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Abstract. In this paper we present some recent results concerning convergence rate esti-
mates for finite-difference schemes approximating boundary-value problems. Special attention
is given to the problem of minimal smoothness of coefficients in partial differential equations
necessary for obtaining the results.

1. Introduction. Recently, increased attention is given to approximation of
generalized solutions of partial differential equations with finite-difference
methods.

For a problem with the solution belonging to the Sobolev space W s
p (Ω), the

convergence estimate

(1) ‖u− v‖Wk
p (ω) ≤ Chs−k‖u‖W s

p (Ω), s > k ,

is said to be compatible with the smoothness of the solution [12]. Here u∈W s
p (Ω)

denotes the solution of the original boundary-value problem, v denotes the so-
lution of the corresponding finite-difference scheme, h is the discretization pa-
rameter, W k

p (ω) denotes the discrete Sobolev space, and C is a positive generic
constant, independent of h and u.

Estimates of this type have been obtained for a broad class of elliptic problems
(see [6, 10, 11, 13, 16]). Analogous results have also been obtained for parabolic
and hyperbolic problems (see [5, 7, 8, 9]). As a rule, the Bramble–Hilbert lemma
[2, 4] is used in their proofs.
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For equations with variable coefficients, the natural problem arises of estab-
lishing the minimal smoothness properties of coefficients for obtaining the same
type (1) of estimate. Such coefficients belong to classes of multipliers in Sobolev
spaces.

2. Multipliers in Sobolev spaces. Let Ω be a domain in Rn. By D(Ω) =
Ċ∞(Ω) we denote the space of infinitely smooth functions with compact support
in Ω, and by D′(Ω) the space of distributions. Moreover, x = (x1, x2, . . . , xn)
denote vectors from Rn, and α = (α1, α2, . . . , αn) are multi-indices. Let |α| =
α1 + α2 + . . .+ αn. Partial derivatives are denoted by

Diu = ∂u/∂xi and Dαu = Dα1
1 Dα2

2 . . . Dαn
n u .

Suppose V and W are two function spaces contained in D′(Ω). A function a
defined on Ω is called a pointwise multiplier , or simply a multiplier, from V to
W if, for every v in V , the product a · v belongs to W . The set of all multipliers
from V to W is denoted by M(V → W ). In particular, when V = W we put
M(V ) = M(V → V ).

In this section, we shall be concerned with multipliers in Sobolev spaces
which belong to M(W t

p(Ω) → W s
p (Ω)), 1 < p < ∞. Naturally, we assume

that t ≥ s.
To begin, we consider multipliers in pairs of Sobolev spaces on Rn. Motivated

by the definition of multiplication of a distribution with a smooth function, for
a ∈ M(W t

p(Rn) → W s
p (Rn)) and u ∈ W−sp′ (Rn), 1/p + 1/p′ = 1, we define the

product a · u ∈W−tp′ (Rn) by

〈a · u, ϕ〉W−t
p′
×W t

p
= 〈u, a · ϕ〉W−s

p′
×W s

p
, ∀ϕ ∈W t

p(Rn) .

This definition implies that M(W−sp′ (Rn)→W−tp′ (Rn))=M(W t
p(Rn)→W s

p (Rn)),
and therefore it suffices to explore the properties of the sets M(W t

p(Rn) →
W s
p (Rn)) and M(W t

p(Rn)→W−sp (Rn)) for t ≥ s ≥ 0.
We recall a collection of fundamental results on multipliers in Sobolev spaces

(see [14]).

Lemma 1. If a ∈M(W t
p(Rn)→W s

p (Rn)), t ≥ s ≥ 0, then:

a ∈M(W t−s
p (Rn)→ Lp(Rn)) ,

a ∈M(W t−σ
p (Rn)→W s−σ

p (Rn)), 0 < σ < s ,

Dαa ∈M(W t
p(Rn)→W s−|α|

p (Rn)), |α| ≤ s ,

Dαa ∈M(W t−s+|α|
p (Rn)→ Lp(Rn)), |α| ≤ s .
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Lemma 2. For t ≥ s ≥ 0, M(W t
p(Rn)→W s

p (Rn)) ⊆W s
p,unif , where

W s
p,unif = {f | sup

z∈Rn
‖η(x− z) · f(x)‖W s

p
<∞, ∀η ∈ D(Rn), η ≡ 1 on B1} ,

and B1 is the unit ball with center 0. If tp > n, then M(W t
p(Rn)→W s

p (Rn)) =
W s
p,unif .

Lemma 3. For s ≥ 0, M(W s
p (Rn)) ⊆ L∞(Rn).

Lemma 4. Suppose 1 < p < ∞, and let s and t be nonnegative integers such
that t ≥ s. If

a =
∑
|α|≤t

Dαaα

and aα ∈ M(W t
p(Rn) → W t−s

p (Rn)) ∩M(W s
p′(Rn) → Lp′(Rn)), 1/p + 1/p′ = 1,

then a ∈M(W t
p(Rn)→W−sp (Rn)).

Lemma 5. Let p > 1, t > s > 0, and suppose that either q ∈ [n/t,∞] and
tp < n, or q ∈ (p,∞) and tp = n. If

a ∈ Bsq,p,unif

= {f | sup
z∈Rn

‖η(x− z) · f(x)‖Bsq,p <∞, ∀η ∈ D(Rn), η ≡ 1 on B1} ,

where Bsq,p is the Besov space, then a ∈ M(W t
p(Rn) → W s

p (Rn)). The result is
also true for t = s, provided a ∈ Bsq,p,unif ∩ L∞(Rn).

Lemma 6. If aα∈M(W s−|α|
p (Rn)→W s−k

p (Rn)), s ≥ k, for every multi-index
α then the differential operator

(2) Lu =
∑
|α|≤k

aα(x)Dαu, x ∈ Rn ,

defines a continuous mapping from W s
p (Rn) to W s−k

p (Rn).

The analogous result holds true for s < 0. If p = 2 then the result holds true
for every s. Under certain conditions we have the converse result:

Lemma 7. Let the operator (2) define a continuous mapping from W s
p (Rn) to

W s−k
p (Rn), and p(s− k) > n, p > 1. Then aα ∈ M(W s−|α|

p (Rn)→ W s−k
p (Rn)),

for every multi-index α.

All of these results can be transfered to Sobolev spaces in an open subset
of Rn. More precisely, if Ω is an open set in Rn with a Lipschitz continuous
boundary and a ∈M(W t

p(Ω)→W s
p (Ω)), then a can be extended to a function ã,

defined on the whole of Rn, such that ã ∈M(W t
p(Rn)→W s

p (Rn)). The converse
is also true: the restriction to Ω of a multiplier a ∈M(W t

p(Rn)→W s
p (Rn)) is an

element of M(W t
p(Ω)→W s

p (Ω)).
For bounded domains, W s

p,unif and Bsq,p,unif are replaced by standard Sobolev
and Besov spaces, respectively. Employing Lemmas 2, 3, 5, imbedding theorems
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for Besov spaces [1, 17] and the representation of distributions from negative
Sobolev spaces [18], we obtain the following results:

Lemma 8. Suppose that Ω is a bounded open subset of Rn with a Lipschitz
continuous boundary , s > 0 and p > 1. If a ∈W t

q (Ω) where

q = p, t = s when sp > n, and
q ≥ n/s, t = s+ ε, ε > 0 when sp ≤ n ,

then a ∈M(W s
p (Ω)).

Lemma 9. Let Ω be a bounded open set in Rn with a Lipschitz continuous
boundary , s > 0 and p > 1. If a ∈ Lq(Ω) where

q = p when sp > n ,

q > p when sp = n, and
q ≥ n/s when sp < n ,

then a ∈M(W s
p (Ω)→ Lp(Ω)).

Lemma 10. Let Ω be a bounded open set in Rn with a Lipschitz continuous
boundary and

a(x) = a0(x) +
n∑
i=1

Diai(x) .

If a0 ∈M(W t
2(Ω)→ L2(Ω)), and ai ∈M(W t

2(Ω)→W 1−s
2 (Ω))∩M(W t−1

2 (Ω)→
L2(Ω)), i = 1, 2, . . . , n, where 0 < s ≤ 1 ≤ t < 2, s 6= 1/2, then a ∈M(W t

2(Ω)→
W−s2 (Ω)).

3. Boundary-value problem and its approximation. As a model problem
let us consider the first boundary-value problem for a second-order linear elliptic
equation with variable coefficients, in the square Ω = (0, 1)2:

(3) −
2∑

i,j=1

Di(aijDju) + au = f in Ω, u = 0 on Γ = ∂Ω .

We assume that the generalized solution of the problem (3) belongs to the Sobolev
space W s

2 (Ω), 1 < s ≤ 3, with the right-hand side f(x) belonging to W s−2
2 (Ω).

Consequently, the coefficients aij(x) and a(x) belong to the following classes of
multipliers: aij ∈ M(W s−1

2 (Ω)), a ∈ M(W s
2 (Ω) → W s−2

2 (Ω)). According to
Lemmas 8–10 sufficient conditions are the following:

aij ∈W |s−1|
2 (Ω) , a ∈W |s−1|−1

2 (Ω) , for |s− 1| > 1 ,

aij ∈W |s−1|+δ
p (Ω) , a = a0 +

2∑
i=1

Diai ,

a0 ∈ L2+ε(Ω) , ai ∈W |s−1|+δ
p (Ω) ,
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where ε > 0,

δ > 0 , p > 2/|s− 1| for 0 < |s− 1| ≤ 1 , and
δ = 0 , p =∞ for s = 1 .

The following estimates do not depend on δ in any way, so we can put δ = 0.
We also assume that the following conditions hold:

aij = aji,

2∑
i,j=1

aijyiyj ≤ c0
2∑
i=1

y2
i , x ∈ Ω, c0 = const > 0,

a(x) ≥ 0 in the sense of distributions, i.e.
〈a · ϕ,ϕ〉D′×D ≥ 0, ∀ϕ ∈ D(Ω) .

Let ω be the uniform mesh in Ω with step h, ω = ω ∩ Ω, γ = ω ∩ Γ , γik =
{x ∈ γ | xi = k, 0 < x3−i < 1}, k = 0, 1, and ωi = ω ∪ γi0. We define finite
differences as usual:

vxi = (v+i − v)/h, vxi = (v − v−i)/h ,

where v±i(x) = v(x± hri), and ri is the unit vector on the xi axis.
We also define the Steklov smoothing operators:

T+
i f(x) =

1∫
0

f(x+ htri) dt = T−i f(x+ hri) = Tif(x+ 0.5hri) .

These operators commute and transform derivatives to differences:

T+
i Diu = uxi , T−i Diu = uxi .

We approximate the problem (3) with the following finite-difference scheme:

(4) Lhv = T 2
1 T

2
2 f in ω, v = 0 on γ

where Lhv = −0.5
∑2
i,j=1[(aijvxj )xi + (aijvxj )xi ] + (T 2

1 T
2
2 a)v and T 2

i = T+
i T
−
i .

The difference scheme (4) is a standard symmetric difference scheme (see [15])
with the right-hand side and coefficient a(x) averaged. For 1 < s ≤ 3 these
coefficients may not be continuous, so the difference scheme with non-averaged
data is not well defined.

4. Convergence of the finite-difference scheme. Let u denote the solution
to the boundary value problem (3) and v the solution to the difference scheme
(4). The error z = u− v satisfies the conditions

(5) Lhz =
2∑

i,j=1

ηij,xi + ζ in ω, z = 0 on γ

where ηij = T+
i T

2
3−i(aijDju)−0.5(aijuxj+a

+i
ij u

+i
xj

) and ζ = (T 2
1 T

2
2 a)u−T 2

1 T
2
2 (au).
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For θ ⊆ ω let (·, ·)θ = (·, ·)L2(θ) and ‖ · ‖θ = ‖ · ‖L2(θ) denote the discrete inner
product and the discrete L2-norm on θ. We also define the discrete W 1

2 -norm
on ω:

‖v‖2W 1
2 (ω) = ‖v‖2ω + ‖vx1‖2ω1

+ ‖vx2‖2ω2
.

Using the energy method [15] it is easy to prove the next lemma.

Lemma 11. The finite-difference scheme (5) is stable in the sense of the a
priori estimate

(6) ‖z‖W 1
2 (ω) ≤ C

( 2∑
i,j=1

‖ηij‖ωi + ‖ζ‖ω
)
.

The problem of deriving the convergence rate estimate for the finite-difference
scheme (4) is now reduced to estimating the right-hand side terms in (6). Esti-
mates which follow are based on the following bilinear version of the Bramble–
Hilbert lemma [3, 10]:

Lemma 12. Let E be a bounded open set in Rn with a Lipschitz continuous
boundary and let η(u, v) be a bounded bilinear functional on W s

p (E) ×W t
q (E),

1 ≤ p, q ≤ ∞, s, t > 0, such that

η(u, v) = 0

if either u is a polynomial of degree < s and v ∈ W t
q (E), or v is a poly-

nomial of degree < t and u ∈ W s
p (E). Then there exists a positive constant

C = C(E, p, s, q, t) such that

|η(u, v)| ≤ |u|W s
p (E)|v|W t

q (E), ∀(u, v) ∈W s
p (E)×W t

q (E),

with the seminorms of the corresponding spaces at the right-hand side.

First, we decompose ηij in the following way:

ηij = ηij1 + ηij2 + ηij3 + ηij4, where

ηij1 = T+
i T

2
3−i(aijDju)− (T+

i T
2
3−iaij) · (T+

i T
2
3−iDju) ,

ηij2 = [T+
i T

2
3−iaij − 0.5(aij + a+i

ij )] · (T+
i T

2
3−iDju) ,

ηij3 = 0.5(aij + a+i
ij ) · [T+

i T
2
3−iDju− 0.5(uxj + u+i

xj
)], and

ηij4 = −0.25(aij − a+i
ij ) · (uxj − u+i

xj
) .

For 1 < s ≤ 2 we set ζ = ζ0 + ζ1 + ζ2, where

ζ0 = (T 2
1 T

2
2 a0)u− T 2

1 T
2
2 (a0u), and

ζi = (T 2
1 T

2
2Diai)u− T 2

1 T
2
2 (Diai · u), i = 1, 2 .

For 2 < s ≤ 3 we set ζ = ζ3 + ζ4, where

ζ3 = (T 2
1 T

2
2 a) · (u− T 2

1 T
2
2 u), and

ζ4 = (T 2
1 T

2
2 a) · (T 2

1 T
2
2 u)− T 2

1 T
2
2 (a · u) .
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Let us introduce the elementary rectangles e = e(x) = {y | |yj − xj | ≤ h, j =
1, 2} and ei = ei(x) = {y | xi ≤ yi ≤ xi + h, |y3−i − x3−i| ≤ h}, i = 1, 2.

The value ηij1 at the node x ∈ ωi is a bounded bilinear functional on Wλ
q (ei)×

Wµ
2q/(q−2)(ei) where λ ≥ 0, µ ≥ 1 and q > 2. Moreover, ηij1 = 0 if either aij is

a constant or u is a first-degree polynomial. Using Lemma 12 and a procedure
proposed in [11], developed in [10], we obtain

|ηij1| ≤ C(h)|aij |Wλ
q (ei)|u|Wµ

2q/(q−2)(ei)
, 0 ≤ λ ≤ 1, 1 ≤ µ ≤ 2 ,

where C(h) = Chλ+µ−2. Summation with the use of the Hölder inequality yields

(7) ‖ηij1‖ωi ≤ Chλ+µ−1|aij |Wλ
q (Ω)|u|Wµ

2q/(q−2)(Ω), 0 ≤ λ ≤ 1, 1 ≤ µ ≤ 2 .

Set λ = s− 1, µ = 1 and q = p. By the imbedding theorem [17], W s
2 ⊆W 1

2p/(p−2)

for 1 < s ≤ 2. Therefore, from (7) we obtain

(8) ‖ηij1‖ωi ≤ Chs−1‖aij‖W s−1
p (Ω)‖u‖W s

2 (Ω), 1 < s ≤ 2 .

Similar estimates hold for ηij2, ηij4, ζ1 and ζ2.
Let now q > 2 be a constant. The following imbeddings hold: Wλ+µ−1

2 ⊆Wλ
q

for µ > 2− 2/q, and Wλ+µ
2 ⊆Wµ

2q/(q−2) for λ > 2/q. Setting λ+µ = s we obtain
from (7),

(9) ‖ηij1‖ωi ≤ Chs−1‖aij‖W s−1
2 (Ω)‖u‖W s

2 (Ω), 2 < s ≤ 3 .

In the same manner we can estimate ηij4.
For s > 2, ηij2(x) is a bounded bilinear functional on W s−1

2 (ei) × W 1
∞(ei)

which vanishes if either aij is a first-degree polynomial or u is a constant. Using
the same lemma and the imbedding W s

2 ⊆W 1
∞ we obtain for ηij2 an estimate of

the form (9).
Similarly, ηij3(x) is a bounded bilinear functional on L∞(ei)×W s

2 (ei), s > 1,
which vanishes if u is a second-degree polynomial. In the same way, using the
imbeddings W s−1

p ⊆ L∞ (for 1 < s ≤ 2) and W s−1
2 ⊆ L∞ (for s > 2) we again

obtain estimates of the forms (8) and (9).
Let 2 < q < 2/(3−s). For 2 < s ≤ 3, ζ3(x) is a bounded bilinear functional on

Lq(e)×W s−1
2q/(q−2)(e). Moreover, ζ3 = 0 if u is a first-degree polynomial. Using the

Bramble–Hilbert lemma and the imbeddings W s−2
2 ⊆ Lq and W s

2 ⊆ W s−1
2q/(q−2)

we obtain the estimate

(10) ‖ζ3‖ω ≤ Chs−1‖a‖W s−2
2 (Ω)‖u‖W s

2 (Ω), 2 < s ≤ 3 .

For 2 < s ≤ 3, ζ4(x) is a bounded bilinear functional on W s−2
2 (e) ×W 1

∞(e).
Using the same methodology and the imbedding W s

2 ⊆W 1
∞, we obtain for ζ4 an

estimate of the form (10).
Finally, let 2 < q < min{2 + ε, 2/(2− s)}. For 1 < s ≤ 2, ζ0(x) is a bounded

bilinear functional on Lq(e)×W s−1
2q/(q−2)(e) which vanishes if u is a constant. Using
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the imbeddings L2+ε ⊆ Lq and W s
2 ⊆W s−1

2q/(q−2), we obtain the estimate

(11) ‖ζ0‖ω ≤ Chs−1‖a0‖L2+ε(Ω)‖u‖W s
2 (Ω), 1 < s ≤ 2 .

Combining (6) with (8)–(11) we obtain the final result:

Theorem. The finite-difference scheme (4) converges and the following esti-
mates hold :

(12) ‖u− v‖W 1
2 (ω) ≤ Chs−1(max

i,j
‖aij‖W s−1

2 (Ω) + ‖a‖W s−2
2 (Ω))‖u‖W s

2 (Ω) ,

for 2 < s ≤ 3 ,

and

‖u− v‖W 1
2 (ω) ≤ Chs−1(max

i,j
‖aij‖W s−1

p (Ω) + max
i
‖ai‖W s−1

p (Ω)(13)

+ ‖a0‖L2+ε(Ω))‖u‖W s
2 (Ω), for 1 < s ≤ 2 .

The obtained convergence-rate estimates (12) and (13) are compatible with
the smoothness of data. An analogous estimate in L2-norm is obtained in [6].
Non-stationary problems were considered in [7, 8].
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