our
opinion, it is not much more than a simple reformulation of Post’s lemma. For
the convenience of those readers who are not familiar with (the above quoted
quasiequational form of) Post’s lemma, we give a slightly different solution in
Appendix B, in which all the quoted lemmas will be used exactly in the form in
which they are stated in [D].

Remark. Before looking at a different kind of solution for Task (x) (based
on a result of Henkin from 1955 instead of Post’s 1947 lemma) we would like to
mention that the present solution, i.e. Corollary 0 (or, equivalently, Theorem B.0
in Appendix B), can be transformed to one satisfying (xx), too. The reason why
this is possible is that in (**) semantical translatability is required in one direction
(logic — algebra) only. Hint: Use the fact (mentioned in §0) that RCA,, satisfies
(). Start out with Smg® and F as in Corollary 0. Let Smg’ be obtained from
Smg” by adding all the operations of RCA,, to Smg” and postulating nothing
about them. Define the function Alg mapping models of L, into (the “RCA,-
part” of) Smg’ the standard way (described in [HMT], §4.3, and already alluded
to in a footnote in §0 herein) and let the semigroup structure of Alg(9t) be
idempotent, i.e. let zy = x. Note that at this point Corollary 0 is still true for
Smg’ in place of Smg?. Modify F in such a way that the meaning of F(p) in
Alg(901) comes out to be the same as in [HMT], §4.3, but Corollary 0 still holds
for Smg’ and the new F in place of Smg? and the old F. We do not claim that the
reader attempting to implement this hint will have no difficulties, but those are
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not very hard to overcome by using [HMT] and [BS]. We do not go into details
since a solution of Task (x) with (xx) is already available in §2. m

2. Semantically satisfactory solution of Task (x) (via elementary alge-
braic logic). First we would like to make some comments on why we think that
the problem we are about to solve is really just an exercise. Here is an outline of
a possible solution, where in each step we give reasons why we think the step in
question is completely routine.

Pran. Step 0. The obvious starting point is looking into classical textbooks
(like [HMT]) on algebraizations of L. There we find that the variety RCA,
of representable cylindric algebras is related to L., the same way BA is related
to propositional logic; namely there is a computable function 7" associating
RCA-terms with formulas of L, such that

(1) Fo iff RCA,FTut(p)=1
for every first order formula ¢, cf. [HMT], 4.3.61 (*).

Step 1. The only problem is that RCA,, is not a finitely axiomatizable variety.
Let us see how standard textbooks bypass this problem in logical applications of
cylindric algebra (CA from now on) theory:

There is a finite schema axiomatizable variety CA,, (O RCA,,) such that RCA,
is easily identifiable in CA, by simple properties called conditions for repre-
sentability. (We will see later that moving from finite schema to finitely many
axioms is no problem under the permissiveness of Task (x).) One of these proper-
ties (published by Henkin in 1955 (cf. [H]) and extensively discussed in Part I of
[HMT)) is called neat embeddability, and it says that a CA is in RCA iff we can
add new (elements and) operations to it such that the expanded system satisfies
some equations. Note that in Task (*) we are allowed to add new operations that
are permitted to behave in arbitrarily strange ways (°). Let us see how we can
use this here.

What would go wrong if we simply replaced RCA with CA in (f) above? The
problem is that there are ¢ and 21 € CA,, such that F ¢ but €A ¥ 7ut(p) =1
exactly because A ¢ RCA,,. To avoid this we do not require representability of the
whole of 2(, but only of that part of 2 where 7u™ (p) is computed. According to

() Our 7u™ is the “equational version” of the quasi-equation in [HMT], 4.3.61(ii). This

is easy to obtain, namely, using the notation of the quoted item, let I'; def H \ o(j) for each

J €G. Obviously, I'; is finite. Replace each occurrence of the algebraic variable v; in 71’ (p) with
the term ¢y vj. Execute this for all j € G. The term so obtained is 71t (p) and the quoted

theorem states the above (1) for this 7T,

(°) The standard terminology for this property is pseudo-aziomatizability. (A class K is
called pseudo-axiomatizable (or pseudo-elementary) iff it is a reduct of a finitely axiomatizable
class of structures, cf. e.g. [HMT], 0.5.21.) It has been known for a long time in the classical logic
literature that it is very easy to obtain pseudo-axiomatizibility results (cf. eg. Craig—Vaught
[CV] and Fact 1 in [N91]). We will utilize this phenomenon several times below.
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[H] this can be achieved by adding new elements to 21 obtaining 2" D 2, adding
new operations to A" and postulating that some simple equations (c;a = a) hold
for the new operations ¢; (i € w) on the old elements a € A. This expanded
version A° of AT is called a CA, 1., where the “+w” refers to the new operations.
Technically, A" is a reduct of A° € CA, .. What we want to achieve is that
71t () should be computed in the old part of 2A°, corresponding to A. This is
very easy to arrange because Task (x) permits us to introduce new operation
symbols. So, we add a new predicate symbol A to the language of CA, ., and
postulate that Vx(A(x) — c¢;(x) = z) for each i ¢ w. Further, we restrict the
variables in 7ut(¢) to range over A. To make all this equational is a very old
exercise, namely we use a unary function symbol a the range of which codes
A. Then the previous postulate reads as ¢;(a(z)) = a(z), and each variable =
in Tut(p) is replaced with a(z). From now on we will skip this obvious trick of
“equationalizing” unary predicates. Let CA™ be the variety obtained from CA,, .,
by adding the new operation a and the above equations.

Now if we compute the new version of 7ut () in our CA™’s, the elements in-
volved are all in the subalgebra generated by the subset A. But this subalgebra is
representable according to [H] since we required A to satisfy the neat embeddabil-
ity condition (Vo (A(z) — ¢;(x) = x) for i € w). Since Tt (p) is computed in this
subalgebra, by (f) we have the “hard” direction (F ¢ implies CA* £ 7ut(¢) = 1)
in

(1) Fo iff CATE7ruT(p) =1
The other direction is obvious.

Step 2. The only reason why (1) is not yet a solution of Task (x) is that
the latter asks for a finitely axiomatizable, and not a finite schema axiomatizable
class. Is there a well known trick in classical textbooks on universal algebra for
reducing a finite schema of equations to finitely many equations? The answer
is yes, switch to two-sorted algebras (a typical example is the class of modules
over some ring (%)). Using this trick we arrive at two-sorted algebras CA?, where
one sort is the “CA sort” and the other is the index sort. Then CA? has finitely
many operations. Furthermore, it is defined by finitely many equations since all
we have to postulate about the index sort is that it is infinite (a typical pseudo-
axiomatizable property) and we can add a discriminator function to be able to
express the axioms equationally (cf. Burris—-Sankappanavar [BS]). So, by (1) we
have

(t11) Fo iff CA’Erut(p)=1

for the finitely axiomatizable class CA®.

() Or vector spaces; cf. the textbook [B86], §1.2.1 and the references therein.
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Step 3. The only objection to claiming that (1ff) is a solution of Task (%)
might be that CA? is two-sorted. Again, classical logic textbooks explain how
to turn two-sorted structures to one-sorted ones: add two new unary relation
symbols, say B and I, to the language of CA? and use them instead of the CA
sort and the index sort, respectively. The old axioms about the index sort are now
axioms about those elements of the algebra which are in I, and similarly for the
other sort. So, by (1{t), we arrived at a one-sorted, finitely axiomatized variety
CA' with
(t17) Fo iff CA'ETut(p) =1,
that is, we solved Task ().

Let us turn to condition (xx) briefly. The original translating function 7u™ is
certainly satisfactory (cf. [HMT], §4.3, especially item (1) in the proof of 4.3.61
on p. 173). In our procedure above we did not change the basic parts of CA’s
which show up in the translation of formulas. Consequently, the nice semantic
properties of the original translating function 74’ remained untouched. This will
indeed be checked in Theorem 2.11 (admitting a trivial proof) close to the end of
this paper.

Note that what we required no ingenuity whatsoever, just looking into basic
textbooks on the subject. m

For completeness we give a detailed proof below (which does not literally
follow the above plan, simply because we did not want to have too many symbols
and axioms). But the reader is invited to skip this proof and fill in the details of
the above plan according to his/her taste, and resume reading after Lemma 2.10.

Soon we will introduce the class SCA (where the S stands for any of the s’s
in “one-sorted CA’s simulating two-sorted ones”), another finitely based variety,
and a translating function F' (being more intuitive than F' of the previous section
from the semantical point of view). First we formulate a theorem which says that
we have another solution of Task (x). See 2.5 and 2.9 below for the definition
of SCA and F. After proving Theorem 2.0 we show that this solution satisfies
condition (%), too, see Theorem 2.11.

THEOREM 2.0. For ¢, a first-order formula,
Fop < SCAEF (p).

Further, F is computable and SCA is a finitely based variety.

Proof. By Lemmas 2.4 and 2.10 below. =

DEFINITION 2.1.

A= (A, +,—,1,ci,dij, km)ijezmew € CAY

iff A F (Cy)—(Cg) where (Cy)—(Cr) are as in [HMT], 1.1.1, and
(Cs) ¢k =k, foralli<0<m.
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DEFINITION 2.2. If ¢ is a first-order formula then let
H(p) def {i : v; occurs in @} .

Restricted first order formulas were defined in [HMT], §4.3 (p. 152), where it
was also shown that every formula has an equivalent restricted “normal form”.
Throughout, n = {k : k < n} for n € w.

DEFINITION 2.3. Define the function F mapping first-order restricted formulas

to constant (i.e. variable-free) CAZ—terms as follows. For ¢, a restricted first-order

formula, let F'(y) ef F,(¢), where F, is defined by recursion on the subformulas

of ¢ by the following clauses:
FLp(RjUO . Unfl) = C(H(w)\n) kj s

where ¢z e Ciy ... G wif I'={i1,..., 4}, just as in [HMT], 1.7.1.

inz
Note that F' is computable and so is the function giving the restricted equiv-

alent of an arbitrary formula. So, with a little abuse of notation, we shall write
F(¢) even if ¢ is not a restricted formula.

LEMMA 2.4. E ¢ iff CAEE F(p) =1.

Proof. We can assume that ¢ is restricted. Then by [HMT], 4.3.61, it is
enough to show that

CALEF(p)=1 &

RCA, F Nfciv; =v; i R; €9, i€ H(p)\ 0(j)} — 7/ () =1
where o(j) is the rank of R;, “R; € ¢” abbreviates that the relation symbol R;
occurs in ¢, and 7p' is defined in [HMT], 4.3.60.

(=) Suppose that RCA, ¥ A{c;v; = v; : Rj € ¢, i € H(p) \ 0o(j)} —
71/ (¢) = 1 and let 2 € RCA, and V : w — A be such that c?*V (j) = V(j) if
R; € pand i€ H(p) \ o(j), but (t1/)*[V] # 1%. Since RCA, = SNr, CAz by
[HMT], 3.2.10 (7), there is a B € CAz with % < Dr,B. Let BT % (B k,);co,
where kj%+ o V(j) if j € w. Then BT e CAL that is, it satisfies (Cg), since
V(j) € AC Cly,B.

Next we show that F(p)®" = (71/(¢))%[V] by induction on the subformulas
of . This will complete this part of the proof since 187 = 1% £ (r1/(p))%[V].

(") CAy is the class CA, 1, modulo renaming the indices. As we can learn e.g. from [MLn),
there is no reason to stick to ordinals as possible index sets.
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Suppose that o(j) =n and Rjvg...v,—1 is a subformula of ¢. Then
. . + .
(T Rjvo - va—1)* V] = V(5) = Trriopn V() = riopm V()

+ +
= (C(H(go)\n) kj)% = (Fcp(Rj’UO PN Un—l))% .

The case of v; = v; and the induction steps are immediate since here the defi-

nition of F,, parallels that of 7/ and the operations of 2( are restrictions of the

corresponding operations of B,

(<) Suppose that CAX ¥ F(¢) = 1 and let B+ € CAL be such that F(p)®" #

15", Let 3 be the CAz-reduct of BT and let A < DNr,%B. Then, by [HMT],

3.2.10, 2 € RCA,,. Define the valuation V : w — A by

+ .
V()< { Feneon s IR €p,
0% otherwise.
Note that k;‘BJr € Clz\,B = A by (Cg), so this definition is meaningful. It is also
quite clear that A F c;v; = v;[V] if Rj € p and i € H(yp) \ 0(j). So the proof
is complete if we show that (7u'¢)?*[V] = F(¢)®". But here one can repeat the
proof of the corresponding claim of the (=) part. =

In [HMT], Part II, p. 264 (item (2)), it is described how to cut down the
number of basic operations of RCA,’s to finitely many ones. What follows is an
adaptation of that construction to the permissiveness of Task (x).

DEFINITION 2.5.
A= (A,+,—,1,c,d,e ,c, suc,pred, k) € SCA
if 1,e are O-ary, —,C, suc, pred, k are unary, +, c,d are binary operations and 2(

is a model of the following equations (where 0 def -1, z-y def —(—x+ —y) and ®

denotes symmetric difference):

(Do) Boolean axioms,

(Dy) c(z,0) =0,

(D2) x < c(z,x),

(D3)  c(z,2-c(z,y)) =c(z,2) - c(2,9),

(Da)  c(z,c(y,2)) = c(y, c(z, x)),

(D5) d(Z7Z) =1,

(De)  d(y,2)-c(zdy)-c(z®2)=c(z,d(y,z) -d(z,2)) - c(z DY) - c(z D 2),
(D7) c(y,d(y,2) -z) - c(y,d(y, 2) - —x) -c(y & z) = 0,
(Ds)  ¢(z) - c(y-c(2),z) =7<(2) - c(y, z),

(Dg)  ©¢(z)-d(z-¢(2),y-C(2)) =C(2) - d(z,y),

(D1g)  ©(2) - suc(c(z) - ) =¢(z) - suc(x),

(D11)  ©(2) - pred(c(z) - x) =¢(2) - pred(z),

(D12)  ©(2) -k(c(z) - x) =¢(z) - k(z),

(E1)  <(0) =0,

(E2)  x<¢(x),
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(Bs) ol o(y)) = o) - oy),
() =) = o(x).

(K1) ol —2) ez —e)) - oz, k(y)) < k(y),
(So) x < suc(x),

(S1) suc(0) = 0,

(S2) c(suc(z) - —x) > ¢(z) - ¢(—x),

(S3)  ale) = (o)

(S4) pred(suc(z)) = suc(pred(z)) = =.

In the above definition (Dg)—(D7) correspond to “ordinary” cylindric axioms,
(Dsg)—(D12) and (E4) make it possible to relativize by a ¢-closed element (cf.
Lemma 2.6 below). (E;)—(E3) say that the (A, +, —,1,¢)-reduct of A is a CA;.
(So0)—(S4) help us embed Z into (some) SCA’s.

LEMMA 2.6. If A € SCA is subdirectly irreducible then 0 # x € A implies
c(z) = 1.

Proof. Weshow that if a€ Aisc-closed then A = A [ ax2( [ —a. Here A [ a

is roughly what is called RI,2 in [HMT], Definition 2.2.1. That is, the universe

of Alais Ala def {r € A:z <a}, and if f is a, say, binary function-symbol of

the language of SCA then f2!%(z,y) = f(x,y) -a for z,y € A | a.

Now suppose that 0<z€ A and a % ¢(z)<1. It follows from (E;)—(Es3) that
both a and —a are c-closed. Let f be the function mapping Ato A[ax A | —a
defined by f(z) = (a-z,—a-x). That f is 1-1 and onto follows from (Dg). It
is also quite easy to show that it respects the operations of 2. For example,
let us check c. Since f(c(z,y)) = (a-c(z,y), —a - c(x,y)) and c(f(z), f(y)) =
c((a-z,—a-x),(a-y,—a-y)) =(a-cla-z,a y),—a-c(-a-x,—a-y)), we have
to show a - c¢(z,y) =a-cla-z,a-y) and —a - c(z,y) = —a-c(—a-z,—a-y). We
prove the former only, the other one is completely analogous.

a-cla-z,a-y)=a-cla-z,cla-z,a)-y)
=a-cla-z,a)-cla-z,y)=a-cla-z,y) =a-c(z,y).
We used (E4), (D3), (E4) again and then (Dg). m
The following lemma is known, but for completeness we include a proof.

LEMMA 2.7. Let B be the countable, atomless BA (note that then < is a dense
(partial) ordering). Then there is a 1-1, onto function h : B\ {0,1} — B\ {0,1}
such that for all x € B\ {0,1}, x < h(x).

Proof. Enumerate the elements in B\ {0,1} as {b, : n € w}. Let ig =
min{i € w: by < b;} and 7,41 = min{i € w: i & {ig,...,in}, bpy1 < b;}. This
definition is meaningful since there are no co-atoms in B. Let h(b,) def b;, for
n € w. Since clearly (Vx € B\ {0,1})x < h(z) and h is 1-1, it remains to show
that it is onto. In other words, we have to check that the function i : w — w is

onto.



106 A. SIMON

Suppose otherwise, and let k€w be such that (Vn€w)i, # k. Choose m with
by, <by, (there is such an m since B is atomless). Let J={j>m : b,, < b; < by}.
Then, by density, |J| =w, so [{i; : j € J}| =wsinceiis 1-1. But {i; : j € J} Ck
since for each j € J, b; < by and k & {io,...,i;_1} by assumption. Clearly, a
contradiction. m

DEFINITION 2.8. Let G be the following function mapping constant terms of
the language of CA% to constant terms of the language of SCA:

G(k;) = k(suc’(e)) ificw,

d;;) = d(suc’(e),suc’ (e)) ifi,j €Z,

c; T) = c(suc’(e),G(r)) ifiecZ,

where suc®(e) = e = pred’(e), suc"t'(e) = suc(suc”(e)), pred"t(e) =
pred(pred”(e)) and suc™"(e) = pred”(e) if n € w.

DEFINITION 2.9. Define the function F' on arbitrary first-order formulas (cf.

the remark after Definition 2.3) byf(cp) def (G(F(p)) =1).

Note that F is computable. Moreover, F' is semantically satisfactory, as will
be shown in Theorem 2.11, i.e. after finishing the proof of Theorem 2.0.

LEMMA 2.10. If 7 is a constant CA%-term, then CA5 E 7 = 1 iff SCA E
G(r) =1.

Proof. (<) Suppose that CAY ¥ 7 = 1, 7 a constant CA%-term. Let 2 € CAL
be such that 7% # 1%, We can assume that 21 is subdirectly irreducible.

Case 1. 2 is discrete (in the sense of [HMT], 1.3.10, see also 1.3.12 op.
cit.). We can assume that 2 is finite because of the following: First, assuming
(Vi € w)(3j € w)(k;j occurs in 7 and k' = k]m) does not make either 2% € CA% or
A ¥ 7 =1 false. Then, since 21 is really just a Boolean algebra, the subalgebra
generated by those k;’s which occur in 7 is finite. Let

B = (B,+,—,1,c,d,e,c, suc, pred, k)

be an SCA-type algebra defined as follows: (B, +,—, 1) is the countable atomless

BA. Let g be an embedding of the BA-reduct of 2 into (B, +,—,1). For z,y € B

let ¢®(z,vy) def y, d® (x,y) def 1,c2(0) def 0, c®(z) ©f i > 0, suc®(0) def 0,
suc® (1) 411 and suc® | (B\ {0,1}) is the injection onto B\ {0,1} provided by

Lemma 2.7. Let pred93 be the inverse of suc®, 0 < e® < 1 and

1B (z) def {g(kf‘) if k; occurs in 7 and z = suc’(e),
0 otherwise.
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Now it is very easy to check that the SCA-axioms hold in 9. Also, by induction
on the subterms of 7 one easily shows that G(7)® =g(7%) # g(1*)=1%, proving
SCAEG(T)=1.

Case 2. 2isnot discrete. Since 7 is a constant term, we can assume that 21 is
generated by the constants, whence it is at most countable and dimension-comple-
mented by [HMT], 2.1.5. It follows from 21’s being non-discrete and subdirectly
irreducible that A £ —c¢; —d;; = 0. Thus 2A is atomless by [HMT], 1.11.8.

Fix m € w with —m < j < m for all j € Occ(r), where

Occ(T) def {i:cjor d;; or k; occurs in 7} .
We define an SCA-type algebra
% = <A7 +7 ) 17 C7 d7 6767 suc, pred? k> )

and show that it is in fact in SCA and B ¥ G(7) = 1. Let +% Cfja sl o
R RS (0) ) suc® (1) 4" and let suc® | (A\{0,1}) be an injection
onto A\{0,1} with (Vo € A\{0,1})z < suc(z), see Lemma 2.7 above. Let pred®
be the inverse of suc®, e® et a2, c®(0) €70 and c® (a) ) forall 0 < ac A

Let f : Z — A be any bijection with the following properties: f(i) = suct(e)
if —-m <i<mand f"(Z\w) ={x € A: 2 <e}. Now let ¢®(z,y) def c?‘,lmy,

d®(z,y) f d?&xquy and

k%(g;> déf {k?lz if fﬁl(x) > O’
0 otherwise .

Now we begin checking the axioms in Definition 2.5. (Dg)—(D7) hold in B
since the corresponding cylindric axioms hold in 2(. To illustrate, let us check
(Dg). If =y or x = z then both sides of the equation equal 0. If = # y, z then
c(z®y)-c(x@z)=1and flx# f~ly flz so

LHS = d(y, Z) = df—ly,f—lz

= Cf—lz(df—ly,f—lac . df—lz,f—lz)

= c¢(z,d(y,z) - d(z, z)) = RHS .
(Dg)—(D12) are satisfied because of the definition of €. (E;)—(E3) are true in 28
for the same reason. (E4) is true since by (D;)-(Ds), both 0 and 1 are “zero-
dimensional”. (Kj) holds by (Cg) and the definition of f (note that c(e- — x) -
c(—c(z - —e))is 1iff z < e, that is, iff f~'z < 0, and 0 otherwise). Finally,
(So)—(S4) are easily checked.

Next we claim that 7% = G(7)®. We show this by induction on the subterms

of 7. In the proof below —m < i, j < m (recall the definition of m).

G(k)® =k(suc'(e)® =k(f(i))® =k* where 0 <i < m,
G(1)® =1%,
G(dyy)® = d(suc’(e),suc’ (e)® = d(f(i), f(7))® = 3}

17
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Gp+0)® =G(W* +G(0)® = p® + 0™ = (u+0)*,

G(—p)® = —G(W)*® = —p™ = (-p)*

G(ei p)® = c(suc’(e), G(u))® = c®(f ( ), G(p)®) = ¢ (™) = (c; )™
This completes the proof of («).

(=) Suppose that SCA ¥ G(7)=1, and let B € SCA and V : w— B be such
that G(7)® # 1%. We may suppose that | B|=w and 98 is subdirectly irreducible,

so Lemma 2.6 applies. Let A ' B and let m, f be as in the previous part of the
proof. Note that the condition “f(i) = suc’(e) if —m < i < m” is consistent with
[ being 1-1, i.e. |{suc’(e) : —m < i < m}| = 2m — 1 by Lemma 2.6 and the
SCA-axioms (Sg)—(S4). Define the operations of the algebra

def
A= (A, +,—,1,¢i,dij, k)i jez, icw

as follows: +2 % 43 2 4 s g def gm gy doF By gy g%
dB(f(0), f(5)) if i, j € Z and K (z) k%(fu)) if € w. Using (Do)~(D7) and (K, )
it is easy to show that the resulting structure satisfies (Cy)—(Cg). Furthermore,

one can prove 7 = G(7)® exactly as in the previous part. =

CONVENTION. From now on by a first-order formula we will always mean a
restricted one (cf. the remark preceding Definition 2.3).

The semantic aspect of our translation function F. To see that F and
SCA are semantically satisfactory, with every model 9t of first-order logic we will
associate an SCA Alg(9) in a natural way such that for any first-order formula
¢ the meaning of G(F'(y)) in Alg(91) will be the same as the meaning of ¢ in M.
In particular, we will have

(k) ME iff Alg(9)EF (¢).

Such a correspondence with CA, in place of SCA was elaborated in detail in
[HMT], §4.3 (and in a style that is as satisfactory as the case of propositional
logic was). Since there is no essential difference between w and Z as an indez set,
we can take the correspondence in [HMT], §4.3, as between first-order logic and
CAz. The only change is that in first-order logic we have to index our variables
with integers instead of natural numbers. Then we have the above desired (sxx)
for CAz in place of SCA. The only changes to do are that we first replace CAg
with CAY and then CA% with SCA.

In [HMT], 4.3.3-4.3.10, with each model 90t a pair (€s M, k) is associated
where €s Mt € CAz and k is an evaluation of the algebraic variables {v; : i € w}
into €s M. The function 71/ mapping first-order formulas to CAz-terms is defined
in [HMT], 4.3.60. It is proved there that

(4) MEe iff EsMETU(p) =1[K],
moreover,
(4%) ™ =T () K],



FINITIZATION PROBLEM 109

where »”! is the set of those valuations s € ZM such that 9t F ¢[s] and
71 ()Pt [k] is the value of the term 7u'(¢) in the algebra €sM at the eval-
uation k of the variables in 74/ ().

Now our F' differs from 74" only in that the evaluation k is built into F'. That
is, with the atomic formula Rjvg ... v,;)—1 We associate the constant symbol k;
instead of the algebraic variable v; (as was done in the definition of 74') (). Then
by (4) we have

(5) MEe iff (EsME)EF(p) =1,
and similarly for (41), that is, if we denote (€s 9%, k) by Al(91), then Al(9%)e CAL

and we have
(5%) ™ = F(p)N.

Now, (5) is a statement of the desired (##x)-type, the only problem is that it
acts between first-order logic and CA% instead of SCA. But we have already seen
(in the proof of Lemma 2.10) that it is easy to commute between CA% and SCA.
So let us do it. First assume that 9t is nontrivial, i.e. it has more than one
element. The case of trivial 9t is easy (as in the proof of Lemma 2.10) so let
us come back to it later. Since Al(9N) is generated by {k; : i € w} (and M
is nontrivial) we have that Al(9I%) is countable and atomless (cf. [HMT], §4.3,
especially Remark 4.3.11). Then, by the proof of Lemma 2.10(<), we can add
suc, pred, e and T to Al(MT) (and of course change c;(z) to c(suci(e),z) etc.) to
obtain a % € SCA such that the CA%-type reduct (in the obvious sense) of 9
is exactly A1(MN). Let Alg(MN) be defined to be this B. It was proved in Lemma
2.10 that F()A = G(F(p))M&™ (there it was proved for arbitrary constant
CA%-terms in place of F(y)). Thus (5) yields

(6) MEe iff AlgON)EGF(p) =1,
which is of course just a special case of
(6%) P = G(F(p)) M) |

given by (5%). But this not only proves (x#*) but also improves it since our F' is
defined as F = F o G.

Let us turn to the trivial models. Assume 901 is trivial. Then Al(9IT) has two
elements, () and ZM. It is easy to construct a countable atomless € € CA% such
that 2 C € (hint: let ¢; be the identity function on € for all 7). Exactly as we
did in the case of nontrivial 9%, we associate with € a B in SCA such that the

CA%—reduet of B is €. We let Alg(I) 4%, The rest of the proof is now exactly
as in the previous case. So we have proved (6) for the case when 91 is trivial.

Thus we have proved the following

THEOREM 2.11. (i) Alg defined above is a natural function mapping models of
first-order logic into SCA such that for any formula ¢ and model It the meaning

(8) Actually, our F' contains slightly more information, but that is irrelevant now.



110 A. SIMON

of ¢ in M is the same as the meaning of F(G(p)) in Alg(IM), that is, (67) above
holds. Moreover,

(i) Alg(9M) consists of the meanings ™ of formulas ¢ in M, provided M is
nontrivial. m

Theorems 2.0, 2.11 together provide a solution to Task (%) together with
condition (*x). (It is Theorem 2.11 which proves that Condition (xx) is satisfied
by SCA,F (or F oG) and Alg.)

Now we want to outline why this solution does not solve the finitization prob-
lem. Since we mentioned only one concrete form of the problem (?), we must be
content with showing that (the logic corresponding to) SCA is not a solution of
that version. But we hope that this will convince the reader that SCA is not even
a candidate for being the variety the finitization problem asks for.

Let Ly be a logic such that the algebraic counterpart (in the sense fixed in
Problem 0) is (a subclass of ) SCA. In L; we have logical constants corresponding
to operations of SCA; it is not quite clear what meaning we should give to the
logical constants ¢, suc, pred and e but suppose that we have given some.

CLAIM. There is an algebra in SCA which is not isomorphic to the semantical
Lindenbaum—Tarski algebra of any theory of Lq.

The reason is that the Lindenbaum-Tarski algebra 2 € SCA of the theory
of the model Mt = (2,0,...,0,...) (i.e. the theory of the two-element model
with empty relations) can be easily changed to a 9’ € SCA such that 2B’ is not
isomorphic to 2B but still “says” that in the class K of models (if any) of which
it is the Lindenbaum—Tarski algebra, all models have two-element universes and
empty relations. (One way to achieve this is to change the meaning of e so that
0 < eB’ < 1 but the dimension set of ¢®’ is different from that of ¢®. We have
at least the infinite set {d(suc’e,suc’ e)® :i < j € Z}\ {e®} available to choose
from.) So, by the isomorphism axiom of Abstract Model Theory (which says that
isomorphic models have identical theories) 2B’ is the Lindenbaum-Tarski algebra
of the theory of M, contradicting B 2 WB’. This more or less proves the Claim, and
it is not hard to push this proof a little further and show that 28’ is not even in
the quasivariety generated by the Lindenbaum—Tarski algebras of the semantical
theories of L.

We would like to stress that it is not outright impossible to give a solution to
Task (*) which happens to solve (some version (1°) of) the finitization problem
too, but this of course does not change the fact that Task (%) even together with
(#x) is not the right question.

As a curiosity, we would like to know how difficult that stronger version of
Task (x) is, where we require the following “two way” version of (xx): In addition
to (x%) we require every subdirectly irreducible member of V' to be of the form

(%) But see Appendix A.
(1%) E.g. Problem 0 above.
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Alg (D) (up to isomorphism), or at least that {Alg(9IT): 9 is a model} generates
V as a quasivariety or variety. This is still not an open problem, because Sain [S87]
contains a solution for this stronger “two-way” version of Task (%) with (), but
we are curious whether this task still admits easy solutions like the ones in the
present paper.

We note that the present work is part of a research project jointly pursued
by Hajnal Andréka and the author. E.g. more information on the purely logical
form of the finitization problem will be available from them; till then the reader is
referred (for this logical form) to Appendix A below and §4 of Sain [S87], Simon
[S90], Venema [V90], [V92].

Appendix A

Here we give some concrete instances of the finitization problem (most of which
are important variants of Problem 0). From now on FOL abbreviates first-order
logic.

PROBLEM 1. Is there a stronger (or equivalent) formulation L; of FOL such
that the class LT(L;) of all semantical Lindenbaum—Tarski algebras of theories of
L, forms a finitely axiomatizable variety or quasivariety (up to isomorphism, of
course)? Here LT(L;) is defined in Problem 0. Further, in the present problem it
is permitted to add infinitary predicate symbols to L; in the style of [HMT], §4.3
(where it was shown that this does not diminish relevance of L; to FOL (11)). Of
course, the semantics (i.e. evaluation of variables, satisfaction, etc.) of the new
infinitary atomic formulas R(vg ... vy, ...)necw remains the old one. m

Problem 1 is harder than Problem 0 since here LT(L;) itself has to be a
(finitely axiomatizable) quasivariety.

PROBLEM 2. Find a formulation L; of FOL related to FOL exactly as de-
scribed in Problem 1 above (that is, L; is stronger than or equivalent to FOL
and L; is permitted to have infinitary predicates) such that L; admits a strongly
complete Hilbert-style axiomatization -, of the following kind:

1 is given by finitely many axiom schemas, where axiom schemas are built
up from formula variables ¥1,...,¥,,... (ranging over formulas of L;) by the
logical connectives of Ly. That is, Sch, the set of schemas, is the smallest set
containing the formula variables and such that for every n-ary connective C' of
Ly, if Ay,..., A, € Sch then C(Ay,...,A,) € Sch. Only elements of Sch are

(*1) The infinitary predicates (or atomic formulas) are needed to remove the following trivial
(and slightly irrelevant) reason for nonaxiomatizability of LT(Lww). The atomic formulas of
Ly, may have arbitrarily big but finite ranks. Therefore in some ultraproducts of members of
LT(Lwew) there will be an element corresponding to some “imaginary formula” of infinite rank.
Cf. [HMT], §4.3, and Németi [N89].
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allowed as axiom schemas for 1. So, 1 is given by finitely many elements of Sch
together with modus ponens and the “congruence” rules

{(lpl s !I/n—l—l)v ey ('I/n < !pn—l-n)} |_1 C(!pl, . a!pn) e C(Wn—l—la . .,Lpn+n)

for every n-ary connective C of L.

A slightly more permissive but still very interesting version of the problem
allows k1 to be presented by finitely many axiom and rule schemas. Here a rule
schema is of the form A;,..., A, b1 Ag, where {A; : i <n} C Sch and for each
instance ¢1, ..., @, F1 o of this schema (where the ¢;’s are concrete formulas of
L) we require ¢1,...,0, F1 po. »

Note that in Problem 2 above
Yy — Vo, if x does not occur in ¥
is not a permitted axiom schema. Also,
Jx¥, 1 Yy if & does not occur in ¥

is not a rule schema. Further, VaWy(x) k1 Yy(x/y), where “(x/y)” denotes sub-
stitution of y for x, is not a rule schema either. By contrast, V¥, - Jx(x =
y A ¥p) has the same meaning and it is a rule schema. As a final illustration,
VaVy(x = y) 1  # x is not a sound rule schema although it yields logical
validities whenever applied to logical validities (but VaVy(x = y) ¥1 = # x).

An earlier version of this problem asked for a (not necessarily strongly) com-
plete axiomatization, but in view of Sain’s result quoted below only the above
stronger version remains open.

In connection with Problem 2 above we note that L., does not admit such
“finite schematic” complete axiomatization as required there. One reason is that
Ly, has infinitely many logical connectives (e.g. “Juv;” for each ¢ € w). There is,
however, a deeper reason. Namely, the obvious ways of cutting down the number
of connectives (1?) do not help, cf. e.g. [N91], [S87], [HMT], §4.3. On the other
hand, propositional logic as well as propositional modal logics are axiomatizable
in the style required in Problem 2.

For FOL without equality there is an L; presented in §4 of Sain [S87] which
solves Problem 2 (for the case without equality). This solution also gives rise
to a further open problem. Namely, Sain’s logic Ly (while completely satisfying
the conditions of Problem 2) is somewhat complicated. Therefore it remains an
important problem to simplify Sain’s L;. For logic with equality, [S87], together
with [S87al, presents a choice of L; with a weakly complete b (satisfying all the
other requirements in Problem 2) and proves that there is no strongly complete
t, for this L;.

(12) E.g. taking a finite variable fragment Ly, or coding the infinity of old connectives with
finitely many new ones (cf. [HMT], Part II, p. 264, item (2)).



FINITIZATION PROBLEM 113

Consider Problem 0 now. If we replace Alg(L;) there with the variety gen-
erated by LT(L;) then [S87] contains positive solutions for FOL both with and
without equality.

Next we formulate a slightly easier but equally important version of Problem 0.

PrROBLEM 3. Let Alg(L;) be defined as in Problem 0. Recall that Problem 0
requires Alg(Lq) to be a finitely axiomatizable variety. Now keep the condition
that Alg(L) is finitely axiomatizable but drop the requirement that it is a variety.
Leave all the rest of Problem 0 unchanged. Is there a positive solution for this
slightly weaker problem? m

Appendix B

Here we give a detailed solution for Task (x) based entirely on results proved
in [D] for the reader not convinced by the proof presented in §1. Accordingly, we
will use the notation of [D] extensively.

Let M be a Turing machine with instructions qq, ..., ¢, such that given the
first-order formula ¢ as input (that is, starting at instruction gy and scanning the
leftmost symbol of "¢7) M eventually halts iff F . Let II(M) be the semi-Thue
process on the alphabet A = {0,1,qo,...,qn,q,q',h} corresponding to M and
defined on pp. 572-574 of [D]. We do not have to worry about the details, all that
is needed is

(1) M eventually halts at the input z iff hgo"zh ~ hq'h,
which is an immediate corollary of [D], Theorem 2.4 and Lemma 3.2, and
(2) ifg— g € II(M), then g # A # ¢’
Here ~%' _~ and A is the empty word.
1 (M)

Let t be the similarity type {(-,2), (a,0)4c4}. Define the function 8 mapping
constant (i.e. variable-free) t-terms onto A* \ {A} by B(a) ' yifa e Aand
B(t-0) def B(7)B(o) (i.e. the concatenation of 3(7) and ((0)). Let

Az ¥ {(z1 - 22) w3 =21 - (72 - 23)}

U{7T =0 : 7,0 are constant t-terms and (1) — B(c) € II(M)}.
Then Azx is a bit redundant but still finite. Note that by associativity
(3) B(r)=p(c) = AxbT1=0.

Let V& Mod(Az). Theorem B.0 below says that this is the finitely based variety

we are after. Define the (easily computable) function G on first-order formulas by

G(p) 40 7 iff 7 is the constant {-term (with, say, the smallest code according to
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some fixed Godel numbering) such that 5(7) = hgo" ¢ 'h and let F(p) def (G(p) =
(h-q')-h).

THEOREM B.0. V is a finitely axziomatizable variety, F is computable and for
every first-order formula ¢

Fo o VEF().

This is an immediate consequence of what we have said so far and of Lemma
B.2 below.

LEMMA B.1. Let 7, o be t-terms with Var(t - o) C {x1,...,zr}, and let
W1, pi be constant t-terms. Suppose that Az & 7 = o. Then BT(p;/z;) ~
Bo(pi/x;).

Here 7(u;/x;) denotes the result of simultaneously substituting p; for z; (i =
1,...,k) in 7.

Proof. By induction on the derivation of 7 = o from Az. If 7 = o is the
associativity axiom then 07 (u;/z;) = B(u1)B(p2)8(ps) = Bo(ui/x;). If it is some
other axiom then Var(7 - o) = 0 and so B7(u;/z;) = (1) ~ (o) = Bo(wi/x;)
since (1) — B(o) € I (M).

Since ~ is an equivalence relation, we only have to check the derivation rules
“substitution” and “replacement”.

First suppose that Az - 7/ = ¢’ and 7 = 7/(u/z), 0 = o'(u/x), where p is
some (not necessarily constant) t-term. We may suppose that x € Var(r' - o’).
Then Var(u) C {z1,...,z,} whence p/ o p(pi/z;) is a constant t-term. Since
Var(7’ - o’) C {z,x1,...,x}, the induction hypothesis gives

Blr /) = B (b)) s 2)) = B s )
~ Blo’ (' [z, pi/x:)) = B((0" (/) (pi /i) = Blo(pi/x:))-

For replacement, suppose that 7 = 71-72, 0 = o1-op and Az -7, = 05,5 = 1,2.
Then Var(r; - 0;) C {x1,..., 21} so the induction hypothesis gives 7 (p;/z;) ~
Boj(wi/xi) for j = 1,2. But then B(7(pi/x:)) = B(7i(pi/:))B(r2(pif2i)) ~
B(o1(pi/z;))B(o2(pi/zi)) = B(o(wi/x;)) by the definition of ~. m

LEMMA B.2. If 7, o are constant t-terms then

B(r)~p(c) & AzkFT=0.
Proof. (=) If B(7) ~ (o) then there are ug,...,ur € A* and productions
Py, ..., P; in Il (M) such that
ﬁ(T) =Ug =>p, Ul =Py --- :>pk U = ,8(0') .
So it is enough to show that Az - u = ' whenever B(u) = vgw, B(i') = vg'w
for some v,w € A*, and g — ¢’ € II(M).
If v=A = w then p=p' € Az. By (2) there are constant t-terms p, ¢’ with

B(o) =g, B(0) = ¢'. Note that ¢ = ¢’ is an axiom. Now suppose that v # A = w
and let v be a constant t-term with §(v) = v. Then S(v-9) = vg and B(v-¢') = vg’
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so by (3) it is enough to see Ax - v -p = v - . But that is true because of the
replacement rule of equational logic.
The remaining cases (i.e. v = A # w and v # A # w) are treated similarly.
(<) This direction follows from Lemma B.1. m

Proof of Theorem B.0. F ¢ iff M halts if it is given the input ¢ iff
hqo"¢h ~ hq’h. By Lemma B.2, this is equivalent to Az F G(¢) = (h-¢') - h,
that is, to V E F(p). m
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