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Abstract. We analyze semidiscrete and second-order in time fully discrete finite element
methods for the Kuramoto–Sivashinsky equation.

1. Introduction. In this paper we study finite element approximations for
the solution of the following periodic initial-value problem for the Kuramoto–
Sivashinsky (KS) equation: For T, ν > 0, we seek a real-valued function u defined
on R× [0, T ], 1-periodic in the first variable and satisfying

ut + uux + uxx + ν uxxxx = 0 in R× [0, T ](1.1)
and

u(·, 0) = u0 in R ,(1.2)

where u0 is a given 1-periodic function. We assume that (1.1)–(1.2) has a unique,
sufficiently smooth solution (cf. [8], [17]).

The KS equation was derived independently by Kuramoto and Sivashinsky in
the late 70’s and is related to turbulence phenomena in chemistry and combustion.
It also arises in a variety of other physical problems such as plasma physics and
two-phase flows in cylindrical geometries. For the mathematical theory and the
physical significance of the KS equation as well as for related computational work
we refer the reader to [7], [16], [3], [4], [17], [5], [6], [8], [9], [13], [14], [1] and the
references therein; see also Temam [18] for an overview. In [1] the discretization
of (1.1)–(1.2) by a Crank–Nicolson finite difference method and a linearization
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thereof by Newton’s method is studied. In the present paper we analyze a semidis-
crete method and a second-order in time fully discrete finite element method. The
discretization in space is based on the standard Galerkin method; for the time
discretization the Crank–Nicolson scheme is used.

For m ∈ N let Hm
per be the periodic Sobolev space of order m, consisting of

the 1-periodic elements of Hm
loc(R). We denote by ‖ · ‖m the norm over a period

in Hm
per, by ‖ · ‖ the norm in L2(0, 1), and by (·, ·) the inner product in L2(0, 1).

A variational form of (1.1) is

(1.3) (ut, v) + (uux, v)− (ux, v′) + ν(uxx, v′′) = 0 ∀v ∈ H2
per .

Taking v := u(·, t) in (1.3) we obtain by periodicity

(1.4)
1
2
d

dt
‖u(·, t)‖2 = ‖ux(·, t)‖2 − ν‖uxx(·, t)‖2 .

Now, for v ∈ H2
per, ‖v′‖2 = −(v, v′′), i.e.,

(1.5) ‖v′‖2 ≤ ‖v‖‖v′′‖, v ∈ H2
per .

Therefore,

(1.6) ‖v′‖2 ≤ ν‖v′′‖2 +
1

4ν
‖v‖2, v ∈ H2

per ,

and (1.4) leads to
d

dt
‖u(·, t)‖2 ≤ 1

2ν
‖u(·, t)‖2 ,

i.e.,

(1.7) ‖u(·, t)‖ ≤ ‖u0‖et/(4ν), 0 ≤ t ≤ T .
Moreover, using the well-known Wirtinger inequality

(1.8) ‖v′‖ ≤ 1
2π
‖v′′‖, v ∈ H2

per ,

(cf. [12]), (1.4) yields

1
2
d

dt
‖u(·, t)‖2 ≤

(
1

4π2
− ν
)
‖uxx(·, t)‖2 ,

and, consequently,

(1.9) ‖u(·, t)‖ ≤ ‖u(·, s)‖, 0 ≤ s ≤ t ≤ T, for ν ≥ 1
4π2

.

We shall discretize (1.1)–(1.2) in space by the standard Galerkin method. To
this end, let 0 = x0 < x1 < . . . < xJ = 1 be a partition of [0, 1], h := maxj(xj+1−
xj), and h := minj(xj+1 − xj). Setting xjJ+s := xs, j ∈ Z, s = 0, . . . , J − 1, this
partition is extended periodicaly to a partition of R. For integer r ≥ 4, let Srh
denote a space of continuously differentiable, 1-periodic splines of degree r − 1
in which approximations to the solution u(·, t) of (1.1)–(1.2) will be sought for
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0 ≤ t ≤ T . The following approximation property for the family (Srh)0<h<1 is well
known:

(1.10) inf
χ∈Sr

h

2∑
j=0

hj‖v − χ‖j ≤ chs‖v‖s, v ∈ Hs
per, 2 ≤ s ≤ r ,

(cf., e.g., Schumaker [15], §8.1). Motivated by (1.3) we define the semidiscrete
approximation uh(·, t) ∈ Srh, 0 ≤ t ≤ T , to u by

(1.11) (uht, χ) + (uhuhx, χ)− (uhx, χ′) + ν(uhxx, χ′′) = 0 ∀χ ∈ Srh ,

where uh(·, 0) := u0
h ∈ Srh, and u0

h is such that

(1.12) ‖u0 − u0
h‖ ≤ chr .

In Section 2 we show existence and uniqueness of the semidiscrete approximation,
and derive the optimal-order error estimate

(1.13) max
0≤t≤T

‖u(·, t)− uh(·, t)‖ ≤ chr .

In analogy to the exact solution, for the semidiscrete approximation the following
inequalities hold:

(1.14) ‖uh(·, t)‖ ≤ ‖u0
h‖et/(4ν), 0 ≤ t ≤ T ,

and

(1.15) ‖uh(·, t)‖ ≤ ‖uh(·, s)‖, 0 ≤ s ≤ t ≤ T, for ν ≥ 1
4π2

.

Section 3 is devoted to a second-order in time fully discrete finite element
method for (1.1)–(1.2). Let N ∈ N, k := T/N , and tn := nk, n = 0, . . . , N . For
v(·, t) ∈ L2(0, 1), 0 ≤ t ≤ T , let

vn := v(·, tn), ∂vn :=
1
k

(vn+1 − vn), and vn+1/2 :=
1
2

(vn + vn+1) .

The Crank–Nicolson approximations Un ∈ Srh to un are then given by U0 := u0
h,

and for n = 0, . . . , N − 1

(1.16) (∂Un, χ) + (Un+1/2Un+1/2
x , χ)− (Un+1/2

x , χ′) + ν(Un+1/2
xx , χ′′) = 0

∀χ ∈ Srh .

The following discrete analogs to (1.7) and (1.8), respectively, can be easily
proved:

(1.17) ‖Un‖ ≤ ‖U0‖eα/(4ν)t
n

, α > 1, k ≤ 8ν
α− 1
α

, n = 1, . . . , N ,

and

(1.18) ‖Un+1‖ ≤ ‖Un‖, n = 0, . . . , N − 1, for ν ≥ 1
4π2

.
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Further, we show existence of the Crank–Nicolson approximations for k < 8ν,
and derive the optimal-order error estimate

(1.19) max
0≤n≤N

‖un − Un‖ ≤ c(k2 + hr) .

We also prove uniqueness of the fully discrete approximations under a mild mesh
condition.

It is well known and easily seen that u(·, t) is odd for 0 ≤ t ≤ T if the initial
value u0 is an odd function. This property carries over to the semidiscrete and
the fully discrete approximations provided χ ∈ Srh implies χ(−·) ∈ Srh.

2. Semidiscretization. In this section we briefly study the semidiscrete ap-
proximation uh. The inequality (1.14) can be proved in the same way as (1.7).
Now, it is evident from (1.14) and the fact that Srh is finite-dimensional that an
estimate of the form

max
0≤t≤T

‖uh(·, t)‖L∞ ≤ c(h)

is valid. Combining this with the fact that the “right-hand side” of the system of
O.D.E.’s (1.11) is locally Lipschitz continuous we deduce existence and uniqueness
of the semidiscrete approximation uh.

In the error estimation that follows we will compare the semidiscrete ap-
proximation with the elliptic projection of the exact solution. This projection
PE : H2

per → Srh is defined by

(2.1) ν(v′′− (PEv)′′, χ′′)− (v′− (PEv)′, χ′) +λ(v− (PEv), χ) = 0 ∀χ ∈ Srh ,

where λ > 1/(2ν). For the elliptic projection we have the following estimate:

(2.2)
2∑
j=0

hj‖v − PEv‖j ≤ chs‖v‖s, v ∈ Hs
per, 2 ≤ s ≤ r

(cf. [11]). This estimate can be proved in the usual manner. First, using the fact
that the bilinear form a,

a(v, w) := ν(v′′, w′′)− (v′, w′) + λ(v, w) ,

is continuous and coercive in H2
per (cf. (1.5)), the Lax–Milgram lemma yields, in

view of the approximation property (1.10),

(2.3) ‖v − PEv‖2 ≤ chs−2‖v‖s, v ∈ Hs
per, 2 ≤ s ≤ r .

Next, to estimate ‖v − PEv‖ consider the auxiliary problem

a(ψ,w) = (v − PEv, w) ∀w ∈ H2
per .

Then, for χ ∈ Srh we have

‖v − PEv‖2 = a(ψ − χ, v − PEv) ≤ c‖ψ − χ‖2‖v − PEv‖2 .
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Therefore, the well-known regularity estimate ‖ψ‖4 ≤ c‖v − PEv‖, easily estab-
lished in our one-dimensional case, and (1.10), (2.3) yield

(2.4) ‖v − PEv‖ ≤ chs‖v‖s, v ∈ Hs
per, 2 ≤ s ≤ r .

The estimate (2.2) now follows from (2.3), (2.4) and (1.5).

Theorem 2.1. Let the solution u of (1.1)–(1.2) be sufficiently smooth, and let
(1.12) hold. Then

(2.5) max
0≤t≤T

‖u(·, t)− uh(·, t)‖ ≤ chr .

P r o o f. Let W (·, t) := PEu(·, t), %(·, t) := u(·, t) − W (·, t), and ϑ(·, t) :=
W (·, t)− uh(·, t). Then u− uh = %+ ϑ and by (2.2)

(2.6) max
0≤t≤T

‖%(·, t)‖ ≤ chr .

Thus, it remains to estimate ‖ϑ(·, t)‖. Using (1.11), (2.1) and (1.3) we have, for
χ ∈ Srh,

(ϑt, χ) + a(ϑ, χ) = (Wt, χ) + a(W,χ)− (uht, χ)− a(uh, χ)
= (Wt, χ) + a(u, χ) + (uhuhx, χ)− λ(uh, χ)
= (λ%− %t, χ)− (uux − uhuhx, χ) + λ(ϑ, χ) ,

i.e.,

(2.7) (ϑt, χ) + ν(ϑxx, χ′′)− (ϑx, χ′)
= (λ%− %t + %%x + ϑϑx, χ) + (u%+Wϑ,χ′) ∀χ ∈ Srh .

A straightforward consequence of the commutativity of PE with time differenti-
ation is

(2.8) max
0≤t≤T

‖%t(·, t)‖ ≤ chr .

Further, (2.2) yields in our one-dimensional case

(2.9) max
0≤t≤T

‖W (·, t)‖L∞ ≤ c .

Taking χ := ϑ(·, t) in (2.7) and using (2.6), (2.8) and (2.9) we obtain by periodicity

1
2
d

dt
‖ϑ(·, t)‖2 + ν‖ϑxx‖2 − ‖ϑx‖2 ≤ ch2r + c‖ϑ‖2 + ‖ϑx‖2 .

Therefore, using (1.5) we obtain

1
2
d

dt
‖ϑ(·, t)‖2 ≤ ch2r + c‖ϑ‖2 ,

and Gronwall’s lemma yields, in view of (1.12),

(2.10) max
0≤t≤T

‖ϑ(·, t)‖ ≤ chr ,

which concludes the proof.
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3. Crank–Nicolson discretization. In this section we show existence of the
Crank–Nicolson approximations U1, . . . , UN for k < 8ν, derive the optimal-order
error estimate (1.19), and under a mild mesh condition prove uniqueness of the
Crank–Nicolson approximations. We also briefly discuss the case of an odd initial
value.

Taking χ := Un+1/2 in (1.16) we obtain by periodicity

(3.1) ‖Un+1‖2 − ‖Un‖2 = 2k{‖Un+1/2
x ‖2 − ν‖Un+1/2

xx ‖2} ,

and (1.18) follows using (1.8). Further, using (1.6) we obtain from (3.1),

‖Un+1‖2 − ‖Un‖2 ≤ k

2ν
‖Un+1/2‖2 ,

i.e.,

(3.2)
(

1− k

8ν

)
‖Un+1‖ ≤

(
1 +

k

8ν

)
‖Un‖, n = 0, . . . , N − 1 .

For α > 1 obviously

8ν + k

8ν − k
≤ 1 +

α

4ν
k for k ≤ 8ν

α− 1
α

,

and (1.17) follows easily from (3.2).

Existence. We shall use the following well-known variant of the Brouwer fixed-
point theorem (see, e.g., Browder [2]).

Lemma 3.1. Let (H, (·, ·)H) be a finite-dimensional inner product space and
denote by ‖ · ‖H the induced norm. Suppose that g : H → H is continuous and
there exists an α > 0 such that (g(x), x)H > 0 for all x ∈ H with ‖x‖H = α.
Then there exists x∗ ∈ H such that g(x∗) = 0 and ‖x∗‖ ≤ α.

The proof of existence of U0, . . . , UN for k < 8ν is by induction. Assume that
U0, . . . , Un, n < N , exist and let g : Srh → Srh be defined by

(g(V ), χ) = 2(V − Un, χ) + k(V V ′, χ)− k(V ′, χ′) + νk(V ′′, χ′′) ∀V, χ ∈ Srh .

This mapping is obviously continuous. Furthermore, by periodicity we have

(g(V ), V ) = 2(V − Un, V )− k{‖V ′‖2 − ν‖V ′′‖2} ,

and via (1.6),

(g(V ), V ) ≥ 2‖V ‖
{(

1− k

8ν

)
‖V ‖ − ‖Un‖

}
∀V ∈ Srh .

Therefore, assuming k < 8ν, for ‖V ‖ = 8ν
8ν−k‖U

n‖ + 1 obviously (g(V ), V ) > 0
and the existence of a V ∗ ∈ Srh such that g(V ∗) = 0 follows from Lemma 3.1.
Then Un+1 := 2V ∗ − Un satisfies (1.16).

Convergence. The main result in this paper is given in the following theorem.
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Theorem 3.1. Let the solution u of (1.1)–(1.2) be sufficiently smooth, U0, . . .
. . . , UN satisfy (1.16), and (1.12) hold. Then, for k sufficiently small ,

(3.3) max
0≤n≤N

‖un − Un‖ ≤ c(u)(k2 + hr) .

P r o o f. Let Wn := W (·, tn), %n := un −Wn, and ζn := Wn − Un. Then
un − Un = %n + ζn and by (2.6),

(3.4) max
0≤n≤N

‖%n‖ ≤ chr .

Thus it remains to estimate ‖ζn‖. Using (1.16), (2.1) and (1.3) we have, for
χ ∈ Srh,

(∂ζn, χ) + a(ζn+1/2, χ) = (∂Wn, χ) + a(Wn+1/2, χ)− (∂Un, χ)− a(Un+1/2, χ)

= (∂Wn, χ) + a(un+1/2, χ) + (Un+1/2Un+1/2
x , χ)− λ(Un+1/2, χ)

= (∂Wn − un+1/2
t − 1

2 (ununx + un+1un+1
x )

+ λ%n+1/2 + λζn+1/2 + Un+1/2Un+1/2
x , χ) ,

i.e.,
(3.5) (∂ζn, χ) + ν(ζn+1/2

xx , χ′′)− (ζn+1/2
x , χ′)

= (ωn + %n+1/2%n+1/2
x + ζn+1/2ζn+1/2

x , χ)

+ (un+1/2%n+1/2 +Wn+1/2ζn+1/2, χ′) ,

where ωn = ωn1 + ωn2 + ωn3 + λ%n+1/2, and

ωn1 := ∂Wn − ∂un,
ωn2 := ∂un − un+1/2

t ,

ωn3 := un+1/2un+1/2
x − 1

2 (ununx + un+1un+1
x ) .

It is easily seen that

(3.6) max
0≤n≤N

‖ωn‖ ≤ c(k2 + hr) .

Taking χ := ζn+1/2 in (3.5) and using (3.4), (3.6) and (2.9) we obtain by period-
icity

1
2k

(‖ζn+1‖2 − ‖ζn‖2) + ν‖ζn+1/2
xx ‖2 − ‖ζn+1/2

x ‖2

≤ c(k2 + hr)2 + c‖ζn+1/2‖2 + ‖ζn+1/2
x ‖2 .

Therefore by (1.5) we see that

‖ζn+1‖2 − ‖ζn‖2 ≤ ck{(k2 + hr)2 + ‖ζn+1‖2 + ‖ζn‖2}
and the discrete Gronwall lemma yields in view of (1.12) for k sufficiently small

(3.7) max
0≤n≤N

‖ζn‖ ≤ c(k2 + hr) ,

which concludes the proof.
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Uniqueness. In addition to our assumptions on Srh we suppose here for the
corresponding partition that for a positive constant µ,

(3.8) h ≥ ch2µ .

It is well known that this inequality implies

(3.9) ‖χ‖L∞ ≤ ch−µ‖χ‖ ∀χ ∈ Srh ,
(cf. Nitsche [10]). Let now V 0 = U0 and V 0, . . . , V N ∈ Srh satisfy

(3.10) (∂V n, χ) + (V n+1/2V n+1/2
x , χ)− (V n+1/2

x , χ′) + ν(V n+1/2
xx , χ′′) = 0

∀χ ∈ Srh ,
for n = 0, . . . , N − 1. Letting En := Un − V n, n = 0, . . . , N , from (1.16), (3.10)
we obtain

(∂En, χ) + ν(En+1/2
xx , χ′′)− (En+1/2

x , χ′)
= (En+1/2En+1/2

x , χ) + (Un+1/2En+1/2, χ′) ∀χ ∈ Srh .
Taking χ := En+1/2 we obtain by periodicity

1
2k

(‖En+1‖2 − ‖En‖2) + ν‖En+1/2
xx ‖2 − ‖En+1/2

x ‖2

= (Un+1/2En+1/2, En+1/2
x )

≤ 1
2 (‖Wn+1/2‖2L∞ + ‖ζn+1/2‖2L∞)‖En+1/2‖2 + ‖En+1/2

x ‖2

≤ (c+ ch−2µ(k4 + h2r))‖En+1/2‖2 + ‖En+1/2
x ‖2

where (2.9), (3.9) and (3.7) have been used. Then (1.5) yields

(3.11) ‖En+1‖2 − ‖En‖2 ≤ Ck(1 + k4h−2µ + h2(r−µ))(‖En+1‖2 + ‖En‖2) .

For k5h−2µ and kh2(r−µ) sufficiently small, assuming En = 0, (3.11) implies
En+1 = 0. Summarizing, for sufficiently smooth u and k5h−2µ, kh2(r−µ) suffi-
ciently small, assuming (3.9) we deduce uniqueness of the Crank–Nicolson ap-
proximations.

Odd initial value. We assume here that the initial value u0 is an odd function.
Then v(x, t) := −u(−x, t) is a solution of (1.1)–(1.2). Thus v = u, i.e., u(·, t) is
odd for 0 ≤ t ≤ T .

Assume now that if xi is a knot of our spline space then −xi is a knot as well,
and moreover that the same differentiability conditions are posed at xi and −xi,
i ∈ Z. As a consequence, χ ∈ Srh implies χ(−·) ∈ Srh. Let u0

h be an odd function
as is natural for odd u0. Then the semidiscrete approximation uh(·, t) is odd
for 0 ≤ t ≤ T , and moreover under our assumptions implying uniqueness of the
Crank–Nicolson approximations Un, they are odd, since V n := −Un(−·) are also
Crank–Nicolson approximations. This fact is of significant practical importance,
since in (1.16) we only have to take the odd χ’s thus reducing the number of
equations to about 50%.
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