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1. Introduction and notation. The paper presents a finite-difference
method for solving the differential problem

ou d(au)

(1.1)  Lu(t,z) = E(t,x) + o (t,x) =0, (t,z)e 2=(0,T) xR,

(1.2) u(0,2) = g(z), x€R,

where a is continuous and g is a bounded and measurable function.

The solution of problem (1.1)-(1.2) is investigated in Section 2 (Theorem 1).
Section 3 contains the definition of the finite-difference problem, in Section 4 the
problem approximating (1.1)—(1.2) is formulated, and the theorems concerning
the convergence of the numerical solution are stated (Theorem 2 for g € W2(R),
Theorem 3 for g € L1(R)). Section 5 contains some results of numerical compu-
tation. In the next sections all the results are proved.

Let us now define some function spaces which will be used in the paper. First,
the spaces L, are defined in the usual way, and we use the following norms and
moduli of continuity: if f € L,(A4), A C R, then

1/
1= ( [ 1@ Pdr) ™, whth, ) =sup{|A5fl, -0 < 2 < B}, where
A

k
(k
Ak f = Z(—l)kﬂ (j)f(~ +j2) € Ly(Agz), A.={x € A:(z,x+¢e)C A}.
§=0
Next, let us consider the two-dimensional case. Let I = [0,7], and let o; :
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I - RU{—-00}, g2 : I — R U {400} be continuous functions, @ = {(¢,x) :

tel, o(t) <z <oat)}, Q' ={x: (t,2) € Q).
The space L(Q) is defined as the set of all functions w which are measurable
on @ and such that for each ¢t € I, u(t,-) € L1(Q") and

(1.3)  |lull« =sup{|[u’|1:t €I} < o0, |Pu®—Pu'ly =0 ass—t
(ut = u(t7 ))

(the function Pu® is defined on R by Pu®(z) = v®(x) if x € Q°, Pu®(z) = 0 if
x € R\ Q%); || - ||« is the norm in L&(Q). The following moduli of continuity will
be used in Lo(Q):

WKk, u) = sup{wk(hut) : t € T},

wo(h,u) = sup{||Pu’ — Pu’||y :s,t €I, |s —t| < h}.
It can be proved (see Section 7) that
(1.4)  ifu € Lo(Q) then wh(h,u) — 0 as h — 0;

the fact that wo(h,u) — 0 as h — 0 directly follows from the definition of L&(Q).
It will be convenient to introduce C\on, the set of all nondecreasing functions o
such that limy, .o o(h) = 0. Formula (1.4) can thus be written as w®(-, %) € Cmon.
Finally, since we are interested mostly in the derivatives with respect to z, we

use the notation
k

0
k, _ k, _

2. Solution of the differential problem. To consider the properties of the
solution of problem (1.1)—(1.2) we use the characteristics of the operator L, that
is, continuous functions ¢ : I — R satisfying

%cp(t) =a(t,p(t), tel.

Throughout this paper we assume that

(2.1) a€C(2), DacLc(2)N Loo(£2),
and we use the notation
(2.2) A=llafloc, A" =|Dallos, Al =|Dall..

With this assumption it can be proved that if ¢, are two characteristics then
AT p(t) = (t)] < lp(s) — (s)] < XTI p(t) —p(t)]  HO<s<t<T

Hence, no two characteristics have common points and for each (¢, z) € {2 we can
define the function A(-,¢,z) as the characteristic passing through (¢, z), that is,

0
%)\(s,t,x) =a(s,\(s,t,x)), Mt t,z)==x, ifo<s<t<T;

we also use the function x defined by
k(s,t,x) = (x — A(s,t,2))/(t—s) (0<s<t<T, x€R).
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We thus have
t
Ms,t,x) =2~ [ a(0,\(0,t,7))do,
(2.3) : ",
k(s t,z) = P f a(@,\(0,t,x))db;

differentiating (2.3) we get

t

DX(s,t,z) = exp ( - f Da(0,\(0,t,x)) d@),

(2.4) L 3

Dri(s,t,x) = [ Da(0,\(0,t,2)) DA(0, t, ) df.

— s

Therefore,
(2.5) AN < DA(s,t,z) <Ay =€ %) if0<s<t<T, z€R.
It also follows from (2.3) and (2.4) that
(2'6) HHHOO < 4, HDﬁ(Svt? )”1 < A;
If w is a solution of (1.1)—(1.2), then
(2.7) u(t,x) = DA(0,2,2)g(A(0,t, z)),

where, as in (1.5), DA = 9*\/0x*. This formula allows us to investigate the
properties of the solution of (1.1)—(1.2). First, we see that

(2.8) |u'l], = [|u’]|, foreachtel.
Next, the following theorem is true.

THEOREM 1. Let o € CY(I), 2. = {(t,z) :t € I, x < o(t)}, 2> = {(t,z) :
tel,x>po(t)}, ac =alo_, as = alo.. We assume that (2.1) is satisfied and

(2.9) D?ac € Lo(R:) N Loo(22),  D%as € Lo(925) N Loo(925),

(2.10) 6o > 0Vs € I|a(s,o(s)) — o' (s)| > Bo,

and we use notation (2.2) and

(2.11) le'lloc = M, wi(e,¢') =00(e),  wo(h, Da) = o10(h),

(212) ||a,gAHOO = A/A ) where a/gA = alg+ - alg—v algi = DCL(', Q() + 0) )

(213)  max(||D%aclse; [D*as o) = A", |D*ac|. + | D%as | = AY,
wo(h, D2a<) + wo(h, D2a>) = o90(h),

(2.14)
max(w’(h, D*a.),wl(h, D?%as)) = o3(h).
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Then for every s, t, D?X(s,t,+) € L1(R) N Loo(R) and
1D A58, oo < €479 ((t — 5) A" + Aly/Bo) ,

(2'15) 2 Al (t—s) " /
1D A(s,t,-)]l; < e (t—s)(AY + AL),

(2.16)  there exists a function 0 € Chon such that
wi(h,D*X(s,t,)) <o(h) if0<s<t<T.
In the further considerations we use the operators
E(s,t) : Lo(R) = Loo(R)  (0<s<t<T)
defined by the formula

(2.17) [E(s,t)f](x) = DA(s,t,z) f(A(s,t,x)) VzeR.
It follows from (2.7) that the solution of (1.1)—(1.2) satisfies
(2.18) u' = E(s,t)u® f0<s<t<T.

3. Finite-difference problem. In order to define an approximate solution,
we introduce the mesh
O ={(t,x) e 2:t=n1,x=mh, mn€Z, 0<n<N,}, N,=I[T/7],
Q) ={(nt,mh) € 2 :n<N,—1}, Ry={reR:z=mh, meZ},
where h (the step size) is a parameter from the interval (0,1), 7 = ph, and p is
a fixed number (independent of h).

Let m(A) be the set of all functions defined on A. We introduce the following
notation for any wy, € m(Ry) and v, € m(§2):

vy =vp(nrT,mh), V" =wvp(n7,:), Wy, =wy(mh),
lwnlloo = sup{wn| : m € Z},  Jlwnlls =h Y fwal,
(31) meZ

[on]|oo = max{[|v" [ : 0 <7 < Np},
[vnll« = max{[[v"[|y : 0 <n < Np}.
Next, we introduce the difference operator, Ly, : m(£2,) — m(£2},), by

n 1 n 1 n n 1 n n n n
(32) (thh)m = ; vm+1 - §(Um+1 + Um—l):| + %[am—&-lvm—kl - CVm—lvm—l} ;

for vy, € m(£2), me€Z, n=0,1,...,N, — 1,

where o € m(2}) is given, and we formulate the following difference problem:
find v, € m(£2;,) such that

(3.3) (Lyvp)?, =0 for (nm,mh) € 2;,, v € m(Ry) given.
It can be easily seen that problem (3.3) has a unique solution vy, and

(84)  if pllafoe <1 then [fop]l. < [|o%]1s.
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4. Approximation of the differential equation. Let us define the opera-
tors of restriction (see [1]), 7) : LI*°(R) — m(Ry), r : Lo(£2) — m(82y,), by the
formulas

| (mtDh
0 _ .
(3 )m =57 [ fl@)dz if f € Loo(R),
(m—1)h
(rpw)™ = (ru"" ), ifu € Lo(0)

(u' is defined in (1.3)).
We consider problem (3.3) where

(4.1)

(4.2) ap, = a(nt,mh), 00 = T?Lg,

and assume that
(4.3) pA = pllale < 1.
If the operator Fj, : Loo(R) — m(§2y,) is defined by the formula
(Fug)” =7hg,
(44)  (Fug)n™ = 31— pap ) (Frg)mgr + 51+ pag, 1) (Fhg)p 1,
(nT,mh) € (2, ,

then FJ,g is the unique solution of problem (3.3), (4.2).

Let u be the solution of problem (1.1)—(1.2) and vy, the solution of (3.3), (4.2).
Our purpose is to estimate the error of approximation, that is, the function

(4.5) Zn = vp — TR,

in the norm || - ||..
Using definitions (2.17) and (4.4), we can write the error z, in the form

zn = Frg — ra(E(0,)g),

that is, 2" = (F,g9)" — ) (E(0,n7)g) for 0 <n < Nj,.
The estimate for ||zp||« depends on the regularity of the solution u, and hence
of g and a. First, we have the following result.

THEOREM 2. Assume that conditions (2.1), (4.3) are satisfied and that D>\
satisfies (2.16), and use notation (2.2), (2.11) and

(4.6) IDMoo = A, ||D*A0,-,)|l« = A, wl(h,Da) = oy(h).
Then for each g € WZ(R),
(4.7) 0]l < Mi(R)| Dgll, + Mah| D?gll,,

where M (h) = T{(A+ A’ /4)o10(ph) + 5 Aoy (h) + (11 /2)o(h) + hA' (e Hh (A1 +
(1/2)AL) + A'[2) + AJ2+ AJ4)}, My = TApy(A+ 34, iy = 81/(4ps).



180 J. K. KOWALSKI

In the next theorem the initial function g has a lower regularity.

THEOREM 3. Let the assumptions of Theorem 2 be satisfied. If g € L1(R) N
Lo (R) then

(4.8) lznlls < Ms(R)wi(¥(h), g) + Macw? (4 (h), )

where ¢(h) = max(Vh, My(h)), Ms(h) = Mi(h)/¢¥(h), My = 3 + 3Ms,, and
Mi(h), My are taken from Theorem 2.

These theorems are proved in Section 8.

5. Numerical examples. We present here some numerical results. We con-
sider problem (1.1)—(1.2) where a is constant, and g has two values:

gz)=u_ ifzx<0, glz)=us ifz>0.
In this case
u(t,z) =u_ ifzr<at, wult,z)=uy ifz>at.

We also consider problem (3.3) with the coefficients given by (4.2), and the error
zp, defined by (4.5). The norm of z, can be estimated with the use of Theorem 3,
where p(h) = vVh, Ms(h) = 0, My = 13/3+243/(41). We also see that w} (¢, g) =
eluy —u_|, w¥(e,g) = 2¢|uy — u_|. Theorem 3 says that

lznlls < 2Myluy — u_|Vh.

Below, we present some results of computation for 7' = 1 and different values of
a, U_, Uy, h.

u_ = 1.00, uy =2.00, a =0.00, p =1.00 u_ = 0.00, ux =1.00, a = 1.60, u = 0.50

h 121y =N /R h [EA [EIVA
0.010000000 0.051630 0.516302 .025000000 0.064448 0.407604
0.005000000 0.037469 0.529891 .012500000 0.047719 0.426813
0.002500000 0.026986 0.539718 006250000 0.034880 0.441199
0.001250000 0.019331 0.546776 003125000 0.025255 0.451779
0.000625000 0.013796 0.551822 001562500 0.018162 0.459467
0.000312500 0.009818 0.555417 .000781250 0.012997 0.465005

u_ = 2.00, uy = 3.00, a =0.80, u=1.00 u_ = 2.00, uy = 3.00, a = 0.80, u = 0.50

h [P N ERIVAYD h [ PR N B PVAYED
0.020000000 0.039135 0.276724 0.020000000 0.093952 0.664340
0.010000000 0.029301 0.293008 0.010000000 0.068316 0.683164
0.005000000 0.021596 0.305414 0.005000000 0.049276 0.696864
0.002500000 0.015732 0.314644 0.002500000 0.035337 0.706746
0.001250000 0.011363 0.321402 0.001250000 0.025238 0.713832
0.000625000 0.008157 0.326297 0.000625000 0.017972 0.718892
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u_ = 0.80, uy = 2.10, a = —1.00, 1z = 0.60 u_ = —1.00, uy = 1.00, @ = 0.17, z = 0.80
h [EB [ERA h [ERB [ERA
0.020833333 | 0.096772 0.670454 0.016666667 | 0.145127 1.124150
0.010416667 | 0.070888 0.694555 0.008333333 | 0.105862 1.159659
0.005208333 | 0.051405 0.712290 0.004166667 | 0.076573 1.186262
0.002604167 | 0.037007 | 0.725180 0.002083333 | 0.054977 1.204496
0.001302083 | 0.026503 0.734471 0.001041667 | 0.039304 1.217783
0.000651042 | 0.018910 0.741128 0.000520833 | 0.028004 1.227092

Thus, we observe that the convergence of ||zy]|. is of order v/h, as stated in
Theorem 3.

6. Auxiliary formulas and lemmas. All the results presented in this section
are proved in Section 7.

Let us start from a lemma which allows us to obtain estimates for functions
of low regularity.

LEMMA 4. Let X be a Banach space and consider the operator @ : L,(R™) —

X. Assume that there exist nonnegative numbers M, n, Cy, C1, ..., Ck such that
(6.1) V9.9 € Ly(R")  [[@(g) = D(9")llx < Mllg—9'll»,
k
(6.2) YFEWSRY) 2(H)lx <n) ClFIY-
=0

Then there exist constants N, Ny, ..., Ny (depending only on k,n,p) such that for
every g € Ly(R™),

k—1
(63) [ ®(g)llx < (MN + NeCr)ws (', 9) + > 0~/ NiCih (n'/*, g) .
=0
It can be checked that
ifn=k=p=1, then N =3, Ny =N, =1;

64) _ T 13 N N —
1fn_p—1,k—2,thenN—g,No—N1—N2—3~

The next two lemmas will be used in the proof of Theorem 2.
LEMMA 5. Let the operators mj, : LI°¢(R) — L%¢(R) (h € H C Ry) be defined
by

(6.5) (mnf)(@) = [ Wz, 2)f(z + zh) dz,
R
where Wy, are bounded measurable functions on R? satisfying

(6.6) Vh e H 3P, >0Vz € R supp Wy (x,-) C [0, Br]-
For x € R let Yjp(x) = [ Wa(w,2)2? dz. If ¥jn € Lyiy(R) (5 = 0,1,...,k — 1,
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1< p(j) < o0), then
k

6.7)  VfEWFR) lmafl <Y 0h?|D? fllyy + Iih*wi (W, D),
7=0

where 9= (1/j0)%;nllpG)» I = 2/ (k + DB Wallo, 1/p() +1/0 () =1.
LEMMA 6. Let f € Li(R),

(erl)h ¢'m+1
Om.h(f ‘ f f(x)dx — f fly dy’ for meZ,
(m—1)h G —
and ¢, — mh| < h, he B < A¢,,, < heB". Then
(6.8) > emn(f) < 10wl (h, f) + 2Bhe”"||f];.
MmEZL

The following lemma is needed for proving Theorem 1.

LEMMA 7. Let f € Li(a,b), ¢ : [c,d] — [a,b], 0 < Py' < Dp(z) < Py for
almost every x € [c,d]. Then

(6.9)  wi(h, fp())Dyp) < (3+ Pr)wi(h, Pf)+ Pawo(h, Do) f]]; -

Finally, we formulate some properties of measurable functions:
(6.10) if g € Wi (a,b) then g € Log(a,b) and [|g[les < (2/(b—a))llgll; + 1D, ,
(6.11) if g € W(R) then g € Loo(R) and [lglloe < LDyl .
and a formula which can be proved with the use of the mean value theorem:
(6.12) Va,b € R3¢ € (0,1) e —e’ = (e + (1 —€)e’)(a—b).

7. Proofs of auxiliary formulas. In this section all the results from the
previous section and formula (1.4) are proved.

Proof of Lemma 4. We first give a definition of multivariate box splines
(cf. [1] or [2]), which will be used in the proof. We introduce the class Sy of all
systems of vectors from Z" of the form

Y =[z1,...,2.], wherer >nk, x4 =€41if0<1<n—-11<j<k

(e; is the unit vector of the ith axis) which satisfy the condition: each subsystem
of Y consisting of r — k vectors spans the space R"™.
The multivariate box spline By is the function satisfying the identity

[ By@f@de= [ .. [ f(Y ga)da .. de
R™ 0 0 Jj=1

for every f € C(R").
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Let g € Ly(R™) be fixed. If f € WF(R™) is an arbitrary function, it follows
from the triangle inequality and assumptions (6.1), (6.2) that

k
(7.1) 12(@)lx < Mlg— fllp +1 > GlAL.
1=0
Now, as in the proof of Lemma 2 in [2], we construct f for which the right-hand
side of (7.1) can be estimated by the right-hand side of (6.3).
Let Y € S, and let By be the corresponding box spline. Let ¢t > 0 and
k

felw) ==> (-1 () [ By(y)g(= + jty) dy;
j=1
the number ¢ will be chosen later. It is shown in [2] that

lg = fellp < Nwp(t.g),  1fil < t7'Nwy(t.g), 1=0,1,....k,

where N and N; depend only on k, p and Y. Taking t = n'/* we thus obtain the
estimate

k k
Mg = fillp+n)_ ClfIP < MNwE@'*, 9) +> ' VENCl(n'/*, g).
=0 =0

Inequality (6.3) follows from this formula and (7.1). =

Proof of (6.4). We use here the notation from the proof of Lemma 4. Let B;
(I € Z4) be the Schoenberg splines satisfying the recurrence relation By = x|o,1],

Biy1 = fo Bi(x +§)d¢. Then B is the spline By where Y = [1,...,1] € Z*+1L.
Deﬁmng the operator M* by MPFg( fR By (y)g(z + ey) dy, we see that f; =

- Zl(_l)j (j)M?tg‘ Hence g — f; = fR By (y Atyg( ) dy, and consequently
]:

lg = fully < ka(y) [ 148, g(x)| dz dy = ka(y)IIAfngldy-
R

Since for j € Z, || Af gH < j*1A%glly, and [|Af g, < wi(ti g) if 0 <y < j, we

obtain
k+1 J

lg = fill, < Nwf(t,g), where N =>"j* [ By(y)dy
Hence N=3if k=1, N=2 ifk=2.

It is shown in the proof of Lemma 2 in [2] that (in the one-dimensional case)
D'Mtg = e~ MET!(ALg), [|MEglly, < llgll;- Thus

\thu1<2<)ﬂ ) IME (AL g) t—’z() ol (21 luk 2, g)

Hence N; =2 — 1 for i =0,1,...,k, which was to be proved. m
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Proof of Lemma 5. Let f € WF(R). Applying Taylor’s formula we de-
duce from (6.5) that at each x € R,

k

i@ = [ Wh(:c,z){ 3 Z;f’“ Di f(x)
R

=0

ZFhE

T

1
[ (1= ¢k Aen D f(2) dg} dz .
0
This formula can be transformed to

k hi .
mf(z) = Z ﬁwjh(fE)DJf(fU)
j=0

k 1
+(k}il)! [ Wilz,2)2" [ (1= AenD¥ f(x) dE dz .
R 0

Applying assumption (6.6) and Holder’s inequality we obtain estimate (6.7). m

Proof of Lemma 6. First, let f € W{!(R). Introducing a new variable into
the second integral, y = Ag¢y, (x — (m —1)h)/2h (where Agdm = Gmt1 — Pm—1),
we deduce that

(m+1)h Aoqb
emn(f)< [ |f@)- f<¢m1 + 2hm (z—(m— 1)h)> dzx
(m—1)h
Pmt1
2h
+ 11— dy .
- vt
According to our assumptions,
A0¢m 2h Bh
— | —(m—1 < 1— <B .
x (qﬁ 1+ o (x —(m )h))’_h and ‘ A0¢m’_ he
Hence
(m+1)h z+h Pmt1
emn(H)< [ [ IDf)dyde+Bhe® [ |f(y)dy,
(m—1)h z—h 1

and therefore
> omn(f) < 2BheP||f||, + 4n| DS, -
meEZ

At the same time, for any two functions f, f’ € L (R),

> 1emn(f) = mn(M < Af = £y

mEZ
Using Lemma 4 with X = Iy, &(f) = (¢m,n(f))mez, and remark (6.4), we ob-
tain (6.8). m
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Proof of Lemma 7. We use Lemma 4. First, we have
d—h

(7.2) 8 (f DR = [ 1fpla+ 1) De(w + h) = f(o(x)) Dp(a)| da .

Let us take g € W} (R). Then

f l9(p(z + 1)) De(x + h) — g(p(x)) Dp(x)| dz

- @(xz+h)

f ‘Dso(ﬁh) [ Doty)dy+ AnDeo(a)g(p() | d
c w(z)

d—h w(z+h) d—h

[ Do@+n) [ |Dg)ldydz+ [ |AnDe(x)||g(p(x))| dx.
c p(z+h)—P1h c

VAN

IN

Introducing new variables of integration, z = ¢(z + h) in the first integral, and
z = () in the second one, and using (7.2), we obtain

1Ak (g(2(-)) Delly < Pihl|Dgll, + Pawie (b, D)llgll, -
At the same time, if f, f' € Li(a,b) then

| AR (f(2(-)) D) — An(f'(¢(-)) Do)l
d—h

< [ De(a+n)I(f = ") (e(x + m)| + Do(@)|(f = f)(p(x))] dz

<2Pf=Pfl;-
Thus, applying Lemma 4 with (6.4) we obtain (6.9). =
Proof of (6.10). For almost every = € ((a + b)/2,b) we have

(g(y) + f Dyg(2) dz) dy, whered=2x—a > b ; a4 ,

8 —s

g(x) = %

and therefore

o) \

f !dy+5 f\Dg !f dyd2<7Hng+HD9H1

Similarly, if z € (a, (a +0)/2) then g(x) = (1/(b— x)) ff(g(y) — [V Dg(z) dz) dy.
Hence, formula (6.10) is proved. m
6.11

Proof of (6.11). For almost every = € R,

= [ Dgy)dy=— [ Dgly)dy
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Thus,
l9@)| < min( [ [Dgldy. [ |Dg(y)ldy) < 5IDgll

which was to be proved. =

Proof of (1.4). Forevery t € I, w¥(h,u') — 0 as h — 0, hence
V8 >0Vt>03e=c(t)Vz<e |ARS, < g
At the same time, the function ¢ — Pu’ is continuous on I, thus
V8 >03nVs,t|s—t|<n = Vz |AFPu —Pul)||, < g .

Let us take the numbers 0 =ty <t} < ... <t, =T such that ¢;41 —¢; < 2n, and
€ = min(e(to), ..., e(ty)). Then for every t € I, if ¢; is the point nearest to ¢, and
z < €, we have

1AZu"l, < [|AZu"

which was to be proved. m

L+ AN (Put = Put)|, <6,

8. Proofs of the main results

Proof of Theorem 1. First, we show that the functions a, = a(-, o(-))
and a,, ,a), defined in (2.12) are continuous on I. If s,t are fixed, we have

|ag(s) — ap(t)] < als, o(s)) — als, o(t)) + la(s, o)) — a(t, o(1))]

(8.1) < os0(ls — ),

o30(e) = A'Me + $010(e);
the last inequality follows from (2.2), (2.11) and (6.11). Similarly, if o(s) < o(t)
then applying (2.13), (2.14) and (6.10) we obtain

a1 (s) — ayy (t)] < [Da(s, o(s) + 0) — Da(s, o(t))]
(8.2 +|Da(s, o(t)) — Datt, o(t) + 0)] < (] — )
os0(e) = A" Me + o90(e).

A similar estimate can be obtained for a’g_, hence, a,, a’g 4 a’g_ are continuous.
Therefore, since (2.10) is assumed, a, — ¢’ has a constant sign on I. Without
loss of generality we may suppose that it is negative, hence

(8.3) Vsel pB(s)=0(s)—als,o0(s)) = Bo.
Let now s,t be fixed, let n =t — s > 0 and
[2,2"] = {z € R: F(x) € [5,t] AN(b(2),t,2) = o(v(2))}.
Differentiating the definition of ¢ we deduce that
(8.4) Dip(z) = DA(P(z), t,2)/B(¢(x)).
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Hence
(8.5) 1/Cy < DY(x) < Cy, C1=Auq(A+ M) Cy = Asi/bo,

Y
and there exists a function { inverse to 1, that is, £(¢(x)) = z for z € [2/,2"].
For later convenience, we extend v onto R, setting ¢ (z) = s for x < 2/, ¥(x) =t
for x > 2”. Differentiating (2.4) we obtain

t
D?X(s,t,x) = —D(s,t,x) [ D?a(0,\0,t,2))DA(0,t, ) dO

ifx<a orx>a".

Now, let z € R and h > 0. Let v(0) = \(0,t,x), vp(0) = X(0,t,x + h). It follows
from (2.5) that

(8.6) vn(0) — v(0) < Agh = e h.

Applying (2.4) and (6.12) we deduce that there exists a number &, € (0,1) such
that

(8.7) DX(s,t,x+h) — DX(s,t,x) = — (§,DX(s,t,x) + (1 — &) DA(s, t,z + h))
x [ (Da(0,vn(0)) — Da(0,v(6)))do

We divide the interval of integration into three parts: (s, (z))U (¢ (x), ¥ (x+h))
U (¢(z + h),t), and use assumption (2.9) to the first and third parts:

t P(x) vn(0)
(88) [ (Da(0,va(0)) — Da(0,v(0))d0 = [ [ D?a=(0,y)dydo
s s v(o)
Y(z+h) t  vn(9)
+ [ (Da(®,vn(9) — Da(0,v(0)))d0+ [ [ D?ac(0,y)dydo.
() W(a+h) v(6)

We deduce from (8.7), (2.5), (8.8), (8.6), (2.13), (8.5) and (2.2) that
(8.9) |IDA(s,t,x +h) — DX(s,t,2)| < C3h, Cs = A%,(nA" +24"/5).

Hence, DA(s,t,-) is Lipschitz-continuous on R and therefore D?\(s,t,-) is
bounded.

Further, we see that h='(v,(0) — v(0)) — DX(O,t,x) and h=1(¢(x + h) —
Y(x)) — Dy(x) as h — 0. Next, v(f) < 0(0) < vp(0) if 0 € (Y(z),¢¥(xz + h)).
Hence, it follows from (8.7) and (8.8) (majorized convergence of integrals) that

D*X(s,t,z) = —DX(s,t,z)(Bs (z) — B(z) + B<(x)), where

P(x) t
(8.10) Bo(x)= [ bs(0,2)d0, Be(x)= [ be(0,2)d0,
s ()

B(x) = Dij(x)apa(¥(x)),
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be(0,x) = D(O,t,x)D?a-(0,\(0,t,1)), e stands for < or >, al , is defined
n (2.12). Therefore, due to (2.5), (2.13), (8.5), and (2.12), the first inequality
in (2.15) is true. Next, changing the order of integration we deduce that

(8.11) B>, < f f 0> (6, )| dx db) = f ID*al ||, d6 < ]| Dax ||,
: s £(0)

IB<Il, < nllD%ac]..
Setting § = ¢ (z) and using (2.12) we obtain

(8.12) |BJ, = f lal,A(0)] 6 < Ay .

Thus, applying (2.5) and (2.13) we prove that the second inequality in (2.15) is
true. Now, we want to show (2.16). First, we see from (8.10) that

(813)  [|AhD*A(s.t, )|, < wlo(h, DA(s,t,)(IBs |, + |B<ll, + 1 BIl,)
+|DAs.t, ) locw} (b B> — B+ B-).

The first component has just been estimated; let us consider the second. First,
according to (8.10),

p(x) (z+h)
[AnBs (@) < [ AL (@) Ao+ [ b (0, + )| do.
s ¥(2)

The first term on the right-hand side can be estimated by use of Lemma 7 with
f=D%4, o=)\0,t,):
() t 00
[ [ 18wl (@) dode = [ [ AW (z)|dzdo
R s s £(0)

t
< [ (B+ As)wi(h, D*a) + Aqwl (h, DA(6,1,-))Al)) df,

the second — from (2.5) and (2.13):

Y(z+h) t &(0)+h
[ [ bs0z+h)dode= [ [ [bs(0,2) dzd0 < hnA,AL.
R () s £0)

Combining these two inequalities and applying (8.9) and (2.14) we obtain
(8.14)  wi(h,Bs) <as(h), o3(h) =n((3+ Ag)oz(h) + hAg A1+ C3)).

The same estimate holds for B.. Further, it follows from (8.4) that if 2’ < 2 <
— h then

(8'15) ‘Ath(x)’ < |D/\(¢(95 + h),t,:lf + h) - D)\(lﬁ(l’),t,xﬂ/ﬂo
+ Al B (x + 1)) = B(x) .
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Applying (2.4), (6.12), (2.5), and next (8.5) and (2.2) we deduce that
|DA((z + h),t,x + h) = DA(Y (), ¢,z + h)|
P(z+h)
<A [ 1Da(6 N6tz + h))[d6 < hA%,A'/fy.
Y(z)
Hence, due to (8.9),

’D)\(l/f(x + h)? t,x+ h‘) - D)\(T/}(l’)a i, .’L’)‘ < C4h7 Cy= C3 + A?tA,/ﬂO .
Further, it follows from the definition (8.3) of 3, and from (2.11), (8.1) and (8.5)
that

Bz +h) ™ = B((2) 7 < By *1B((z + h) = B(x))] < By *ou(h),
where o4(h) = 0¢(C3h) + 030(C2h). Applying these inequalities in (8.15) we
conclude that

wao(h, DY) < as5(h),  05(h) = (Cah + Ca04(h))/Bo
Thus, using Lemma 7 with ¢ = v, f = a5 and taking into account (8.5) we
obtain

Wi(h, B) < (3+ Co)wk () + Cras (Wl all,

Finally, due to (8.2) and (2.12), we have
(816) w% (h, B) S 0'6(h), O'G(h) == 77(6 + 202)0'40(h) + Cl /AO'5(h)T
Applying inequalities (8.9), (8.11), (8.12), (2.5), (8.14) and (8.16) to (8.13) we
conclude that (2.16) is true and o(h) = Cshn(AY + A’\) + As(203(h) +06(h)). =

Proof of Theorem 2. Step 1. Formula (3.2) yields for each (n7,mh) €
2} the equality

(8.17) ot = 5 (1= pag )z + 5 (L4 pag, )z g+ 7(Lnzn)p, -
Since (4.3) is satisfied, we have
(8.18) plleffos < 1.

AN

Therefore, the coefficients in (8.17) are nonnegative and |[2"*!|;
T||(Lrzrn)"™||1, and we deduce by induction that

12"l +

n—1
12" < 1200 +7 Y I(Tnzn) i (0<n < Ny).
§=0
But, from (4.2), (4.5) and (3.3), 2° = 0 and Lz, = Lpv, — Lyrpu = —Lyrpu.
Hence

n—1

(8.19) 12"y < 7> I Lnraw) |l -
j=0

Thus, we must estimate the norm of (Lprpu)™ (0 <n < Nj, —1).
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Step 2. Let h € H and n (0 < n < Nj, — 1) be fixed and let us introduce
the following notation:

Fout, f =T o) = M0, ama).
(8.20) Am = AnT, (n+ 1)7,mh),  ¢n(0) = A0, (n+ 1)7,mh),
K = k(nT, (n+ 1), mh).
It follows from (2.3), (4.3) and (2.5) that for every m € Z,
|mh — ¢ (0)] < A((n+1)7 —0) < At < h;
he 4T < Gy (0) = dm(0) < heT
According to (3.2) and (4.1) we have

(8.21)

(m+1)h | (mE2)h 1 (m+2)h mh
+ n n
(Lnrpu)y, { f fm=5 f f:|+4hg|:am+1 f f—am f }
(m—1)h (m—2)h mh (m—2)h
Since u is a solution of problem (1.1)—(1.2), it follows from (2.18) that
(m+1)h Am+1
J =17
(m—1)h

Thus, (Lp7hu)™ can be written as I, f where I, is an operator acting from L°¢(R)
to m(Ry,), defined by

1 Am+1 (m+2)h
(8.22) (Inf)m h[ f f—f | f]
(m—2)h
(m+2)h mh
1 n n
+ m |:am+1 f f — Q1 f f:| .
mh (m—2)h
If we define the prolongation operator (cf. [2]), p% : m(Ry,) — LI2¢(R), by
(8.23) (Phwn)(@) = Y wmxo,)(@/h —m)
meZ

(where x4 is the characteristic function of A), then we can see that ||p)wp||1 =
|lwp |1 and thus

(8.24) I(Lrrnw)™ Iy = Iphin -

Step 3. We prove here that the operator 7, = pll, satisfies the assumptions
of Lemma 5. First, we show that (6.5) and (6.6) hold. It follows from (8.22), (8.23)
and (4.2) that for m € Z, £ € [0, 1),

1 1
Wa((m +&h, ) = o IX[—1-pnp, g1y, —6) — 5X[-2-62-9)

1., "
+ ﬂ[amﬂx[—w—&) - O‘m—1X[—2—g,—g)} .
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Thus, (8.18) and (2.6) imply that ||[W||e < 3/(47), Br, = 3. Next, the following
formulas are true for x = (m + §)h, 0 < < 1:

1
%h(x) = QhAo(a" - /in)m,
(8.25) Yin(z) = 4/2 Aok (g1 + K1)

+ o (= €)@= Ay + (1+ )0 — ),

where Agwy, = W41 — Wy—1. We want to estimate [|tos||; and |[11p]|co. First,
by (8.25) we deduce that

1
(8.26) [Yonllr = 3 Z |Ag(a™ = K" )m] .
meZ
(8.27) [1nlloo < 2o [l Aok™[loo 157 +l|| R
. lhlloco > 2% 0K oo ||F ||oo h (&% R |loo -

It follows from (4.2), (8.20) and (2.3) that

1 (n4+1)7

(8.28) (a_mg:;,f (a(n,mh) — a(6, pm(6))) db
1 (nJTrl)T bm (6)
= f (a(m‘, mh) — a(6, mh) — f Da(8,y) dy) de .
nt mh

Applying estimate (6.11) and using (2.11) we obtain
(8.29) |a(nT,mh) — a(f,mh)| < ||a"" — a¥||s < 2|Da™ — Dad® ||, < 3010(7);
formula (8.21) and assumption (2.2) imply that

G (0)
[ 1Da(8,y)|dy < AA'((n+ 1)7 - 6).

mh

Combining this inequality with (8.29) and (8.28) we obtain
(8.30) ol — k4| < 2(o10(T) + TAA).
Next, we estimate Agk. By (2.3), (2.2) and (8.21), for fixed n, m,

(n+1)T dm+1(0)
8.31 Aokl | < = Da(0. )| dydd < 2nA"eA'T .
(8.31) \MM_TJ ¢£wldwﬂy < 2hA'e

Finally, let us consider Ag(a™ — k™). It follows from (4.2) and (2.3) that
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1 (n+1)r  (m+1)h

(8.32) Ag(a” —K")p = — Da(nt,y) — Da(0,y)) dy
) Aol == {(m_fl)h< (n7.y) = Da(6,y))
(m+1)h Pm+1(0)
+ f Da(0,y) dy — f Da(0,y) dy}d@.
(m—=1)h Pm—1(0)
We first have
(m+1)h
833) > [ [|Da(nt,y) - Da(0,y)|dy = 2| Da"" — Da’||, < 201(7) .
mEZ (m—1)h

To estimate the remaining part of our sum, let us observe that if we take f = Da?,
Om = ¢Om(0), B = A’p, then the assumptions of Lemma 6 are satisfied due
to (8.21). Hence,

(m+1)h $m+1(0) )
Z ‘ f Da(0,y) dy— f Da(0,y) dy| < 10w (h, Da®)+2A’e* 77| Dd’||, .
meZ (m—1)h bm_1(0)
Combining this estimate with (8.33), (4.6), (2.11), (2.2) and (8.32) we obtain
(8.34) > | Ao(a™ = K™)m| < 2010(7) + 1007 (h) + 24" ALe 77
meZ

Inequalities (8.30), (8.31), (2.6), (4.3) and (8.34) applied to (8.27) and (8.26)
imply the estimates

[Yonlly < vo(h), Yo(h) = o10(ph) + 501 (h) + phA' Ale?'rh

[rnllee < h7'm(h), m(h) = jo10(kh) + A (X1 + 5) .

Hence, Lemma 5 yields the inequality

81
(8.35) It flly < 2o flloo + 1 (R)IDSIly + @Wi(h, Df).

Step 4. We now estimate the terms occurring on the right-hand side of (8.35)
by the given numbers. First, it follows from (2.7) that

f(x) = Do(z)g(p(x)), Df(x) = D*p(x)g(p(x)) + (De(x))*Dg(p(x)),
ApDf(z) = ApD*@(x)g(p(x + h)) + D*p(x) An(g o @) ()

+ An((Dp)?*)(2) Dy(p(x + h)) + (Dgp(x))* An(Dg 0 @) ().
Assumption (4.6) implies the estimates
ID¢lle <A, @l +h)—¢(x) < Ah,  [D?|; <A

Hence
w(z)+Ah
[An(go@) @) < [ |Dg(y)|dy < Ah|Dgll;
()
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x+h
| AL((Dp)*) ()| < |Dg(a+h) + Dp(a)| [ |D*o(y)| dy

= [ An((Dp)?)|l, < 244°h;
p(x)+Ah
|An(Dgop)(@)| < [ |D?g(y)|dy
()

= [ (D(2))*|An(Dg o ¢)(z)|dz < A*h| D%, .
R
Consequently,

[ flloo < Allgllso,  IIDfIl; < A'llglloe + Al Dgll;
wH(h,Df) < o(h)||gllee + 34’ Ah||Dglloo + A%h||D?g]], .

Combining these inequalities with (8.35), (8.24) and (8.19) and using (6.11),

we obtain
!

Jonll <74 [ G0t + (445 )it + o) 10,

3
tham (S +4) 1071, }.

This estimate implies (4.7), hence the proof of Theorem 2 is complete. m

Proof of Theorem 3. The proof is carried out with the use of Lemma 4.
Let us consider the Banach space L(2;) consisting of all mesh functions y;, which
are bounded and such that the norm ||y.||« defined by (3.1) is finite. For h €
(0,1) let the operator @) : Lo(R) N L1(R) — L(£2,) be defined by @ (g) =
Fyg—ri(E(0,-)g). We must show that @), satisfies the assumptions of Lemma 4.
First, according to (3.4), [[Fhgl« < [[(Frg)°lli = llglli- Next, it follows from
formula (2.8) that for every n > 0, |r2(E(0,n7)g)|1 = |E(0,n7)glx = gl
Since @y, is linear, we deduce that (6.1) is satisfied for each h € H and M = 2.

Next, by Theorem 2, if f € W3 (R) then ||z4]|« < Mi(h)||Df]||, + Mah|D?f||,.
Applying Lemma 4 with 7 = max(h, M;(h)?), we obtain inequality (4.8) and the
proof is complete. =
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